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Abstract  
Somatic structural variants (SVs) are widespread in cancer genomes, however, their impact on 
tumorigenesis and intra-tumour heterogeneity is incompletely understood, since methods to functionally 
characterize the broad spectrum of SVs arising in cancerous single-cells are lacking. We present a 
computational method, scNOVA, that couples SV discovery with nucleosome occupancy analysis by 
haplotype-resolved single-cell sequencing, to systematically uncover SV effects on cis-regulatory elements 
and gene activity. Application to leukemias and cell lines uncovered SV outcomes at several loci, including 
dysregulated cancer-related pathways and mono-allelic oncogene expression near SV breakpoints. At the 
intra-patient level, we identified different yet overlapping subclonal SVs that converge on aberrant Wnt 
signaling. We also deconvoluted the effects of catastrophic chromosomal rearrangements resulting in 
oncogenic transcription factor dysregulation. scNOVA directly links SVs to their functional consequences, 
opening the door for single-cell multiomics of SVs in heterogeneous cell populations.  
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Introduction 
The mutational landscapes of numerous cancers have recently been catalogued in pan-cancer surveys1,2, revealing 
that ~55% of somatic driver mutations represent SVs, which outnumber base-pair substitutions as cancer drivers2. 
Somatic SVs drive tumor development, progression and therapy resistance, and cause inter- and intra-tumor 
heterogeneity3–8. Somatic DNA rearrangement processes generate a broad spectrum of SV classes, which range 
from simple SVs such as deletions and inversions to catastrophic rearrangement classes resulting from 
chromothripsis, chromoplexy and breakage-fusion bridge (BFB) cycles9–13. However, with the exception of focal 
gene deletions and amplifications, the functional effects of SVs are understudied1,2,6,14,15. Indeed, the impact of 
SVs often escapes attention as gene panels, exomes and genomes sequenced with moderate coverage suffer from 
low SV discovery sensitivity, especially for subclonal SVs1,2, which restrains applications in precision oncology. 
Computational methods integrating bulk-cell RNA-seq and cancer genome sequencing data have been employed 
to infer the functional outcomes of a wider spectrum of SVs14–17. These methods, however, have several 
limitations: They require generation of large cohorts with paired RNA-seq and genomic data to analyse recurrent 
SVs, which limits their routine use, or they are restricted to studying SVs that result in allele-specific outlier 
expression in a tumour sample14–17. Furthermore, intra-tumour heterogeneity is not taken into account by these 
methods, which are therefore essentially restricted to the main clone.  
 
Unambiguous inference that a somatic mutation mediates an effect can be drawn by measuring both genotypes 
and molecular phenotypes in the same cell, a feat realizable by single-cell multiomics methods18–22. These methods 
allow investigating the functional impact of mutations in genetically heterogeneous contexts, for example, by 
coupling single-cell DNA and RNA sequencing. Several methods have been developed18–21, but all present 
methods cover only a small subset of the spectrum of SVs arising in cancer: chromosome-arm level changes, and 
interstitial as well as terminal somatic copy-number alterations (SCNAs) greater than 10 Megabase (Mb) in size, 
which jointly represent only 37% of SV drivers seen in a typical cancer genome2. SCNAs smaller than 10Mb, as 
well as translocations, balanced inversions, and complex rearrangement classes9,10,12,23 – which together account 
for the majority of driver SVs2 – escape detection with these methods.  
 
Here, we describe scNOVA (for single-cell Nucleosome Occupancy and Genetic Variation Analysis), a method 
to dissect the full spectrum of somatic SVs ≥200kb in size by inferring their functional conequences using single-
cell multiomics principles. scNOVA leverages data from template-strand sequencing (Strand-seq24), a haplotype-
resolved single-cell technique, in two orthogonal ways: [i] it uses the specific DNA fragmentation pattern resulting 
from Micrococcal nuclease (MNase) digestion of Strand-seq libraries to directly measure nucleosome occupancy 
(NO) and indirectly infer cis-regulatory element (CRE) accessibility25–27 in each cell, and [ii] it couples this 
‘molecular phenotype proxy’ with SV discovery by single-cell tri-channel processing (scTRIP), via joint modeling 
of read-orientation, read-depth, and haplotype-phase28 – in the same individual cell. MNase digests linker DNA 
between nucleosomes, while nucleosome-protected DNA (or DNA protected by some other strongly bound 
proteins) remains intact, allowing inference of NO along the genome by interpreting sequence read counts25–27,29. 
Prior work has shown how nucleosome positioning and occupancy reflects gene regulation, with active enhancers 
exhibiting decreased NO, and with actively transcribed genes showing reduced NO at the transcriptional start and 
termination sites, as well as reduced nucleosome packing within the gene body25–27,29–31. However, the 
relationships between NO and somatic mutational landscapes in cancer cells are unexplored. scNOVA addresses 
this by integrating somatic SVs and NO measurements in the same cell – in a haplotype-resolved manner – to 
dissect the functional impact of somatic SVs in genetically heterogeneous samples. Using scNOVA, we 
functionally deconvolute a wide variety of SVs in single cells providing insights into their functional outcomes, 
including complex DNA rearrangements that previously resisted comprehensive characterization.  
 
Results 
Haplotype-aware NO reveals changes in CREs, cell types, and differential gene activity in Strand-seq data 
Resemblance of Strand-seq and MNase-based NO tracks. Using Strand-seq, a technique in which non-template 
strands are labeled during DNA replication using Bromodeoxyuridine (BrdU)24, we recently reported 
comprehensive SV discovery in single cells at 200kb resolution28. We next sought to investigate the functional 
outcomes of these SVs in individual cellular genomes by single-cell multiomics. We hypothesized that NO 
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patterns derived from MNase cuts made during Strand-seq library preparation24 would represent a promising 
readout, allowing to couple SV discovery with a data type equivalent to single-cell MNase-seq data26 – to link 
somatic SVs and NO profiles in the same cell (Fig. 1a, Fig. S1). To address our hypothesis, we first assessed the 
suitability of Strand-seq for revealing nucleosome locations, by comparing Strand-seq to bulk MNase-seq data 
generated for the NA12878 lymphoblastoid cell line (LCL). Each high-quality Strand-seq library (N=95 single 
cells) was sequenced to a median of 540,379 mapped non-duplicate read pairs32, which amounts to ~0.018x 
coverage per cell (Table S1). To directly compare Strand-seq with bulk-cell MNase-seq data33, we pooled these 
Strand-seq data into “pseudo-bulk” tracks, and then measured NO along the genome (Methods). We found Strand-
seq and MNase-seq were highly concordant in terms of uniformity of coverage and inferred nucleosome positions 
at DNase-I hypersensitive sites (Spearman's r=0.68) (Fig. 1b,c). Measuring NO genome-wide at the binding sites 
of CTCF34 (a key chromatin organizer) revealed a nucleosome-depleted region at the center of the binding site in 
the Strand-seq track, as previously reported for MNase-seq29 (Fig. S2), and nucleosome positioning near CTCF 
sites26,29 closely matched between Strand-seq and MNase-seq (Fig. 1d). Nucleosome repeat length29 estimates 
were consistent between independent Strand-seq experiments (195.4 ±0.4bp) and concordant with bulk MNase-
seq (193.7 ±0.6bp) (Fig. S2), showing these patterns are reproducible. In addition, both assays measured NO in 
all fifteen chromatin states identified by the Roadmap Epigenome Consortium35. Among these chromatin states, 
Strand-seq and MNase-seq revealed the highest NO signals on average for the polycomb-repressed state and the 
bivalent enhancer state, whereas the lowest average NO signals were consistently seen for the active transcription 
start site (TSS) state (Fig. S3). This indicates that Strand-seq based NO tracks closely resemble those derived 
using classical MNase-seq26,29, and we thus concluded that Strand-seq data enable direct measurement of NO in 
single cells. 
 
scNOVA reveals haplotype-specific CRE accessibility. Encouraged by these observations, we developed 
scNOVA, a computational framework that harnesses Strand-seq data to measure NO genome-wide within a cell, 
and couples this readout with SVs discovered in the same cell to functionally characterize SV landscapes (Fig. 
1a). Given that Strand-seq data are haplotype-resolved by nature32, we hypothesized we could identify haplotype-
specific differences in nucleosome occupancy (in short: haplotype-specific NO) – which may, for example, arise 
as a result of a germline genetic variant or a somatic mutation present on one of the chromosomal homologues. 
To address this, we performed analyses of haplotype-specific NO at 66,254 CREs previously defined36 in 
NA12878. First, we phased 24,652,658/49,205,197 (50.1%) of the Strand-seq read fragments onto chromosomal 
haplotypes, and pooled these reads to generate phased pseudo-bulk NO tracks for each of the two haplotypes 
(denoted ‘H1’ and ‘H2’; Fig. 1b). Using these phased NO tracks, we then employed scNOVA to test for haplotype-
specific NO within a 1 kilobase (kb) region centred around each CRE (Fig. S4). This analysis showed haplotype-
specific NO at 727 out of 66,254 CREs (Exact test) when controlling the false discovery rate (FDR) at 10%. These 
727 CREs were 1.4–fold enriched on chromosome X (P=0.019; hypergeometric test), presumably due to the X-
inactivation process37 operating in the female-derived NA12878 cell line (Fig. S5). We next investigated whether 
haplotype-specific NO at CREs reflects allele-specific gene expression, by using bulk RNA-seq data34 that we 
phased using the Strand-seq haplotypes as a guide (Methods). After assigning putative target genes for each CRE 
based on the nearest gene approach38, genes targeted by CREs with haplotype-specific NO showed a significant 
proclivity to be allele-specifically expressed (Fig. S4; P=0.0021; hypergeometric test; 1.5–fold enrichment). A 
CRE inferred to target the NFIB gene, for example, exhibited a clear pattern of haplotype-specific NO: in this 
CRE, phased NO reads were exclusively assigned to H2, indicating increased CRE accessibility on H1 (Fig. 1e; 
Exact test; 10% FDR), and this was coupled with mono-allelic NFIB expression from the H1 haplotype (Fig. 1e; 
FDR-adjusted P<2.3E-10; likelihood ratio test). Likewise, a CRE targeting WWC3, a gene subject to X-
inactivation, demonstrated absence of NO on H2 (10% FDR) – the active chromosome X – coupled with mono-
allelic WWC3 expression from H2 (Fig. S5; FDR-adjusted P<2.5E-40). These data suggest that scNOVA enables 
haplotype-phased NO measurements, with haplotype-specific NO patterns at CREs reflecting target gene 
expression patterns on individual homologs.  
 
