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Abstract 
Transcriptomic data is often expensive and difficult to generate in large cohorts in comparison to 
genomic data and therefore is often important to integrate multiple transcriptomic datasets from both 
microarray and next generation sequencing (NGS) based transcriptomic data across similar 
experiments or clinical trials to improve analytical power and discovery of novel transcripts and 
genes. However, transcriptomic data integration presents a few challenges including re-annotation and 
batch effect removal. We developed the Gene Expression Data Integration (GEDI) R package to 
enable transcriptomic data integration by combining already existing R packages. With just four 
functions, the GEDI R package makes constructing a transcriptomic data integration pipeline 
straightforward. Together, the functions overcome the complications in transcriptomic data 
integration by automatically re-annotating the data and removing the batch effect. The removal of the 
batch effect is verified with Principal Component Analysis and the data integration is verified using a 
logistic regression model with forward stepwise feature selection. To demonstrate the functionalities 
of the GEDI package, we integrated five bovine endometrial transcriptomic datasets from the NCBI 
Gene Expression Omnibus. The datasets included Affymetrix, Agilent and RNA-sequencing data. 
Furthermore, we compared the GEDI package to already existing tools and found that GEDI is the 
only tool that provides a full transcriptomic data integration pipeline including verification of both 
batch effect removal and data integration. 

Introduction 
In gene expression data analysis, a higher number of samples leads to more statistically reliable 
results. Transcriptomic data integration is a useful computational tool to increase the sample size by 
combining multiple gene expression datasets. However, there are a few challenges when integrating 
transcriptomic data. These challenges include ID mapping, batch effect and how to merge microarray 
data with RNA-sequencing (RNAseq) data. 

Microarray data are annotated with probe IDs that differ depending on the microarray platform, and 
RNAseq data are annotated with read IDs. Here we refer to both probe IDs and read IDs as reporter 
IDs. All the different types of reporter IDs must be mapped to the same ID type to integrate the 
datasets, which is possibly the biggest challenge in transcriptomic data integration. 

The batch effect is the variance between datasets caused by different experimental conditions. This 
variance makes it impossible to draw any meaningful conclusions from the data. Therefore, the batch 
effect must be removed from the integrated dataset. 
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Even if the datasets have been re-annotated and a method to remove the batch effect is prepared, it is 
still not possible to integrate microarray data with raw RNAseq count data. Microarray data describes 
the relative expression profile compared to a reference sample whereas RNAseq data represents the 
expression profile with read counts. Therefore, before integration, RNAseq counts needs to be 
transformed to get the same type of numerical data as microarray data. 

To the best of our knowledge, no current tools provide a transcriptomic data integration pipeline that 
addresses all the before-mentioned challenges. However, there are multiple tools that addresses some 
of the challenges. We will review some of them here. 

COMMAND>_ (Moretto et al., 2019) is a web-based tool to search and download gene expression 
data directly from databases and map probes to genes using the probe sequences. One of its strengths 
is that no programming experience is required. Another strength is that COMMAND>_ is a multi-user 
tool which is ideal for teamwork. However, one of its weaknesses is that COMMAND>_ doesn’t 

remove the batch effect in the integrated data. And since COMMAND>_ isn’t accessible by R, it 
cannot be implemented in the transcriptomic data integration pipeline described here. 

BioMart is an annotation database that can be used to map reporter IDs to gene IDs. The user does not 
have to know the probe sequences but can just use the probe IDs from the data table. The database can 
be used in a browser or with the biomaRt R package (Durinck et al., 2005, 2009). 

The sva R package (Leek et al., 2020) is a tool that among other things can remove the batch effect 
from both microarray and RNAseq data using the functions ComBat and ComBat_seq respectively. 
Other recognized transcriptomic data analysis packages like BingleSeq (Dimitrov and Gu, 2020) and 
tidybulk (Mangiola et al., 2021) uses the sva package to remove batch effect. One downside to the 
ComBat functions is that they ignore genes with zero variance or zero counts within any batch. This 
can result in an unsuccessful batch correction if the variance between the batches is sufficiently large 
which can be the case when integrating data from different experiments and data types.  

