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Simultaneous profiling of the spatial distributions of multiple biological molecules

at single-cell resolution has recently been enabled by the development of highly

multiplexed imaging technologies. Extracting and analyzing biologically relevant in-

formation contained in complex imaging data requires the use of a diverse set of

computational tools and algorithms. Here, we report the development of a user-

friendly, customizable, and interoperable workflow for processing and analyzing data

generated by highly multiplexed imaging technologies. The steinbock framework

supports image pre-processing, segmentation, feature extraction, and standardized

data export. Each step is performed in a reproducible fashion. The imcRtools

R/Bioconductor package forms the bridge between image processing and single-cell

analysis by directly importing data generated by steinbock. The package further

supports spatial data analysis and integrates with tools developed within the Bio-

conductor project. Together, the tools described in this workflow facilitate analyses

of multiplexed imaging raw data at the single-cell and spatial level.
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1 Introduction

Highly multiplexed imaging enables the simultaneous detection of tens of biological molecules

(e.g., proteins, RNA), also referred to as “markers”, in their spatial tissue context. Recently

established multiplexed imaging technologies rely on cyclic staining with immunofluorescently

tagged antibodies [1, 2], or multiplexed staining with oligonucleotide-tagged [3, 4] or metal-

tagged antibodies [5, 6]. The acquired data are commonly stored as multi-channel images, where

each pixel encodes the abundances of all acquired markers at a specific position in the tissue.

After data acquisition, bioimage processing and segmentation are conducted to extract data for

downstream analysis. End-to-end multiplexed image analysis currently requires a diverse set of

computational tools and complex analysis scripts.

Quantitative analysis of biological entities captured by multiplexed imaging requires processing

of multi-channel images. This involves image extraction and pre-processing, image segmentation,

and the quantification of biological objects such as cells. Multiplexed image segmentation is often

performed by first classifying image pixels as nuclear, cytoplasmic or background (e.g., using

software such as Ilastik [7]), followed by identifying and segmenting cells based on the resulting

pixel-level class probabilities (e.g., using software such as CellProfiler [8]). Several pipelines have

been developed for multi-channel image processing using pixel classification-based segmentation

approaches, including the IMC Segmentation Pipeline [9], imcyto [10], and MCMICRO [11].

Classification-based segmentation approaches require the training of pixel classifiers (i.e., manual

annotation of images), a process that is specific to the acquired markers. To enable applicability

across marker panels, the dimensionality of input images can be reduced by aggregating selected

channels. For example, a two-channel nuclear/cytoplasm image can be constructed from a multi-

channel image by averaging all nuclear and all cytoplasmic channels. Such channel-aggregated

images can then be used to train panel-agnostic pixel classifiers to imitate classifiers previously

trained on specific sets of markers [12], or to directly apply generalist cell segmentation algo-

rithms [13–15]. The latter methodologies include deep learning-enabled algorithms achieving

human-level performance across various tissue types and imaging platforms [15].

In recent years, graphical user interface (GUI) software specialized for multiplexed imaging

platforms have been developed to analyze cells with regards to their spatial location [16–19].

These tools are user-friendly and allow joint visualization of different data representations (e.g.,

images, single-cell features), but they often have little interoperability and are difficult to extend.

Alternatively, after multi-channel image processing, the extracted tabular data can be analyzed

using common programming languages such as R and Python. The squidpy Python package was

developed recently to analyze spatial molecular data [20], and giotto performs similar analyses in

R [21]. In contrast to stand-alone tools, the Bioconductor project offers interoperability among

diverse analysis packages by relying on standardized data classes [22]. An example of such is the

SingleCellExperiment class that supports general single-cell analyses including clustering of cells

and dimensionality reduction [23–25], spatial clustering [26], and visualization of multiplexed

imaging data [27].
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2 Results

Here, we present a modular and interoperable computational workflow to process and analyze

multiplexed imaging data. The steinbock framework facilitates multi-channel image processing

including raw data pre-processing, image segmentation, and feature extraction. Data generated

by steinbock can be directly read using the imcRtools R/Bioconductor package, which also

provides functionality for data visualization and spatial analysis (Figure 1).

Figure 1: Overview of the multiplexed image processing and analysis workflow. Raw image

data can be interactively visualized using napari plugins such as napari-imc for IMC to assess data

quality and for exploratory visualization. The steinbock framework performs image pre-processing, cell

segmentation and single-cell data extraction using established approaches and standardized file formats.

Data can be read into R using the imcRtools package, which supports spatial visualization and analysis.

Storing the data in SingleCellExperiment or SpatialExperiment objects, imcRtools integrates with a

variety of data analysis tools of the Bioconductor project such as cytomapper [27]. Data can also be

exported from steinbock as anndata objects to facilitate analysis in Python, e.g., using squidpy [20].