Cell-type classification by NO profiling. Since NO within gene bodies reflects gene activity29, we further 
hypothesized that we could use NO tracks derived from Strand-seq to infer cell types based on interpreting the 
activity of lineage-specific genes. In order to address this, we first tested whether Strand-seq based NO profiles at 
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gene bodies reflect global gene expression patterns of a cell. We pooled 33 Million fragments (including phased 
and unphased reads) from 79 Strand-seq libraries generated for the retinal pigment epithelial-1 (RPE-1) cell line28, 
and then used bulk RNA-seq data for the same line to measure NO at actively expressed versus silent gene bodies. 
Analysis of these pseudo-bulk NO data revealed a strong inverse correlation between NO at gene bodies and bulk 
gene expression (P<2.2e-16; Spearman’s r of up to -0.24; Fig. 1f, Fig. S6), where highly expressed genes showed 
lower NO within their gene bodies (and vice versa), consistent with prior MNase-seq based findings29. We next 
explored the utility of NO for cell type classification, by implementing a multivariate dimensionality-reduction 
framework into scNOVA. We performed in silico mixing of Strand-seq libraries generated for different LCLs and 
RPE cell lines, and built a classifier (Methods) that separates distinct cell types by partial least squares 
discriminant analysis (Fig. S7). We first used a training set of 179 mixed libraries, and initially considered 19,629 
features, which reflects ENSEMBL39 gene bodies with detectable Strand-seq reads to allow for NO measurements. 
After feature selection, 1,738 features were retained in the final model. We then used a non-overlapping set of 
123 single cells to assess performance, all of which scNOVA classified accurately (area under the curve (AUC)=1; 
Fig. S7). We also successfully discriminated between cells from three highly-related RPE cell lines (RPE-1, 
BM510 and C7), which all originate from the same donor, but which underwent distinct genome instability and 
selection trajectories28,40 (AUC=0.96; Fig. 1g, Fig. S7). Thus, scNOVA enables accurate cell type classification 
based on NO, even amongst closely related cells, indicating that it can be applied to heterogeneous cell samples.  
 
Inferring gene activity changes in pseudo-clones. Having confirmed that genome-wide NO measurements can be 
used to distinguish cell types, we next tested whether NO at gene bodies is also suited to infer changes in the 
activity of individual genes. Such functionality would be potentially highly relevant for applying scNOVA in 
cancers that show dysregulated cancer-related gene expression in distinct subclones17. Integrating deep 
convolutional neural networks (CNNs) and negative binomial generalized linear models (Fig. S8, S9), we hence 
devised an scNOVA module to predict gene activity changes between defined cell populations (i.e. subclones) 
using NO tracks. To define the ground truth of gene expression, we used bulk RNA-seq data generated for distinct 
cell lines. Then, to parameterize scNOVA, we mixed different numbers of Strand-seq libraries from these cell 
lines in silico to create “pseudo-clones”, and performed benchmarking to assess the ability of scNOVA to predict 
changes in gene activity between pseudo-clones (each composed of cells from a single cell line) by analyzing NO 
at gene bodies (Fig. S10, S11). Indeed, scNOVA's differential gene activity score (Methods) was highly 
predictive of the 10 most differentially expressed genes, where analyses of pseudo-clones comprising 156 RPE-1 
and 46 HG01573 (LCL) libraries revealed an AUC of 0.93 (AUC=0.88 for the 50 most differentially expressed 
genes; see Fig. 1h). Gene activity changes inferred included well-known markers of epithelial (e.g. EGFR, VCAN) 
and lymphoid (e.g. CD74, CD100) cell lineages (Table S2). When controlling the FDR at 10%, 10/10 (100%) of 
the most overexpressed genes in RPE-1, as well as 7/10 (70%) of the most overexpressed genes in HG01573 were 
correctly captured by scNOVA. scNOVA made informative predictions even when we performed in silico cell 
mixing to simulate minor subclones present with a very low cell fraction (CF) of only 30 cells (CF=20%), 8 cells 
(CF=5%), and 2 cells (CF=1.3%), respectively, resulting in AUCs of 0.92, 0.79, 0.68. When cell fractions were 
smaller than 10%, we found that an alternative mode of scNOVA (Methods) that uses partial least squares 
discriminant analysis (PLS-DA) to infer gene activity changes provides slightly improved performances (with 
AUCs reaching 0.90, 0.82, 0.70 for CFs of 20%, 5%, and 1.3%, respectively; Fig S11). We also created pseudo-
clones from RPE cells, represented by 156 RPE-1 cells (the original hTERT-immortalised cell line) and 154 C7 
cells (which underwent transformation)40, where we measured an AUC of 0.73 (Fig. S10). Comparing these 
related lines, scNOVA inferred 615 genes to increase in activity in C7, which included several cancer-related 
genes (e.g. CDK1, EEF1A2), and amongst those 615 genes “carcinoma” represented the most enriched functional 
category (Table S2) – in line with the transformed status of C7. We concluded that scNOVA enables accurate 
inference of gene activity changes based on analyzing Strand-seq-derived NO tracks. Using these inferred gene 
activity changes as a proxy for molecular phenotypes, together with single-cell SV discovery, we next sought to 
investigate the functional outcomes of somatic SV landscapes. 
 
Benchmarking scNOVA: functional outcomes of somatic SV landscapes in lymphoblastoid cell lines 
Benchmarking in cell lines. Before turning to patient samples, we first benchmarked the coupling of SV calling 
and NO analysis – in the same individual cell – using cell lines. We used N=25 LCLs generated from diverse 1000 
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Genomes Project (1KGP) samples, which were recently subjected to Strand-seq by the Human Genome Structural 
Variation Consortium to construct a haplotype-resolved germline SV resource41. Single-cell SV discovery in 1,372 
Strand-seq libraries (Table S1) revealed extensive intra-sample genetic heterogeneity in these widely used cell 
lines: We detected 205 somatic SVs overall, with 24/25 (96%) LCLs showing at least one somatic SV – a 7-fold 
increase in the proportion of LCLs exhibiting somatic heterogeneity compared to a prior report42 (Table S3, 
Supplementary Data). A significant subset of these somatic SVs were present at high clonality (with >10% CF), 
affecting 13/25 LCLs. These high-clonality SVs, unexpectedly, included novel subclonal SV in NA12878, 
arguably the most widely sequenced human cell line34,43,44 – which showed a previously not described 500kb 
somatic 19q13.12 deletion seen with CF=21%, along with two mutually exclusive 22q11.2 somatic deletions (with 
CFs of 21% and 57%, respectively; Fig. S12, S13). The 22q11.2 events map to the known site of IGL 
recombination, a somatic rearrangement occurring during normal B cell development and thought to have little 
transcriptional consequences45. Thus, we focused on the 19q13.12 event, which led to the loss of a copy of ZNF382 
– a known tumor suppressor and repressor of c-Myc46. Application of scNOVA revealed significantly increased 
activity of ERCC6, notably a target of c-Myc/Max dimers47, in cells harboring the somatic deletion (10% FDR; 
Table S2).  
 
We sought to validate this finding using orthogonal datasets, by reanalyzing Fluidigm and Smart-seq single-cell 
RNA-seq (scRNA-seq) data previously generated in NA1287848,49. We subjected these datasets to an array of 
computational tools for SCNA discovery from scRNA-seq data (InferCNV50, HoneyBADGER51  and 
CONICSmat52), none of which identified SCNAs affecting 19q13.12 or 22q11.2 (Table S4). This might not be 
surprising, as these somatic deletions comprised only 11 and 12 expressed genes, respectively – fewer than the 
recommended number of genes (i.e. 100) for confident SCNA calling using scRNA-seq52. We therefore attempted 
to detect these somatic deletions in a targeted manner (by “genotyping”), via inputting the high-resolution SV 
breakpoint coordinates from our framework into CONICSmat. We tested different CONICSmat posterior 
probability cutoffs52 to explore SCNA genotyping in the context of a low number of expressed genes (Fig. S13). 
This analysis inferred the presence of the 19q13.12 somatic deletion in NA12878 across a wide range of 
CONICSmat posterior probability cutoffs (Fig. S13). We next performed differential expression analysis between 
subclones composed of cells with high-confidence deletion genotypes, which revealed that ERCC6 is over-
expressed in cells harboring the 19q13.12 somatic deletion, thus verifying the prediction made by scNOVA (10% 
FDR, Fig. S13). Additionally, cells harboring the 19q13.12 deletion showed several dysregulated signaling 
pathways compared to cells not exhibiting this event, which included the dysregulation of c-Myc/Max targets and 
aberrant MAPK signaling (10% FDR, Fig. S13). These results suggest that scNOVA is able to leverage SVs 
inaccessible to scRNA-seq based discovery to dissect the functional effects of these variants – either directly using 
NO based inference, or by leveraging high-resolution breakpoint assignments from our framework for targeted 
identification of SCNAs (that would otherwise escape detection) in scRNA-seq data. 
 