We have developed the Gene Expression Data Integration (GEDI) R package that solves all the above 
mentioned challenges by implementing already existing R packages to read, re-annotate and merge 
the transcriptomic datasets after which the batch effect is removed, and the integration is verified 
(Figure 1). The GEDI package addresses all the major challenges in transcriptomic data integration, 

Figure 1: Flow diagram of the transcriptomic data integration pipeline provided by the GEDI package. First, the 
transcriptomic datasets, represented by colored folders, are read using the ReadGE function. The GEDI function 
integrates these datasets. This results in one transcriptomic dataset annotated with Ensembl or Entrez gene IDs. In the 
next step, the batch effect is removed by the BatchCorrection function, and it is verified with a Principal Component 
Analysis (PCA) plot and an RLE plot. Finally, the VerifyGEDI function verifies the data integration using a logistic 
regression model. 
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unlike other solutions mentioned earlier. Therefore, we believe that the GEDI R package is a novel 
tool for transcriptomic data integration. 

The entire GEDI workflow has been packaged into only four functions that allow the user to write a 
transcriptomic data integration pipeline in only 10-20 lines of code. The first function, ReadGE, reads 
the datasets and stores them in a list. It can read data from RNAseq and Affymetrix- and Agilent 
microarrays. The second function, GEDI, maps reporter IDs to Ensembl or Entrez gene IDs and 
merges the datasets into a single data table. The third function, BatchCorrection, removes the batch 
effect using modified functions from the sva R package (Leek et al., 2020). The batch correction is 
verified using Principal Component Analysis (PCA) and Relative Log Expression (RLE) plots. The 
fourth and final function, VerifyGEDI, verifies the transcriptomic data integration using a logistic 
regression model. These functions were demonstrated on a case inspired by a transcriptomic 
integration study by (Rabaglino and Kadarmideen, 2020). 

Method  
ReadGE Function 

The ReadGE function reads multiple gene expression datasets and stores them in a list. The GEDI 
package can integrate three types of transcriptomic data: Affymetrix, Agilent and RNAseq. 
Affymetrix data is read using the gcrma R package (Wu and with contributions from James 
MacDonald Jeff Gentry, 2020), Agilent with the limma R package (Ritchie et al., 2015) and RNAseq 
with the DESeq2 R package (Love et al., 2014). 

One of the challenges mentioned in the Introduction was to merge microarray and RNAseq data. To 
address this challenge, the ReadGE function will transform RNAseq counts using variance-stabilizing 
transformation from the DESeq2 package to yield the same type of numerical data as microarray data. 
Because ReadGE transforms the data, it is important that the RNAseq data consists of raw read 
counts. The counts are not transformed if only RNAseq data is integrated. 

GEDI Function 

The GEDI function integrates transcriptomic datasets into one data table containing samples from all 
the datasets. This is done in three steps: ID mapping, collapse rows and merge datasets. 

The ID mapping is done using the biomaRt R package (Durinck et al., 2005, 2009). Here the reporter 
IDs are mapped to either Ensembl or Entrez gene IDs. In case BioMart doesn’t contain annotation 
data from one of the platforms used, the user must provide an annotation table with reporter IDs in the 
first column and the corresponding Ensembl or Entrez gene IDs in the second column. See Table 2 for 
an example. 

Multiple reporter IDs may map to the same gene ID. Therefore, all rows with identical gene IDs are 
collapsed to go from probe-level to gene-level data. This is done using the WGCNA R package (Miller 
et al., 2011). The default method to collapse rows is to select the row with the highest mean and 
remove the rest. 

The last step is to simply merge the datasets. Optionally, the GEDI function can predict missing 
expression values for genes where the percentage of known expression values exceeds a certain 
threshold defined by the user. The expression values are predicted using a linear regression model 
with one feature: the gene most correlated with the gene with missing values. The gene used as the 
feature for the model cannot have any missing values. Only one feature is chosen to get a quick 
estimate. 
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BatchCorrection 

The BatchCorrection function removes the batch effect from the integrated dataset. This function is 
inspired by the ComBat and ComBat_seq functions from the sva R package (Leek et al., 2020). These 
functions do not remove batch effect in genes with zero variance or zero counts within any batch. If 
these genes are ignored, there will still be variance between batches and the batch effect will remain. 
Therefore, the BatchCorrection function is modified to remove the batch effect in all genes.  

The BatchCorrection function verifies itself visually with a before/after comparison of Principal 
Component Analysis plots and RLE plots. If the user chooses, boxplots can be used instead of RLE 
plots. To support this, a numeric output of the means and standard deviations of the gene expression 
values for each batch before and after the batch correction. 