The presented workflow is user-friendly, customizable and reproducible, and integrates with a

variety of downstream analysis strategies by employing standardized data formats. The tools

included in this workflow support processing and analysis of data generated by a range of mul-
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tiplexed imaging technologies. For demonstration purposes, we present data from imaging mass

cytometry (IMC), which relies on tissue staining with metal-labelled antibodies to simultane-

ously measure the spatial distribution of up to 40 proteins or RNA molecules at 1 µm pixel

size [5, 28].

2.1 Multi-channel image visualization with napari

Visual inspection of imaging data is key to bioimage analysis, and specialized software is required

for multi-channel image visualization [29, 30]. The recently developed multi-dimensional image

viewer napari enables the fast and interactive visualization of multi-channel images, supported

by a growing community of developers [31]. Through plugins written in Python, napari can be

extended to load image data from a variety of multiplexed imaging platforms.

Multiplexed imaging often generates complex raw data that can be challenging to visualize and

process. An example for such data is the proprietary MCD file format for IMC: After image

acquisition, a single MCD file can hold raw acquisition data for multiple regions of interest, opti-

cal images providing a slide level overview of the sample (“panoramas”), and detailed metadata

about the experiment. To facilitate IMC data processing, we created readimc, an open-source

Python package for extracting the multi-modal (IMC acquisitions, panoramas), multi-region,

multi-channel information contained in raw IMC files.

Building on readimc, we developed napari-imc, a modular plugin for loading raw IMC data into

napari. Upon opening MCD files, napari-imc displays a graphical user interface for loading

panoramas, acquisitions (Figure 2A) and channels (Figure 2B). For each loaded panorama and

for each combination of loaded acquisition and channel, napari-imc creates an image layer

(Figure 2C). In napari, image layers represent single-channel grayscale or color images that can

be overlaid in the main panel (Figure 2D). Importantly, all image layers are spatially aligned.

Adjusting channel settings (Figure 2E) will broadcast the chosen values to the settings of all

associated image layers (Figure 2F).

The napari-imc plugin enables the rapid visualization and quality control of raw IMC data,

without the need for manual file conversion. Unlike existing software, napari-imc loads multi-

channel acquisitions and panoramas into a shared coordinate system, allowing for quick spatial

orientation with respect to the physical tissue slide. Jointly configuring layers by their channel

enables the qualitative comparison of multiple regions of interest. Further, owing to its modular

implementation, napari-imc is ready for extension to similar data formats in the future. In

summary, using napari-imc, the user can perform a quick, qualitative inspection of multiplexed

image acquisitions prior to downstream image processing.
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Figure 2: Visualization of raw IMC data using napari-imc. Screenshot of napari-imc visu-

alizing two selected acquisitions from Damond et al. [32] overlaid on one panorama. Image channels

corresponding to markers for CD99 (red, cytoplasm), E/P-Cadherin (green, cytoplasm), and Histone H3

(blue, nucleus) are displayed. Labeled boxes (red) indicate GUI elements of napari (C,D,F) and napari-

imc (A,B,E): (A) MCD files containing panoramas and multi-channel acquisitions, (B) image channels

of all loaded acquisitions, (C) image layers corresponding to loaded panoramas or per-channel images

from individual IMC acquisitions, (D) visualization of the image layers, (E) settings of the selected im-

age channel that are broadcast to the properties of associated image layers, (F) properties of the image

layers.

2.2 Multi-channel image processing with steinbock

Image processing forms the basis for data analysis in any quantitative imaging project. Core

tasks of image processing include extraction of images from raw data, segmentation and quan-

tification of spatial entities such as cells, and data export for downstream analysis. Despite their

repetitive character, each step requires meticulous quality control of its intermediate outputs, a

characteristic often neglected by fully automated image processing pipelines. Further, the indi-

vidual processing steps must be reproducible, and software must be easy to install and use. To

ensure compatibility, all inputs and results must interface with existing tools and approaches.

To facilitate multiplexed image analysis, we developed steinbock, a collection of tools for rapid

processing of multi-channel images. The steinbock framework builds on existing approaches,

and can be operated through its easy-to-use command-line interface (CLI). Using simple com-

mands, multi-channel images can be processed step by step, offering full control of the individual
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Figure 3: A typical multiplexed image processing workflow using steinbock. Individual steps

are indicated as arrows, with corresponding steinbock commands and Python modules shown below.

Further parameters and third-party software (bundled in the steinbock Docker container) are overlaid

on the arrows. Input and output data are indicated conceptually and described in further detail in

Section 2.2.

tasks. The framework is distributed as a Docker container that bundles third-party software re-

quired for the individual tasks and offers platform-independence and reproducibility. Internally,

steinbock is implemented in Python, and the steinbock Python package can be used program-

matically.

Both the steinbock CLI and the steinbock Python package are fully documented and have been

extensively tested. The steinbock framework integrates with existing software by processing data

in standardized formats and its modular open-source implementation enables community-driven

development. The tools provided by steinbock can be used to build multiplexed image processing

workflows, a typical example is shown in Figure 3.