Complex subclonal rearrangements resulting in dysregulated MAPK signaling. Encouraged by these somatic SV 
data in NA12878, we next turned our attention to NA20509, the LCL with the most abundant SV subclone (85% 
CF). SVs discovered in this subclone included complex rearrangements that appeared to affect two chromosomes, 
providing a relevant use case since Strand-seq enables the identification of subclonal complex and inter-
chromosomal SVs inaccessible to discovery by other methods28. Analyses of these somatic SVs revealed a 49Mb 
dispersed duplication on 5q, and a 2.5Mb inverted duplication on 17p with an adjacent terminal deletion on the 
same haplotype – a signature characteristic of the single cell footprint defined28 for BFB rearrangements (Fig. 2a). 
We next pursued a translocation analysis28, which revealed that the rearranged 5q and 17p segments were fused 
into a ~115Mb derivative chromosome (Fig. S14), reflecting a common mechanism through which BFBs can be 
stabilised. Bulk whole genome paired-end sequencing (WGS) validated these subclonal somatic rearrangements 
in a separate NA20509 cell stock53, with ~30% CF (Fig. S14). Using scNOVA, we inferred that 18 genes were 
dysregulated in the BFB subclone (Fig. 2b). None of these genes reside in the genomic segments affected by the 
somatic DNA rearrangements, suggesting that the gene activity changes arose from gene regulatory effects in 
trans. To further characterize the functional consequences of these trans effects, we devised an scNOVA module 
to test for the overrepresentation of functionally-related gene sets54, such as transcription factor (TF) targets 
(Methods). Using this module, we observed that the dysregulated genes inferred in the BFB subclone were 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468039doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468039
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

enriched for the downstream targets of c-Myc and Max (10% FDR, Fig. 2c). These two TFs form heterodimers 
to regulate cell proliferation in the MAPK signaling cascade55,56, which is the same pathway we previously 
associated with the somatic 19q13.12 deletion in NA12878. Indeed, we observed that MAP2K3, a MAPK 
signaling pathway member that activates c-Myc/Max via p3857,58, is located in the center of the BFB-mediated 
inverted duplication on the derivative chromosome (Fig. 2a), likely resulting in MAP2K3 dosage increase. 
Consistent with these observations, analysis of bulk RNA-seq data available for 24 of these LCLs41 showed that 
NA20509 exhibits the highest MAP2K3 expression, and the highest c-Myc/Max target expression, amongst the 
entire LCL panel (Fig. S15, Fig. 2d). Additionally, haplotype-resolved RNA-seq analysis in NA20509 (Methods) 
revealed mono-allelic expression of MAP2K3 restricted to the complex derivative chromosome haplotype 
(P=1.8e-73; FDR-adjusted likelihood ratio test; Fig. 2e), indicating that only the somatically rearranged haplotype 
exhibits MAP2K3 activity. Collectively, these data orthogonally support the predictions of our scNOVA 
framework that a complex BFB-mediated rearrangement in NA20509 leads to activation of the c-Myc/Max 
pathway (model shown in Fig. 2c). These findings showcase scNOVA's ability to predict global gene activity 
outcomes associated with a subclonal SV, allowing us to now functionally characterize somatic SV landscapes in 
patient samples.  
 
Haplotype-specific functional outcomes of somatic DNA rearrangements in leukemia 
Subclonal SVs in a chronic lymphocytic leukemia (CLL) primary patient sample. Encouraged by this 
benchmarking exercise, we next applied scNOVA to functionally dissect leukemia samples. We first analysed 
primary B-cells from a 61-year-old CLL patient (CLL_24). Routine clinical cytogenetics did not show any 
prototypical genomic alteration59 in CLL_24. By contrast, our single-cell analysis of 86 Strand-seq libraries 
revealed extensive cellular heterogeneity; in this single leukemia sample, we identified 11 different karyotypes 
represented by 13 SVs occurring at CFs between 1-5% (Table S3). While these CF levels are readily amenable 
to Strand-seq, they are considered to be below the detection limit of WGS28. Consequently, our approach detected 
a higher number of somatic subclones for CLL_24 than for any CLL patient sample subjected to WGS by the 
International Cancer Genome Consortium (ICGC)3. Chromosome 10q24 showed especially pronounced subclonal 
heterogeneity; here, 7 independent and partially overlapping hemizygous deletions were found, ranging from 2-
31Mb in size, and clustering proximal to the chromosome fragile site FRA10B60 (Fig. 3a, Fig. S16). Overlap 
analysis of the deletions revealed a 1.4 Mb ‘minimal segment’ at 10q24.32 that was lost in 11 different cells, and 
occurred independently on both haplotypes (Fig. 3b), confirming somatic 10q24 deletions arose multiple times in 
this patient. Prior studies reported somatic 10q24 deletions in 1-4% of CLLs61–63, which showed enrichment in 
relapsed/refractory and high-risk cases64, suggesting this SV represents a somatic driver. We furthermore verified 
this deletion in two independent cohorts, where we detected somatic 10q24.32 deletions in 6/306 (2%) CLLs from 
the ICGC cohort analyzed by SNP arrays62 and 4/96 (4%) CLLs from the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) cohort analyzed by WGS2 (Fig. 3b, Fig. S19). It has been proposed that loss of NFKB2, present in the 
minimal segment, may be responsible for the driver phenotype65, but a molecular analysis of the consequences of 
this somatic SV has been lacking. We therefore sought to characterise the functional consequences of 10q24.32 
deletions arising in CLL_24. 
  
Sub-clonal functional consequences of different 10q24.32 deletions. Having learned that the recurrent 10q24.32 
deletion is subclonal in CLL_24 now provides an opportunity to directly compare the phenotypes of cells with 
and without the deletion and explore the molecular consequences of the somatic SV in (nearly) isogenic subclones. 
We applied scNOVA and identified three differentially active genes: GPA33, ARSK and DNM2, which we found 
dysregulated in a joint comparison of the eleven 10q24.32 deletion-bearing cells with the remaining 75 cells (10% 
FDR; Fig. 3c, Fig. S17). Notably, all of these genes reside on other chromosomes. For instance, in cells harboring 
the deletion we observed reduced NO at the DNM2 locus on chromosome 19, indicating increased activity of 
Dynamin 2, a GTP-binding protein previously shown to be overexpressed66 in other leukemias (Fig. 3d). Given 
these observed trans effects, we next performed a molecular phenotyping analysis similar to the NA20509 case, 
with the aim to measure  global expression outcomes associated with the 10q24 deletion. Since three differentially 
active genes (Fig. 3c) are too few for a gene set overrepresentation analysis, we instead used scNOVA to jointly 
model NO at gene bodies across gene sets from MSigDB67, an approach that is more sensitive since single genes 
not reaching significance on their own can contribute to the joint model as a group (Methods). This analysis 
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showed increased activity of the Wnt signaling pathway in cells carrying a somatic deletion at 10q24.32 (10% 
FDR; Fig. 3e). We also identified c-Met signaling, which is promoted by the Wnt pathway68, to be significantly 
more active in the SV bearing cells (FDR 10%; second rank after Wnt signaling). In support of this prediction, we 
performed bulk RNA-seq for 42 CLLs, which notably revealed CLL_24 as an outlier demonstrating the highest 
Wnt signaling target gene expression amongst all CLLs examined (Fig. 3f).  Moreover, the availability of bulk 
RNA-seq data for 178 CLL patient samples from ICGC62, allowed us to attempt further validation of our 
predictions. We indeed observed significant overexpression of DNM2, as well as significant upregulation of Wnt 
and c-Met signalling in CLL samples carrying somatic 10q24.32 deletions (10% FDR; CLLs with the deletion: 
N=4; no 10q24.32 SV: N=174; Fig. 3g-h, Fig. S20), which orthogonally supports the predictions made by 
scNOVA. Aberrant activation of Wnt signaling is crucial for CLL pathogenesis69. To date, few genetic lesions 
have been linked with aberrant Wnt signalling in CLL69, and our findings suggest this pathway is associated with 
recurrent somatic loss of 10q24.32. 
 
While these results suggest the Wnt pathway is activated in cells containing any deletion spanning the “minimal 
segment”, we also tested the activity of each independent subclone represented by distinct 10q24 somatic deletions 
(Fig. S16). Given the low CF of these subclones (each ≤3.5%), we used the alternative PLS-DA mode of scNOVA 
to infer gene activity for low frequency subclones represented by at least two cells. This clone-by-clone analysis 
suggested that the Wnt signaling pathway activation was concentrated within just two of the subclones, with 
subclone ‘C2’ showing the highest pathway activation and subclone ‘C1’ showing no evidence of Wnt signaling 
activation (Fig. S17). Together, these analyses suggest that scNOVA can uncover sub-clonal functional outcomes 
of driver SVs, and disentangle the relative contribution of low-abundant subclones to aberrant pathway activity in 
primary patient samples. Studies to date have not yet identified  which genes specifically promote aberrant Wnt 
pathway activity at 10q24.32, a locus comprising several genes that are known to, or have been suspected to, 
negatively regulate Wnt signaling (Fig. 3b, Fig. S17, Supplementary Discussions). This includes genes directly 
located in the 10q24.32 minimal segment, such as: NFKB2 (encoding Nuclear Factor Kappa B Subunit 2), and 
FBXW4 (encoding F-box/WD repeat-containing protein 4)70,  as well as genes very close to the minimal segment, 
such as: BTRC (F-box/WD repeat-containing protein 1A)71, which resides just 58kb upstream from the minimal 
region boundary and was found deleted in 9/11 cells in CLL_24. Notably, when analysing published ICGC 
transcriptomic data62, NFKB2 did not show significant changes in gene expression (FDR-adjusted P=0.507; 
Wald’s test), whereas both FBXW4 and BTRC were clearly down-regulated in CLL samples exhibiting 10q24.32 
deletions (FDR-adjusted P-values 0.00478 and 0.000646, respectively); Fig. S17). This suggests that NFKB2 
hemizygous loss is unlikely to be responsible for Wnt activation in 10q24.32 deletion bearing cells, whereas 
FBXW4 and BTRC represent promising targets for future investigation.  
 
Haplotype-specific NO patterns in RUNX1-RUNX1T1 driven acute myeloid leukaemia (AML). Having gained new 
insight into recurrent SVs in CLL, we next applied scNOVA to a primary AML patient sample (32-year-old male; 
patient ID=AML_1). We sorted CD34+ primary cells from AML_1 (Fig. S21), and produced 42 Strand-seq 
libraries. SV discovery revealed a 46,XY,t(8;21)(q22;q22) karyotype consistent with clinical diagnostics, with the 
t(8;21) translocation, detected based on template strand co-segregation28, resulting in the well-known RUNX1-
RUNX1T172 gene fusion (Fig. 4a, Fig. S22). We pooled the single cells into phased pseudo-bulk NO tracks to 
map the breakpoints of this SV to intron 1 of RUNX1T1 and intron 5 of RUNX1, consistent with prior reports73. 
We did not detect subclonal heterogeneity in AML_1, indicating a stable karyotype, which precluded the use of 
scNOVA to assign subclones to dysregulated pathways. Instead, we explored genome-wide patterns of gene 
dysregulation in AML_1 by analysing haplotype differences in NO at gene bodies. Since cancer-specific 
alterations are often localized to a single homolog17, we reasoned that haplotype-specific NO analysis could be 
informative to predict cancer-related gene dysregulation (Methods). Using the phased pseudo-bulk NO tracks, 
scNOVA revealed 11 genes with significant haplotype-specific NO at 10% FDR (Table S2). This included the 
RUNX1T1 gene body, which was more accessible on the derivative (translocation) haplotype in line with its 
haplotype-specific activity (Fig. 4b), suggesting that haplotype-specific NO reflects the aberrant gene activity at 
this oncogenic locus73. The additional genes showing haplotype-specific NO included ARFGEF1 and NPR2, 
which were previously reported to be dysregulated in cells bearing the RUNX1-RUNX1T1 gene fusion74, and 
CD98 (SLC3A2), which promotes AML lethality75 and represents a putative therapeutic target (Fig. 4b, Fig. S23). 
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These analyses notably suggest the ability of scNOVA to uncover cancer-related changes in gene activity based 
only on analyzing genome-wide haplotype-specific NO, an approach with potential for discovering cancer drivers 
and therapy targets in genetically heterogeneous samples.  
 