In a dataset with batch effect, the samples will aggregate in batches in the PCA plot, and the 
distribution is uneven in the RLE plot. The mean expression values will also differ in the different 
batches. If the batch effect is successfully removed, the samples will no longer aggregate in batches 
and the all the samples will have a similar distribution. The mean expression values should also be 
similar. An example of the visual and numeric output can be seen in Figure 2 and Table 3 
respectively. 

VerifyGEDI 

The VerifyGEDI function verifies the transcriptomic data integration using a logistic regression 
model to predict the status of the samples in one batch based on the remaining batches’ samples. Here 
the status of a sample refers to some parameter like sick/healthy or treated/control. If the accuracy of 
this model is high, then it must mean that the batches have similar data and biological background. 
Therefore, the data integration can be verified using this method. 

The default model is a logistic regression model and the forward stepwise selection (FSS) algorithm 
picks which genes to use as features. The accuracy of the model is measured using cross-validation so 
each of the datasets are used as test-data exactly once. The function output shows the features in the 
final model as well as its accuracy. If the accuracy is significantly high, the data integration was 
successful.  

Case study 

The functionalities of the GEDI package were tested using data from a study by (Rabaglino and 
Kadarmideen, 2020) where five endometrial transcriptomic datasets from cattle were integrated. The 
datasets were downloaded from the NCBI Gene Expression Omnibus (GEO) with the following 
accession numbers GSE29853, GSE115756, GSE107741, GSE36080 and GSE20974. An overview of 
the five datasets used can be seen in  
Table 1. This case was ideal to demonstrate the GEDI package since Agilent, Affymetrix and RNAseq 
datasets were integrated.  

GEO Accession Number Batch Data Type Status  Authors and year of 
publication 

GSE29853 A Affymetrix R=6 
nonR=6 

(Killeen et al., 2014) 

GSE115756 B RNAseq R=8 
nonR=9 

(Rabaglino and 
Kadarmideen, 2020) 

GSE107741 C Agilent R=6 
nonR=5 

(Matsuyama et al., 2018, 
Article not published) 

GSE36080 D Affymetrix R=3 
nonR=3 

(Ponsuksili et al., 2012) 
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GSE20974 E Affymetrix R=3 
nonR=3 

(Salilew-Wondim et al., 
2010) 

 
Table 1: Overview of transcriptomic datasets used for the case study. Each dataset is treated as a batch. There are three 
Affymetrix, one Agilent and one RNAseq dataset. The status is a variable describing if the endometrial sample is receptive 
(R) or non-receptive (nonR). The table shows how many R and nonR samples there are for each dataset. 

Results 
Case study 

Using the ReadGE function, the datasets were read and stored in a list without any issues. The second 
step in the pipeline is to use the GEDI function. The Agilent dataset (GSE107741) is annotated with 
probe IDs that does not exist in BioMart. Therefore, an annotation table is created using the platform 
information found in GEO. Table 2 shows the first 4 rows of the annotation table for GSE107741. We 
chose to predict missing expression values with a threshold of 75%. This resulted in expression values 
being estimated for 1877 genes. This means that the dataset kept 1877 genes that would otherwise 
have been removed. However, up to 25% of the expression values in those genes are estimated by a 
linear regression model. 

Reporter ID Ensembl gene ID 
A_73_112733 ENSBTAG00000000005 
A_73_109892 ENSBTAG00000000008 
A_73_P066806 ENSBTAG00000000009 
A_73_113020 ENSBTAG00000000010 
… … 

Table 2: First 4 rows of the annotation table for GSE107741. Can be used to re-annotate data if BioMart doesn’t contain the 
reporter IDs. First column is the reporter IDs of the dataset and the second column is the corresponding Ensembl or Entrez 
gene IDs. 

Next, the batch effect is removed using BatchCorrection. The visual output of the function can be 
seen in Figure 2. Here, the data is aggregated in batches in the PCA plot before the batch correction, 
and the data distribution is uneven in the RLE plot. After the batch correction, the data no longer 
aggregate in clusters, and all the samples have a similar distribution. This indicates that the batch 
correction was successful. The numeric output supports this conclusion since the mean expression 
values are equal in all batches after the batch correction (Table 3). 