Next, we considered that fine-grained analysis of  haplotype-resolved NO profiles may allow us to dissect the 
consequences of this balanced translocation on the local cis-regulatory landscape. We used the phased pseudo-
bulk NO tracks to analyse haplotype-specific NO on either side of the SV breakpoint with scNOVA, by using a 
sliding 300kb window with a 10kb offset (Methods). This analysis revealed widespread haplotype-specific NO 
around the SV breakpoint: particularly, we observed broadly decreased NO (suggestive of increased chromatin 
accessibility) on the SV-affected when compared to the unaffected homolog (Fig. 4c). At finer-scale, analysis of 
haplotype-specific NO showed a pronounced decrease in NO in a large distal region 0.8 to 1.1Mb upstream of 
RUNX1 (P<0.003; likelihood ratio test, adjusted using permutations; Fig. 4c). This region was previously shown 
to interact physically with the RUNX1 promoter in normal CD34+ cells76. Application of scNOVA revealed two 
significant CREs in this distal segment showing absence of NO on the derivative chromosome at FDR 10% (Exact 
test), indicating the CREs are more accessible on the derivative chromosome (Fig. 4d, Table S5). The depletion 
of nucleosomes at these two CREs in physical proximity to the RUNX1 promoter76 suggests that they may foster 
or support aberrant RUNX1-RUNX1T1 expression in AML_1. Furthermore, chromosome-wide analyses indicated 
that the haplotype-imbalanced NO was restricted to the two topologically associating domains (TAD) that were 
predicted to be fused as a result of the translocation (Fig. 4e). These analyses suggest the potential of scNOVA 
for dissecting changes in local cis-regulatory landscapes resulting from somatic driver SVs, and reveal epigenetic 
remodelling of regulatory regions in association with the t(8;21) translocation in AML_1 likely contributing to 
aberrant RUNX1-RUNX1T1 fusion gene expression.  
  
Haplotype-specific functional outcomes of complex DNA rearrangement processes in leukemia 
Deconvoluting the outcomes of subclonal chromothripsis with scNOVA. We previously reported a subclonal 
chromothripsis event with unclear functional outcome in a T-ALL patient-derived xenograft (PDX) sample 
(TALL-P1)28. While catastrophic mutation processes such as chromothripsis play key roles in cancer 
development, deciphering their functional effects remains an essentially unsolved challenge9,12,77. This motivated 
us to use scNOVA to deconvolute the outcomes of this subclonal DNA rearrangement. TALL-P1, in particular, 
harbors two subclones28: the dominant (CF=70%) subclone lacks complex SVs, whereas the minor subclone 
(CF=30%) exhibits a chromothripsis event rearranging most of chromosome 6q (depicted in Fig. 5a). Analysis 
using scNOVA identified 12 genes with differential NO between the two subclones (for simplicity, denoted the 
‘chromothripsis-associated gene activity signature’ below; 10% FDR; Fig. 5b; Table S2). Almost all (10/12 
(83%)) of these genes reside on different chromosomes other than chromosome 6, leading us to search for trans 
regulatory effects arising from the chromothripsis event. Closer analysis of the ~90Mb-sized rearrangement 
showed that 27 TFs reside in the chromothriptic region (Fig. 5a). We performed gene-set overrepresentation 
testing using the target genes of these 27 TFs with scNOVA, which notably revealed only one TF – c-Myb, the 
product of the MYB oncogene – as significantly enriched (FDR-adjusted P-value=0.00015; Fig. 5c). In fact, half 
(6/12) of the genes which scNOVA inferred to be altered in activity represent known c-Myb targets (Fig. 5b-c; 
Table S6). 5 out of these 6 genes were inferred to be upregulated in the chromothriptic subclone, which included: 
RHOH - a Rho GTPase frequently overexpressed in T-ALL78, NOTCH1 - a TF and prototypical oncogene 
frequently exhibiting activating point mutations in T-ALL79, and SLC9A7 (NHE7) - a membrane protein 
previously shown to enhance breast tumor formation80. The only gene inferred to be downregulated was PRKCB 
- a PKC kinase shown to display tumour suppressive functions in a colon cancer model81. Taken together, 
scNOVA nominates MYB as a candidate driver gene dysregulated as a consequence of chromothripsis, by 
revealing the aberrant activity of several MYB target genes. 
 
Orthogonal support from bulk RNA-seq. To corroborate these predictions, we first performed bulk RNA-seq in a 
panel of 13 T-ALL samples, including TALL-P1. Leveraging the whole-chromosome haplotypes from Strand-
seq, we performed allele-specific expression analysis resolved by haplotype in TALL-P1, which revealed aberrant 
expression of MYB from the SV-affected chromosome (P=0.0317; likelihood ratio test, 1.4-fold increase in 
homolog-resolved gene expression; Fig. S25) – consistent with MYB dysregulation emerging as a direct 
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consequence of chromothripsis. We next compared gene expression measurements for known c-Myb targets 
(Table S7) among all 13 T-ALL samples, which showed that TALL-P1 exhibited the highest expression of c-
Myb targets amongst all samples tested, including high outlier expression of RHOH (Fig. 5d, Fig. S26) – thus 
further corroborating the inferences made with scNOVA.  
 
Verification and refinement of the chromothripsis-associated gene activity signature via scRNA-seq. Second, to 
provide a more detailed analysis of the chromothripsis subclone we generated an orthogonal scRNA-seq (10X 
Genomics) dataset comprising 5,504 TALL-P1 cells (Fig. 5e). As seen earlier, when applying several current 
methods for inferring SCNAs from scRNA-seq data50–52, we were unable to discover any somatic SVs on 
chromosome 6 based on these single cell expression data (Table S4) – in spite of the fact that the chromotriptic 
region collectively comprises 227 expressed genes. However, when using the high-resolution breakpoints 
identified by our framework as an input to CONICSmat, we successfully produced targeted “genotype” calls in a 
subset of the single cell data. CONICSmat confidently genotyped 15% of the scRNA-seq dataset for which 729 
cells were predicted to harbor the chromothripsis rearrangement, and 109 cells were called “normal” [disomic] 
across the entire chromosome 6 (for the remainder of cells no confident assignment could be made; Fig. 5f). Those 
single cells inferred to contain the chromothripsis event notably showed significant enrichment in two clusters, 
denoted cluster 3 and cluster 7, which emerged from unsupervised clustering analysis (adjusted P=3.43e-5 and 
1.15e-3 respectively; FDR-adjusted Fisher’s exact test; Fig. 5h) – whereas confident normal cells were enriched 
in clusters 4 and 6 (Fig. S28). We next tested whether the chromothripsis-associated gene activity signature 
inferred by scNOVA could be used to independently identify cells harbouring the sub-clonal SV. Using UCell82, 
we found both cluster 3 and cluster 7 were significantly enriched for cells comprising high expression scores for 
the 12 genes contained in this gene activity signature (Fig. 5h, g; P=3.39e-38 and P=2.15e-4, respectively; FDR-
adjusted Fisher’s exact test). These complementary analyses therefore suggested that the chromothriptic clone is 
enriched in scRNA-seq clusters 3 and 7. Notably, differentially expressed genes of both clusters 3 and 7 were 
significantly enriched with c-Myb target genes (adjusted P=4.25e-26, and P=1.88e-26, respectively; Fig. 5i, Table 
S10), which orthogonally validates the aberrant c-Myb activity initially predicted by scNOVA. In addition to c-
Myb, cluster 3 was enriched for EKLF and MYC targets, which act downstream of c-Myb83,84. Finally, we 
performed trajectory analysis on the scRNA-seq data85, which suggested a more primitive state in clusters 3 and 
7 compared to other clusters (Fig. S29). This is perhaps explained by a differentiation block at the progenitor 
stage, which has been previously associated with c-Myb hyperactivity in leukemia86. The agreement between 
genotype (a somatic chromothripsis event) and molecular phenotype (gene activity dysregulation of c-Myb 
targets) in these orthogonal data sets directly supports the ability of scNOVA to infer functional consequences of 
complex SVs in the same leukemic single cells. Collectively, our results indicate that allele-specific c-Myb 
dysregulation resulted from a one-off catastrophic rearrangement event in TALL-P1, leading to aberrant 
expression of c-Myb targets and a more primitive cell state. To our knowledge, this is the first example of how 
single-cell multiomics can be used to decipher the functional effects of chromothripsis – emphasising the potential 
of scNOVA to dissect the functional consequences of catastrophic mutational processes in other cancers. 
 
Discussion 
A novel single cell multiomic framework to functionally characterise somatic SVs. Functional characterization of 
somatic SVs is of critical importance for the interpretation of cancer genomes because SVs outnumber somatic 
point mutations as drivers1,2. The scNOVA single-cell multiomic framework directly links somatic SVs to their 
functional consequences by integrating genetic and molecular readouts from the same cell. Using scNOVA we 
can now: dissect intra-sample genetic heterogeneity at single-cell resolution, measure the haplotype-specific 
impact of SVs, explore global gene dysregulation in SV-containing cells, discriminate genetically-distinct 
subclones, and identify unique and shared functional consequences of heterogeneous SVs affecting the same 
genomic interval. Strand-seq accesses the full spectrum of SV classes ≥200kb in size28, which scNOVA now 
couples to NO measurements to enable their simultaneous functional characterization within the same single-cell 
sequencing experiment. According to the PCAWG cancer genomic resource, 83% of cancer SV drivers fall within 
the SV spectrum2 accessible to Strand-seq. This means that scNOVA can interrogate the gene and pathway activity 
changes resulting from a considerably wider spectrum of SVs compared to prior single-cell multiomics methods, 
which are largely restricted to arm-level or very large interstitial SCNAs >10Mb in size (see also Supplementary 
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Discussion). Despite employing several state-of-the-art methods for inferring SCNA in paired scRNAseq datasets, 
we were unable to discover the somatic SVs predicted with Strand-seq data when using scRNAseq, unless we first 
defined the high-resolution breakpoints for targeted SCNA detection. This is consistent with the resolution of our 
framework being significantly higher compared to the discovery of SCNA based on scRNA-seq alone. On the 
other hand, using this targeted genotyping approach, we found that Strand-seq and scRNA-seq can be successfully 
combined to more completely deconvolute patterns of subclonality and intra-tumor heterogeneity. This study 
altogether analysed 2,178 single-cell genomes and 12,911 single cell transcriptomes (Table S1, Table S4), and 
using these we showed that scNOVA infers changes in gene activity that are generally well-recapitulated by 
expression data. Our study linked SVs representing copy-imbalanced, copy-neutral and complex rearrangement 
classes with a functional outcome. Since copy-neutral SVs are captured by our framework, largely euploid (copy-
number stable) malignancies previously considered inaccessible21 can now be studied by single-cell multinomics 
using our framework. 
 
Linking intra-sample genetic complexity to expression dysregulation. Due to the widened spectrum of SVs 
accessible to our framework, scNOVA enables a more comprehensive dissection of subclonal genetic complexity. 
We report a >7-fold increase in somatic SVs compared with prior studies in LCLs, and implicate novel somatic 
SVs in LCLs with gene activity changes. For instance, we found a somatic deletion at 19q13.12 in the widely-
used NA12878 cell line, and linked this subclonal SV to ERCC6 over-expression and dysregulation of cancer-
related pathways, such as MAPK signaling and c-Myc/Max target gene activation (Fig. S13). We also observed 
unusual karyotypic diversity in a primary CLL sample, which harbored distinct deletions affecting the 10q24.32 
locus. By measuring the subclonal consequences of distinct SV events in the same patient, scNOVA linked this 
previously described putative driver to aberrant activation of the Wnt signaling pathway. Whether the FRA10B 
fragile site is involved in the formation of these somatic deletions remains to be seen, and will necessitate analyses 
of larger cohorts. However, we note that CLL_24 exhibits a SNP (rs118137427; 3.7% allele frequency in 
Europeans) which tags expanded repeat sequences at FRA10B that were associated with the acquisition of terminal 
10q mosaic deletions in normal blood87. Based on the PCAWG resource comprising 94 CLLs2, rs118137427 is 
seen in 2/4 (50%) CLLs with 10q24.32 deletions, but in only 6/90 (6.7%) CLLs with an intact 10q (P=0.035; 
Fisher’s exact test), suggesting a possible link between germline genetic variants at FRA10B and somatic SVs in 
CLL that future studies may explore.  
 
Functional dissection of complex karyotypes. SVs functionally characterized by scNOVA include those arising 
from catastrophic rearrangement processes. While complex SV classes have been associated with aggressive 
tumor phenotypes2,77, their functional impact has remained largely unclear, with functional interpretation typically 
limited to gene loci that are highly amplified in copy-number2,23,77. We showcase the high resolution of scNOVA 
by functionally dissecting a BFB-mediated complex karyotype in NA20509, resulting in monoallelic MAP2K3 
expression and c-Myc/Max target dysregulation. In addition we dissect a subclonal chromothripsis event in a T-
ALL-derived sample, directly linking chromothripsis to c-Myb target deregulation by single-cell multiomics, to 
report a previously undescribed mechanism for MYB oncogene activation in T-ALL. Pursuing paired scRNA-seq 
for the same patient sample enabled us to locate the chromothriptic clone in the clustered expression data, which 
in turn allowed us to comprehensively characterize the differential gene activity changes and primitive cell state 
of the somatic subclone. The agreement we found between these orthogonal datasets verified the predictions made 
by scNOVA, illustrating how we can now comprehensively infer the functional consequences of complex 
subclonal SVs in the same leukemic single cells. These results highlight significant potential of scNOVA as a 
framework to study the impact and dynamics of complex rearrangements in cancer. 
 
Technical considerations and remaining limitations. scNOVA considers three separate genomic readouts: somatic 
SVs, gene activity, and CRE accessibility around the SV breakpoints – all obtained from only one single-cell 
assay: Strand-seq. Since our workflow does not require coupling distinct experimental modalities in each 
individual cell, well-known challenges of single-cell multiomics methods21 such as increased costs (e.g. from 
pursuing paired RNA and DNA sequencing from the same cells) and data sparseness (e.g. loss of data from any 
one of the paired experimental modalities88) are overcome. One could consider also integrating ATAC-seq into 
the Strand-seq assay, potentially enabling enhanced analysis of chromatin accessibility; however, this would come 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468039doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468039
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

at the price of significantly lower resolution of SV calls, given the less uniform coverage of transposase- compared 
to MNase-mediated cuts89.  The relatively high coverage achieved by Strand-seq  enables the analysis of 
haplotype-specific NO along whole chromosome homologs (Fig. S30), allowing dissection of SV functional 
outcomes in cis. This provides certain advantages over classical allele-specific analyses, which are restricted to 
phased sequences containing heterozygous SNPs typically reflecting up to 15% of the genome17.  
 
Nevertheless, key challenges in single-cell sequencing remain, and the full spectrum of somatic mutations arising 
in an individual cell is likely to remain inaccessible to studies in the foreseeable future. Because scNOVA 
harnesses the increasingly used Strand-seq technique41,90,91, it captures the whole spectrum of SVs ≥200kb, but 
misses smaller ones such as mobile element insertions (albeit, this SV class more rarely acts as cancer driver2). 
While revealing differentially active genes, scNOVA does not span the dynamic expression range accessible to 
RNA-seq nor provides quantitative gene expression measurements of individual genes. Finally, Strand-seq 
requires dividing cells for BrdU labeling (Fig. 1a), and is hence not applicable for non-dividing cells and formalin-
fixed samples. However, it can be utilized for dividing cells in cell lines, PDX models, organoids, primary fresh 
frozen progenitor cells, cells in regenerating tissues, leukaemia cells, and cancer samples amenable to culture. As 
customary when developing new methods, we used cell lines for benchmarking followed by proof-of-principle 
application in patient-derived samples. Generalisation of these studies in larger patient cohorts will in the future 
allow elucidating relevant roles of subclonal SVs in leukaemogenesis.  
 
Potential future applications: non-genetic determinants of cancer, pre-cancer studies, translational medicine. 
Technical challenges and limitations notwithstanding, we foresee a wide variety of potential future applications 
using scNOVA. Our framework offers potential for studies on the determinants and consequences of genomic 
instability in cancer, and may promote research into the interplay of genetic and non-genetic cancer determinants, 
including epigenetic plasticity implicated in metastatic potential21. It likewise could be used to advance surveys 
of precancerous lesions, in which roles of SV are understudied21,92. Robust determination of SVs in single cells is 
a known challenge92, and scNOVA can increase confidence in single-cell SV discovery by allowing to identify 
haplotype-resolved SVs and their functional effects in the same cell. This is exemplified by the RUNX1-RUNX1T1 
oncogenic fusion in AML, which in addition to yielding a rearranged DNA sequence results in a discernible 
pattern of haplotype-specific NO at CREs around the rearrangement breakpoint. In addition, scNOVA might offer 
future value in precision oncology by exposing subclonal driver alterations along with their targetable functional 
outcomes, to potentially allow therapeutic targeting of cancer subclones. Furthermore, SVs can accidentally arise 
in key model cell lines, and scNOVA’s features are ideally suited to functionally characterise unwanted 
heterogeneity in such samples. As a proof-of-principle, we demonstrated dissection of the outcomes of undesired 
SVs in widely used LCLs, which includes NA12878, key reference cell line for 1KGP, ENCODE, and NIST34,43,44. 
Indeed, the extent of somatic SVs that our framework uncovered in LCLs indicates that human model cell lines, 
used for fundamental discoveries in translational medicine and tumour biology, may show more widespread and 
functionally impactful genetic heterogeneity than currently anticipated. Unwanted somatic SVs also arise as a by-
product of CRISPR-Cas9 genome editing, which generates micronuclei and chromosome bridges in human 
primary cells, structures that initiate the formation of chromothripsis93. scNOVA could promote the safety of 
therapeutically relevant genome editing in the future, by enabling the simultaneous detection and functional 
characterization of such potentially pathogenic editing outcomes in single cells.  
 
In summary, scNOVA moves directly from SV landscapes to their functional consequences in heterogeneous cell 
populations. By making a broad spectrum of somatic SVs accessible for functional characterisation genome-wide, 
this single-cell multiomic framework serves as the foundation for deciphering the impact of somatic 
rearrangement processes in cancer. 
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Methods 
Ethics statement 
The protocols used in this study received approval from the relevant institutional review boards and local ethics 
committees. Written informed consent was obtained from patients, and all experiments were consistent with 
current bioethical policies. T-ALL experiments were approved by the ethics commission of the Kanton Zurich 
(approval number 2014-0383). 
 