Batch Before Batch Correction After Batch Correction 
A M (SD) = 7.44 (0.03) M (SD) = 8.19 (0.03) 
B M (SD) = 8.35 (0.02) M (SD) = 8.19 (0.02) 
C M (SD) = 9.97 (0.02) M (SD) = 8.19 (0.02) 
D M (SD) = 6.92 (0.05) M (SD) = 8.19 (0.04) 
E M (SD) = 7.23 (0.02) M (SD) = 8.19 (0.01) 

Table 3: Numeric output from the BatchCorrection function. Mean (M) and standard deviation (SD) of the gene expression 
values are calculated for each batch/dataset before and after the batch correction. After a successful batch correction the 
means for all batches should be similar. 
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Figure 2: The PCA and RLE plots are created by the BatchCorrection function to verify batch effect removal. Each color 
represents a batch/dataset and the shapes in PCA plot corresponds to the status of the samples. Before the batch correction, 
the samples aggregate in batches in the PCA plot, and the distribution is uneven in the RLE plot. After a successful batch 
correction, the samples no longer aggregate in batches and all samples have as similar distribution. 

As the final step in the pipeline, VerifyGEDI is used to verify the data integration with a logistic 
regression model. The forward stepwise selection (FSS) algorithm chose 4 genes as features for the 
model: ENSBTAG00000013072, ENSBTAG00000000476, ENSBTAG00000003826 and 
ENSBTAG00000000188. The cross-validation showed an accuracy of 91.7%. This high accuracy 
leads to conclude that the transcriptomic data integration was successful. Furthermore, the four 
selected genes are potential biomarkers for endometrial receptivity in cattle. 

Discussion 
In studies involving feature or target discovery for biotechnological or biomedical fields, it is often 
necessary to integrate transcriptomic datasets from both spatial and temporal environments. Here, 
GEDI, an R package, was developed to allow users to quickly write a transcriptomic data integration 
pipeline that besides integrating the datasets, also verifies that the integration was successful and that 
the batch effect has been removed.  

The current tools we have reviewed here, provide only part of the transcriptomic data integration 
pipeline. Some tools like COMMAND>_ (Moretto et al., 2019) re-annotate and integrates the 
datasets, but the batch effect is not removed. The sva R package (Leek et al., 2020) removes the batch 
effect, but genes with zero variance or zero counts within any batch are not corrected. Because of this, 
it is not always sufficient to simply use the sva R package after integrating data in COMMAND>_. 
And manually combining multiple tools to integrate data is not convenient for the user. 

Besides all its strengths, GEDI has some limitations. GEDI can only integrate three types of datasets: 
Affymetrix, Agilent and RNAseq. If the user wants to use other types of gene expression datasets, 
then the datasets must be read and stored in a list without using the ReadGE function. Another 
weakness is the dependency on the biomaRt R package (Durinck et al., 2005, 2009). When GEDI 
maps reporter IDs to Ensembl or Entrez gene IDs, the Ensembl site used by the biomaRt package can 
be unresponsive. The only solution to this is try again later or use annotation tables as shown in Table 
2. At the time of publication, the GEDI package can only map to either Ensembl gene IDs or Entrez 
gene IDs. Other than limitations for integration, verification of integration is limited to data where a 
status variable is known for all datasets. Meaning the datasets must have a similar biological 
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background. This limitation is intentional since the GEDI package is not meant to be used for 
unsupervised analysis except for when verifying the batch correction. 

The case study demonstrated the functionalities of the GEDI package and showed that it successfully 
addressed all the challenges mentioned in the Introduction. RNAseq data was integrated with 
microarray data, the datasets were re-annotated using biomaRt and the batch effect was removed using 
modified ComBat and ComBat_seq functions from the sva package.  

GEDI facilitates a straightforward integration of any number of transcriptomic datasets, and it can be 
applied in studies working with multi-transcriptomic data from any species. The package provides a 
full transcriptomic data integration pipeline including verification of both batch correction and data 
integration. Future development of GEDI may include allowing the ReadGE function to automatically 
download transcriptomic datasets from databases like GEO. 

Data Availability Statement 
The datasets used in the Results section were downloaded from the open-source database GEO. The 
GEDI package (licence: CC BY-NC-SA 4.0) can be installed from 
https://github.com/MNStokholm/GEDI. Package updates after publication will also be uploaded to 
GitHub. An example pipeline and data can be found in GEDI/man/Examples in the GitHub 
repository. Further inquiries can be directed to the corresponding author. 
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