Strand-seq in primary leukemia cells 
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Peripheral blood mononuclear cells of a previously untreated female CLL patient (routine diagnostics: IGHV 
unmutated, no TP53 mutation, no detected alteration in 6q21, 8q24, 11q22.3, 12q13, 13q14 und 17p13) were 
isolated after obtaining informed consent. Cells were isolated and cultured using previously established 
protocols94. CLL cells were cultured at 1x106 cells/ml in Roswell Park Memorial Institute (RPMI) medium (Gibco 
by Life technologies), supplemented with 10 % human serum (PAN BIOTECH), 1 % Pen/Strep (GIBCO by Life 
Technologies) and 1 % Glutamine (GIBCO by Life Technologies). Cells were stimulated with 1 µg/ml 
Resiquimod (Enzo) and 50 ng/ml IL-2 (Sigma). BrdU (40 µM; Sigma) was incorporated for 90 h and 120 h, 
respectively, to perform non-template strand labeling. Single nuclei from each timepoint were sorted into 96-well 
plates using a BD FACSMelody cell sorter, followed by Strand-seq library preparation (described below).  
     In the case of the AML sample, frozen primary mononuclear cells from a bone marrow aspirate were thawed 
and stained with CD34-APC (clone 581; Biolegend), CD38-PeCy7 (clone HB7; eBioscience), CD45Ra-FITC 
(clone HI100; eBioscience), CD90-PE (clone 5E10; eBioscience), and LIVE/DEAD™ Fixable Near-IR Dead Cell 
Stain (Thermofisher). Single, viable, CD34+ cells (Fig. S21) were sorted using a BD FACSAria™ Fusion Cell 
Sorter into ice-cold Serum-Free Expansion Medium (SFEM) supplemented with 100 ng/ml SCF and Flt3 (Stem 
Cell Technologies), 20 ng/ml IL-3, IL-6, G-CSF and TPO (Stem Cell Technologies). Cells were plated in Corning 
Costar Ultra-Low Attachment 96-well flat-bottom plates (Sigma) at 1x105 cells/ml in warm medium as above. 24 
h after culture, 40 µM BrdU was added. Nuclei were isolated after 43 h total culture time, and BrdU-incorporating 
nuclei sorted into 96-well plates followed by Strand-seq library preparation.  
     Strand-seq libraries were prepared using a Biomek FXP liquid handling robotic system, as described 
previously24,95. Libraries were sequenced on an Illumina NextSeq500 sequencing platform (MID-mode, 75 bp 
paired-end sequencing protocol) to a median depth of 551,831 (CLL) and 371,159 (AML) mapped non-duplicate 
fragments per cell, respectively. Strand-seq data generated with this protocol24, involving MNase digestion, 
largely comprise mononucleosome-sized (140-180bp) fragments (Table S1).  
 
Strand-seq data preprocessing and library selection in leukemia-derived single cells 
Reads from Strand-seq (fastq) libraries were aligned to the hg38 assembly using bwa96, as previously described28. 
Sequence reads with low quality (MAPQ<10), supplementary reads, and duplicated reads were removed. Single 
cell library selection was performed as described previously28. The single-cell footprints of different SV classes 
were discovered using the principle of single cell tri-channel processing (scTRIP) of Strand-seq data, using the 
MosaiCatcher computational pipeline with default settings28, as described in the scNOVA workflow further 
below. In the AML sample, a reciprocal translocation involving chromosomes 8 and 21 resulting in a RUNX1-
RUNX1T1 fusion gene was inferred based on template strand co-segregation28, using a MosaiCatcher FDR-
adjusted P-value of 0.000026 (event seen in 37/37 cells; 5 cells with sister chromatid exchange (SCEs) affecting 
the respective translocation partners were excluded from the FDR-adjusted P-value computation using the 
MosaiCatcher pipeline28). As we identified extensive subclonal heterogeneity in the CLL sample, we used the 
‘lenient SV calling parameterization’ available using the MosaiCatcher pipeline28 to allow for sensitive detection 
of SVs at CFs from 1 to 5%, including in individual cells.  
 
scNOVA workflow: coupling NO measurements and SV discovery in the same cell 
We developed scNOVA as a computational tool for coupling discovered somatic SVs with analyses of NO profiles 
– in the same cell. The scNOVA workflow covers a set of different operations from single-cell SV discovery 
(using the previously described scTRIP method28) to NO profiling at CREs, and gene as well as pathway 
dysregulation inference based on NO at gene bodies, and can be used in a haplotype-aware or -unaware manner. 
To maximize reusability, interoperability and reproducibility we combined all of scNOVA’s modules into a 
coherent workflow using snakemake. Alternatively these modules can be executed individually.  
 
Nucleosome occupancy (NO): data analysis and operational definition utilised 
We operationally defined nucleosome occupancy (NO) closely following definitions from a prior study29: NO 
maps were calculated by counting how many reads from the Strand-seq libraries (which typically comprise mono-
nucleosomal fragments ~140-180 base pairs in size; see Table S1, Fig. S2) covered a given base pair based on 
aligning reads to the GRCh38 (hg38) genome assembly with BWA96. Genomic regions with unusual (such as 
artificially high) coverage were considered artifacts, and were automatically excluded (“blacklisted”) by our 
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Strand-seq analysis workflow as previously described28. No further peak calling or smoothing was conducted, and 
no assumptions on the length of the nucleosomal DNA were made to derive NO maps, as nucleosome boundaries 
were determined on both sides of the nucleosome by paired-end sequencing29. For the calculation of NO around 
bound CTCF binding sites (downloaded from ENCODE34), the averaged profile was scaled29 to yield an NO equal 
to 1 at position -2000bp from the center of the bound CTCF site.  
 
Cell type classification 
To initially assess the utility of Strand-seq derived NO patterns for cell type classification, we generated feature 
sets from the NO at the body of genes (defined as the region from the TSS to the transcription termination site 
(TTS), which includes exons and introns) at the single-cell level. NO in gene-body regions was normalized by 
segmental copy number status, and by library size to obtain reads per million (RPM), which we transformed into 
log2 scale. This feature set was used for the unsupervised dimension reduction plot (Fig. S7) and for training of a 
supervised classification model based on partial least squares discriminant analysis (PLS-DA)97. To train the 
supervised cell type classifier based on gene-body NO, we used 179 single-cell Strand-seq libraries generated 
from two diploid LCLs (50 cells from HG02018, 50 cells from NA19036), as well as from a replicate of the near-
diploid RPE-1 cell line (79 cells; ‘replicate 1’ 28). 19,629 ENSEMBL genes with at least one read detected at the 
respective gene-bodies were considered as initial input feature sets. An X matrix [179 cells-by-features] and a Y 
matrix [179 cells-by-two cell type] were prepared for PLS-DA, in order to find latent variables which can explain 
the variability in Y using linear combinations of features in the X matrix. Using three latent variables which 
explain 98.48% of the variance of the Y variable, variable importance of projection (VIP) for each feature was 
calculated. Highly informative features (VIP>90% of null distribution) were selected to build the final classifier. 
Classification performance of the final classifier was evaluated by leave-one-out cross validation using the 179 
cells, which yielded 100% accuracy of classification (are under the curve (AUC)=1) with six latent variables. 
Finally, we applied this model to an independent validation using a different LCL (46 cells from HG01573) and 
the same RPE-1 epithelial cell line, albeit using a different replicate (77 cells; ‘replicate 2’), verifying 100% 
classification accuracy with independently generated data (AUC=1). To generate the UMAP shown in Fig. S7, 
302 cells including those from the training set (179 cells) and the independent validation set (123 cells) were 
projected onto the final classification model. The resulting prediction score of six latent variables for each cell 
was used to perform UMAP98 for dimensionality reduction. 
 
Haplotype-phasing of single-cell NO tracks. As previously described, Strand-seq directly resolves its underlying 
sequence reads onto haplotypes ranging from telomere to telomere32 (chromosome-length haplotyping). scNOVA 
phases NO profiles onto a chromosomal homolog using the StrandPhaseR algorithm32, which is employed 
wherever the template strand segregation pattern of a chromosome enables unambiguous haplotype-phasing –  
that is, for Watson/Crick (WC) or Crick/Watson (CW) template state configurations in Strand-seq libraries32,95. 
Haplotype-specific analyses pursued by scNOVA employ phased reads (normalized by locus copy-number), 
whereas the inference of gene activity changes uses both phased reads (from chromosomes with a WC or CW 
configuration) and unphased reads (from chromosomes with a CC or WW configuration32,95). 
 
Inference of haplotype-specific NO at cis-regulatory elements (CREs). To allow inference of haplotype-specific 
NO at CREs, scNOVA requires the location of CREs as another input in bed format (REs_hg38.bed). CREs can 
be defined using DNase I hypersensitive sites (DHSs), or alternatively based on accessible chromatin segments 
obtained using ATAC-seq89. As a default functionality, scNOVA considers DHSs provided from 127 
epigenomes35 from the Roadmap Epigenomics Consortium and ENCODE (covering a variety of human tissue 
types). scNOVA also provides the option to use CREs from user-defined DNA accessibility profiling experiments 
(provided in ‘bed’ format). After aggregating haplotype-phased single-cell NO tracks into pseudo-bulk tracks, NO 
is measured based on assessing the read depth at defined CREs, using haplotype-resolved reads. Haplotype-
specific NO is measured using the Exact Test followed by controlling the False Discovery Rate99 (FDR), using 
EdgeR software100. CREs are assigned to their likely target genes using a nearest gene approach using the 
prioritisation rules described in38. 
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Inference of genome-wide changes in gene activity. This haplotype-unaware module of scNOVA considers all 
reads – whether they are phased or not – to infer gene activity alterations via analysis of differential patterns of 
NO along gene bodies. scNOVA obtains gene loci from ENSEMBL (GRCh38.81), converted into bed format 
(Genebody_hg38.81.bed). Strand-seq reads falling within the start and end position of genes 
(Genebody_hg38.81.bed) were identified with the Deeptool multiBamSummary function101, using the following 
parameters:  
multiBamSummary BED-file --BED Genebody_hg38.81.bed --bamfiles Input.bam --extendReads --
outRawCounts output.tab -out output.npz 
scNOVA's gene dysregulation inference module contains two steps. Step 1 filters out genes unlikely to be 
expressed (‘not expressed’, NEs). Step 2 infers dysregulated (i.e. differentially expressed) genes between 
subclones using a generalized linear model.  

In Step 1, scNOVA first aims to infer gene expression ‘On’ and ‘Off’ states102 from NO, by analysing 
NO as well as gene context-specific sequence features along gene bodies using deep convolutional neural 
networks103 (CNNs).  

Both phased and unphased single-cell reads were used to generate NO profiles. Feature sets were 
incorporated into one-dimensional CNNs. To define the feature sets for each gene, we considered genomic regions 
spanning the body of genes, which we – for the purpose of the CNN – expanded from 5kb upstream of the TSS 
until 5kb downstream of the TTS, to include 5kb of flanking non-transcribed sequences on each flank which 
appeared informative as well (Fig. 1f). Each gene was divided into 150 bins, whereby we considered genomic 
annotations of the start and end coordinates of genes provided via ENSEMBL’s GTF file, as follows: 50 bins for 
the region -5kb to the TSS, 50 bins for the gene-body, and 50 bins for the region from the TTS to +5kb. Five 
layers of feature sets were derived for those 150 bins: NO, single cell variance of NO, GC content, CpG content, 
and replication timing, which we included in the CNNs to assist bin stratification. To compute NO for Step 1, the 
read depth within each of the 150 bins was first normalized by bin length using smooth spline fitting in R, and 
then normalized by library size to obtain read per million (RPM) measurements, which subsequently were scaled 
by the locus copy-number status. To compute the single cell variance of NO, coefficients of variation (CV = 
standard deviation / mean) for the single-cell read depth were calculated for each bin. Systematic effects of mean 
on the CV were regressed out using smooth spline fitting. GC and CpG content were computed based on the 
nucleotide content of each bin, using the Homer annotate peak tool104. For replication timing, we used a pre-
processed signal track (hg19) from the UCSC Genome Browser database105 (UW Repli-seq track), which we 
mapped to the hg38 genome using the UCSC LiftOver tool. scNOVA can also consider CNNs for inferring 
expression in a single cell, which use four rather than five layers of feature sets (excluding single-cell variance of 
NO, which cannot be computed for a single cell). 
       To define ground-truth labels of not expressed genes (NEs) and expressed genes (EGs), we used bulk RNA-
seq data from three RPE cell lines (RPE-1, BM510, and C7)28. Reads were aligned onto hg38 with STAR aligner 
(v2.5.3)106, using gene annotations from ENSEMBL GTF (GRCh38.81). FPKM values were obtained with 
Alfred107; genes with FPKM>1 were labeled as EGs, and all remaining as NEs. We used the following numbers 
of EGs and NEs for training: RPE-1: 10413 EGs, 9131 NEs; BM510: 10339 EGs, 9205 NEs; C7: 10486 EGs, 
9058 NEs. We used the hyperopt package108 to search for optimal hyperparameters for the CNNs (Fig. S8).  
      In leave-one-chromosome-out cross-validation103 experiments (where we trained a model leaving out a certain 
chromosome, and then applied the model to the chromosome previously left out), the CNNs outperformed random 
forest and SVM based models with the same set of features (Fig. S9). To assess model performance for different 
number of aggregated cells (clones of different sizes), we pooled Strand-seq data to generate randomized pseudo-
bulk datasets for 80, 40, 20, 5, and 1 cell (s), respectively, and evaluated CNN performance using leave-one-
chromosome out cross-validation. Trained models for each chromosome, and for different clone set sizes, are 
made available along with the code of scNOVA to facilitate application to new data sets. By default, scNOVA 
operates with the model trained with a pseudo-bulk of 80 cells, to estimate the probability of each gene to represent 
an NE in each clone. Genes likely to be unexpressed (NE status probability≥0.9) across clones are filtered out in 
Step 1, and all remaining genes used in Step 2.  

In Step 2, scNOVA by default employs negative binomial generalized linear models, available in the 
DESeq2 algorithm109, to infer genes with differential activity between individual cells or clones. As an input, 
scNOVA computes single-cell count tables of gene-body NO. When running this step with subclones, all 
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individual cells of the subclone are considered ‘replicates’ in DESeq2 terminology109. Subclones (or cells) are 
compared in a pairwise manner using a two-sided Wald test to infer genome-wide alterations in gene activity. 
Based on this, we defined the differential gene activity score as the sign of the fold change in NO at gene bodies, 
multiplied by -log10 p-values. Genes with significantly altered activity were identified using a 10% FDR threshold. 
Additionally, to facilitate the analysis of small CF subclones, scNOVA provides an alternative mode which 
employs partial least squares discriminant analysis (PLS-DA)97 to identify discriminatory feature sets as gene sets 
showing altered activity. To do this, scNOVA builds a PLS-DA97 discriminant model to classify cells in a given 
subclone 1 and subclone 2 based on single-cell count tables of gene-body NO as feature sets. This model provides 
a variable importance of projection (VIP) and significance compared to a null distribution in the form of a  P-
value for each gene analyzed. Similar to the default setting, genes with altered activity were identified using a 
10% FDR cutoff when using PLS-DA for inferring changes in gene activity between subclones. Benchmarking 
both modes (see  Fig. S11) suggested that whereas both DESeq2 and PLS-DA offer acceptable performance, the 
alternative mode (PLS-DA) outperforms the default setting when the subclonal CF is below 10%, whereas the 
default mode (DESeq2) generated superior results for CF values of 10% or greater. 
 
Molecular phenotype analysis in gene-sets. This module of scNOVA uses defined gene-sets, obtained from public 
resources, to identify overrepresented sets of functionally related genes changing in activity between subclones 
(or individual cells). Two types of analyses are enabled by this module: (1) gene-set overrepresentation analysis, 
which, for example, can be used to investigate the enrichment of targets of a major transcription factor (TF) among 
genes showing a change in activity according to gene-body analysis of NO; (2) joint modeling of NO across 
predefined gene-sets, using pathway definitions from MSigDB67.  

In the case of gene-set overrepresentation analysis, we collected TF target genes from database entries 
(EnrichR54) as well as by reviewing the literature. When reviewing the literature, we created curated lists of target 
genes for TFs based on published genome-wide studies using the following strict criteria: (i) target genes show 
evidence of binding of the TF of interest by ChIP-seq; (ii) the same genes must additionally show differential 
expression when the TF of interest is experimentally silenced (our curated target gene lists are available in Table 
S7). For each TF, the significance of overlap between its target gene set and genes exhibiting differential NO was 
computed using hypergeometric tests, followed by controlling the FDR at 10%. 

To jointly model differential NO across all genes of predefined pathways, scNOVA first generates a 
single-cell gene-body NO table using Strand-seq read count data, with these read counts then being normalized 
using the median-of-ratios method from DESeq2109. For each member in the biological pathway gene sets from 
MSigDB67, scNOVA then computes mean normalized NO values, in each single-cell, as a proxy for pathway-
level NO. Lowly variable genes (standard deviation <80%) are removed. Pathway-level NO is compared between 
cells with and without SVs using linear mixed model fitting followed by likelihood ratio testing, and controlling 
the FDR at 10%. For linear mixed model fitting, SV status is defined as a fixed effect and different Strand-seq 
library batches are defined as random effects, by scNOVA. 
 
Inference of haplotype-specific NO at the body of genes. To measure haplotype-specific NO at gene bodies, 
scNOVA measures read depth along gene bodies using haplotype-phased single-cell NO tracks. For each gene, 
gene-body NO measurements from both haplotypes are converted into log2-scale and compared using a 
generalized linear model likelihood ratio test.  To infer haplotype-specific gene deregulation in an AML_1 based 
on NO, we first filtered out genes inferred to be unexpressed (NE status probability≥0.9) using scNOVA’s CNN. 
For the remaining genes we computed gene-body NO resolved by haplotype. For RUNX1 and RUNX1T1, we 
computed haplotype-aware NO for the partial gene-body regions participating in the gene fusion (Fig. S23). For 
each gene, single-cell gene-body NO from two haplotypes was converted into log2-scale and compared using a 
generalized linear model likelihood ratio test, controlled using an FDR of 10%.  
 
Haplotype-resolved SV discovery in single cells. The scNOVA computational framework utilizes the previously 
described scTRIP method for haplotype-aware SV discovery of the full spectrum of somatic SVs ≥200kb in size 
in Strand-seq data, by executing the MosaiCatcher computational pipeline28. In brief, this pipeline integrates three 
‘channels’ – template strand, read depth and haplotype-phase – to discover deletions, duplications, balanced 
inversions, inverted duplications, balanced translocations, unbalanced translocations and diverse classes of 
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complex SV including BFBs and chromothripsis events in single cells, and it maps these SVs to a defined 
chromosomal homolog. All single cells are subjected to SV discovery, regardless of chromosomal template strand 
configuration28 (such as Watson/Crick (WC), Crick/Crick (CC), or Watson/Watson (WW)), and joint modeling 
of the data is pursued which increases the detection sensitivity for SVs present in more than one single cell28. By 
default, scNOVA employs the ‘strict’ scTRIP SV caller, which has been optimized for detecting SVs with CF≥5% 
28. SV discovery can be bypassed in the scNOVA framework, to focus downstream functional investigation to 
user-defined somatic SVs.  
 
Single-cell RNA sequencing and data processing. Primary human T-ALL cells were recovered from cryopreserved 
bone marrow aspirates of patients enrolled in the ALL-BFM 2009 study. Patient-derived xenografts (PDX) were 
generated as previously described by intrafemoral injection of 1 Million viable primary ALL cells in NSG mice110 
PDX-derived (P1)28 cells were frozen until processing. For scRNA-seq library preparation, cryopreserved cells 
were thawed rapidly at 37 ℃ and resuspended in 10 ml warm Roswell Park Memorial Institute (RPMI) medium 
with 100 μg/ml Dnase I. Cells were centrifuged for 5 mins at 300 g, and resuspended in ice-cold phosphate 
buffered saline (PBS) with 2% foetal bovine serum (FBS) and 5mM EDTA. Cells were stained on ice with anti-
murine-CD45-PE (mCD45)(clone 30-F11; BioLegend; 1:20) in the dark for 30 mins. 1:100 DAPI was added and 
incubated in the dark for 5 mins before sorting. Triple negative cells (DAPI-mCD45-GFP-) were sorted (Fig. S27) 
using a BD FACSAria™ Fusion Cell Sorter into ice cold 0.03% bovine serum albumin (BSA) in PBS. All isolated 
cells were immediately used for scRNA-seq libraries, which were generated as per the standard 10x Genomics 
Chromium 3′ (v.3.1 Chemistry) protocol. Completed libraries were sequenced on a NextSeq5000 sequencer 
(HIGH-mode, 75 bp paired-end). 
      Sequenced transcripts were aligned to both human and mouse genomes (GRCh38 and mm10) and quantified 
into count matrices using Cellranger mkfastq and count workflows (10X Genomics, V 3.1.0, default parameters). 
The R package Seurat111 (V 4.0.3) was used for QC of single cells and unsupervised clustering of the data. Briefly, 
human cells were separated from multiplets/mouse contamination based on >97 % of their reads aligning to 
GRCh38. Further filtering for high quality cells accepted only those with >200 but <20,000 total RNA counts and 
a percentage of mitochondrial reads <10%. Finally, remaining mouse transcripts were removed prior to further 
analysis. Normalisation, scaling and regression of mitochondrial read percentage was carried out using the 
scTransform package112. Dimensionality reduction and differential expression analysis of identified clusters was 
performed using Seurat.  
 
Single-cell gene signature scoring using UCell. The activity of the scNOVA-identified gene set from TALL-P1 
in scRNA-seq data was profiled using the UCell package 82. Briefly, signature genes considered were those with 
either increased (implying decreased expression) or decreased (implying increased expression) nucleosome 
occupancy (see Fig. 5b), or genes encoding TFs whose targets showed differential nucleosome occupancy (see 
Fig. 5c). The following gene set was used for T-ALL-P1: "PRKCB-", "RPS6KA2-", "FAM120B-", 
"FAM86C1+", "FBXO22+", "RHOH+", "SLC9A7+", "NASP+", "NOTCH1+", "MRPL48+", "MFSD9+", 
"MVB12B+", "MYB+" (with “+” for upregulated, and “-” for downregulated). The score per single cell for the 
entire directional gene set was calculated using the AddModuleScore_UCell() function. Cells were considered to 
be ‘active’ for the signature genes if their respective UCell score was greater than or equal to the median UCell 
score of the entire dataset, plus the standard deviation.  
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Fig. 1. scNOVA: Haplotype-aware single-cell multiomics to functionally characterize SVs. (a) Leveraging 
Strand-seq, the scNOVA framework discovers haplotype-phased SVs by performing single-cell tri-channel 
processing (scTRIP)28, and then generates, in the same single cell, phased nucleosome occupancy (NO) tracks to 
allow SV functional characterization. Orange: Strand-seq reads mapped to the W (Watson) strand; green: C 
(Crick) strand. (b) Strand-seq based NO tracks in NA12878 reveal nucleosome positions highly concordant with 
high-coverage bulk MNase-seq, depicted for a chromosome 12 locus with regular nucleosome positioning113. Red: 
NO tracks mapping to haplotype 1 (H1); blue: H2; black: NO measured by combining phased and unphased 
Strand-seq reads; grey: MNase-seq. The y-axis depicts read counts at each base pair in 10bp bins. (c) Correlated 
NO at consensus DNase I hypersensitive sites35, shown for NA12878. (d) Averaged nucleosome patterns at bound 
CTCF binding sites34 in NA12878, using pseudo-bulk Strand-seq and bulk MNase-seq. (e) Pseudo-bulk 
haplotype-phased NO tracks based on Strand-seq, depicting a previously defined CRE36 in NA12878 with 
haplotype-specific absence of NO on H1 (10% FDR). Bar chart on the right shows the allele-specific expression 
on H1 of NFIB – the inferred target gene of this CRE. Total: aggregated phased and unphased Strand-seq reads. 
(f) Inverse correlation of NO at gene bodies and bulk RNA-seq expression values. NO is based on pseudo-bulk 
Strand-seq libraries from RPE-1. RPM: reads per million. TTS: transcription termination site. To facilitate 
visualisation, gene bodies were scaled to the same length. (g) Cell type classification based on NO at gene bodies 
(AUC=0.96). Cell line codes: Blue: RPE-1. Purple: BM510. Magenta: C7. LV: latent variable. (h) Receiver 
operating characteristics for inferring altered gene activity based on analyzing NO at gene bodies, using pseudo-
bulk Strand-seq libraries from in silico cell mixing. Ground truth sets of differentially active genes are based on 
bulk RNA-seq; performance was estimated for the top 10 and top 50 most differentially active genes, using 
scNOVA. The computed mean AUC was 0.93 for the top 10 genes (0.88 for the top 50 genes). 
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Fig. 2. Functional outcome of subclonal SV heterogeneity in lymphoblastoid cell lines (LCLs). (a) Complex, 
BFB-mediated rearrangements in NA20509 (17p) and terminal dispersed duplication (5q) present with CF=85%, 
here shown for representative single cells. Ref: normal chromosome. InvDup: inverted duplication. DelTer: 
terminal deletion. Reads denoting somatic SVs, discovered using scTRIP28, map to the W (Watson, orange) or C 
(Crick, green) strand. Grey: single cell IDs. (b) Heatmap of 18 genes with inferred altered gene activity amongst 
subclones, using scNOVA (cells denoted ‘chr5, 17 SVs’ refers to the subclone bearing the complex SVs). (c) 
Gene set overrepresentation analysis for TF target genes showing significant enrichment of c-Myc and Max targets 
in the subclone bearing complex SVs. Right panel: Model for c-Myc/Max target activation in NA20509 based on 
scNOVA, combined with prior knowledge. (d) Mean RNA expression Z-scores of c-Myc/Max target genes across 
33 LCLs. (e) Haplotype resolved RNA-seq read counts at heterozygous SNP sites within the MAP2K3 gene locus, 
revealing monoallelic expression from the rearranged (BFB) haplotype (FDR-adjusted P=1.1e-73; likelihood ratio 
test).  
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Fig. 3. Subclonal SVs in chronic lymphocytic leukemia (CLL) associated with aberrant Wnt signaling. (a) 
Single-cell SV discovery in CLL_24, revealing a diversity of subclonal deletions at chromosome 10q24.32 (all 
cells exhibiting deletions shown in Fig. S16). (b) Single cell breakpoint analysis reveals a minimally deleted 
segment (chr10:101615000-103028000; hg38), which displays recurring deletions in a separate cohort of CLLs 
(ICGC samples). (c) Heatmap of genes altered in activity in cells bearing 10q24.32 deletions, using scNOVA 
(10% FDR). (d) Inference of subclonal gene activity changes in CLL_24 for DNM2. 'Normal' indicates normal 
karyotype. C1, C2 and C3 denote subclones harboring deletions (Del) in the ‘minimal region’ at 10q24.32. S 
combines four single cells that exhibit individual deletions in the same minimal region (seen in N=1 cell each). 
(e) Pathway modules with differential activity, in cells exhibiting 10q24.32 deletions versus cells bearing a normal 
10q (10% FDR). (f) Bulk RNA-seq analysis in 42 CLLs. Mean expression Z-scores for canonical Wnt signaling 
target genes are shown for each donor (green: CLL_24). (g-h) Minimal segment deletion-bearing (SV) CLL 
samples from the ICGC demonstrate overexpression of DNM2 and Wnt signaling target genes compared to CLLs 
not bearing such SV (Normal) (P=0.0098; likelihood ratio test).  
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Fig. 4. Haplotype-specific NO patterns in RUNX1-RUNX1T1 driven acute myeloid leukaemia (AML). (a) 
Balanced t(8;21) translocation in AML_1, discovered based on strand co-segregation (P-value for translocation 
discovery using strand co-segregation28: P=0.00003, FDR-adjusted Fisher's exact test, Fig. S22). SV breakpoints 
were fine-mapped to the region highlighted in light blue. (b) A violin plot demonstrates haplotype-specific NO at 
the RUNX1T1 gene body (10% FDR), consistent with aberrant activity of the locus on der(8). Haplotype-specific 
NO additionally found at the ARFGEF1, NPR2, and SLC3A2 was shown next to it (10% FDR). (c) Haplotype-
specific NO around the SV breakpoint. Fold changes of haplotype-specific NO, measured between the RUNX1-
RUNX1T1 containing derivative chromosome (der(8)) and corresponding regions on the unaffected homologue 
(Normal), are shown in black, and –log10(P-values) in light blue. Enhancer-target gene physical interactions based 
on chromatin conformation capture76,114 are depicted in orange (interactions involving RUNX1 and RUNX1T1) 
and grey (involving other loci). (d) Significant CREs located within the distal peak region, demonstrating 
haplotype-specific absence of NO on der(8) at 10% FDR, indicative for increased CRE accessibility on der(8). (e) 
Haplotype-specific NO measured between der(8) and corresponding regions of the unaffected homologue. Red: 
regions corresponding to the fused TAD. A beeswarm plot shows that the fused TAD (red) is an outlier in terms 
of haplotype-specific NO on der(8) (P-values based on KS tests).  
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Fig. 5. Dissecting a complex karyotype in a T-ALL patient-derived sample using scNOVA 
(a) 27 TF genes located in a segment that underwent chromothripsis28 on 6q in TALL-P1 are depicted along with 
haplotype-specific NO measurements in each subclone, which scNOVA generated for CREs assigned to the 
nearest genes. FC: fold-change of normalized haplotype-specific NO (shown for each subclone). Grey: haplotype-
specific not measured (for segments deleted or invertedly duplicated). ‘Normal’ denotes the subclone bearing a 
normal (not rearranged) chromosome 6. (b) Heatmap of 12 genes with differential activity between subclones in 
TALL-P1, based on scNOVA. ‘SVs’: cells bearing the chromothripsis event. ‘Normal’: normal chromosome. 
Asterisks denote TF targets highlighted in (c). (c) TF target enrichment analyses based on the 12 genes from (b), 
revealing c-Myb as the only significant hit. Venn diagram depicts enrichment of c-Myb targets among the 12 
genes (P-value based on an FDR-adjusted hypergeometric test). Upper right: network with c-Myb and its target 
genes based on scNOVA, combined with prior knowledge. (d) Mean Z-scores of c-Myb target gene expression 
measured by bulk RNA-seq in a panel of 13 T-ALL-derived samples. TALL-P1 (P1) exhibited the overall highest 
expression of c-Myb targets. (e) UMAP of scRNA-seq data showing eight unsupervised clusters in T-ALL-P1. (f) 
Single-cells confidently inferred to exhibit chromosome 6 SCNAs (shown in red) or cells confidently called 
‘normal’ (shown in blue) using scRNA-seq data were projected to the UMAP plot. (g) Single-cells inferred to be 
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active for the signature genes of the chromothriptic (CT) subclone were shown in red. (h) Upper panel: Dot plot 
shows the significance of over-representation of scRNA-seq based SCNA calls in each of the clusters. Dot color 
indicates the significance score (-log10 adjusted P) from Fisher’s exact test, and the dot sizes denote the cell 
fraction (CF) of having SCNA calls in each cluster. Cluster 3 and Cluster 7 were significantly overrepresented for 
scRNA-seq based SCNA calls (P-values based on FDR-adjusted Fisher exact tests). Lower panel: Dot plot for the 
scRNA-seq based gene set level expression summary for the 12 genes from panel (b). Dot color shows the relative 
UCell score per cluster, and dot size the percent of cells with scorable expression of the geneset. Gene set level 
expression was derived using UCell82 with the directionality of expression changes taken into account. (i) Bar 
graph showing P-values for the top 10 significant TFs from the TF-target over-representation analysis of 
differentially expressed genes for cluster 3. Red color denotes MYB, blue color denotes TFs which interact with/are 
transactivated by MYB. (For the corresponding P-values in cluster 7, where MYB was also significant, see Table 
S10).  
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