2.2.1 Data input and pre-processing

The steinbock framework operates on multi-channel TIFF images, which can be either provided

by the user or extracted from supported raw data formats using steinbock. When starting from

supported raw data formats, images are extracted and pre-processed on a pixel level tailored to

the specific imaging platform. In the case of IMC, this involves image extraction from raw data

using readimc, extraction of metadata, filtering and sorting of image channels, and removal of hot

pixels as described in the original IMC Segmentation Pipeline [9]. To enable processing of large

images that would otherwise exhaust computational resources, steinbock offers functionality for

tiling and stitching images.

In addition to the images, steinbock requires channel-specific metadata (e.g., channel names),
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which can be supplied in CSV format (e.g., a “panel file”). In the case of IMC, such panel files

can be automatically generated from the raw data.

2.2.2 Image segmentation

After image extraction, image segmentation is performed to define spatial entities such as cells,

yielding segmentation masks (e.g., cell masks). Segmentation masks are single-channel images

that match the input images in size, with non-zero grayscale values indicating the IDs of seg-

mented objects. The steinbock framework explicitly supports the following supervised image

segmentation approaches:

• Random forest-based image segmentation as presented by Zanotelli and Bodenmiller [9].

Briefly, a random forest is trained using Ilastik [7] on randomly extracted image crops

and selected image channels to classify pixels as nuclear, cytoplasmic, or background.

Employing a customizable CellProfiler [8] pipeline, the probabilities are then thresholded

for segmenting nuclei, and nuclei are expanded into cytoplasmic regions to obtain cell

masks.

• Deep learning-based image segmentation as presented by Greenwald et al. [15]. Briefly,

steinbock first aggregates user-defined image channels to generate two-channel images

representing nuclear and cytoplasmic signals. Next, the DeepCell Python package is

used to run Mesmer, a deep learning-enabled segmentation algorithm pre-trained on Tis-

sueNet [15], to automatically obtain cell masks without any further user input.

2.2.3 Object quantification

Following image segmentation, features of the detected objects (e.g., cells) are quantified. The

steinbock framework is equipped with functionality for measuring region properties (e.g., area,

eccentricity), aggregated marker intensities (e.g., mean, median), and spatial neighbors. The

measurement of spatial neighbors yields spatial object graphs, in which nodes correspond to ob-

jects, and nodes in spatial proximity are connected by an edge. Distances between objects are

computed based on the objects’ centroids or borders. These distances are used to construct

spatial object graphs by distance thresholding or k-nearest neighbor (k-NN) detection. Addi-

tionally, steinbock can construct spatial object graphs by the means of morphological dilation

(“pixel expansion”). The choice of neighborhood measurement depends on the downstream data

analysis approach. For example, pixel expansion is commonly used for neighborhood analysis

as presented by Schapiro et al. [16].
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2.2.4 Data output and export

All data generated by steinbock are stored in standardized, well-documented file formats that are

directly supported by a wide range of third-party software. Specifically, the imcRtools package

can be used to load single-cell data generated by steinbock into SingleCellExperiment [25] or Spa-

tialExperiment [33] objects for downstream analysis in R (described in detail in Section 2.4).

To further facilitate compatibility with downstream analysis, data can additionally be exported

to a variety of file formats such as OME-TIFF for images, CSV and FCS for single-cell data,

the anndata [34] format for data analysis in Python, and various graph file formats for network

analysis using software such as CytoScape [35]. For export to OME-TIFF, steinbock uses xtiff,

a Python package we developed for writing multi-channel TIFF stacks.

2.3 Segmentation quality control with cytomapper

Visual assessment of image segmentation quality is crucial to avoiding biases in downstream

analyses. Visualization is commonly done by outlining segmented objects (e.g., cells) on com-

posite images showing features of interest (e.g., marker proteins). We previously developed the

cytomapper R/Bioconductor package [27] to visualize multi-channel images and to map cellular

features onto segmentation masks. The cytomapper package supports reading and storage of

multi-channel images and segmentation masks including the TIFF files generated by steinbock

(Figure 1). Upon data import, multi-channel images can be visualized as composite images

with up to six colors (Figure 4A). More importantly in the context of image segmentation,

multi-channel images and segmentation masks can be combined to outline segmented cells on

composite images (Figure 4B).

Figure 4: Visualization of multiplexed images and segmentation masks using cytomapper.

(A) Composite images showing Histone H3 (H3, blue, nucleus), E/P-cadherin (CDH, green, cytoplasm),

and CD99 (red, cytoplasm) expression. (B) Composite images from (A) with segmented cells outlined

in white with a zoom plot shown to the right.
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2.4 Spatial data analysis with imcRtools

Highly multiplexed imaging generates images from which, after image segmentation, object-

specific measurements can be extracted. Most often, segmented objects represent cells in their

tissue context. Common tasks for single-cell data analysis include clustering and cell phenotyp-

ing, dimensionality reduction, and differential analysis; standardized methods for these tasks

have been previously developed [25]. The imcRtools R package, available through the Biocon-

ductor project, provides functionality that supports handling of data derived from multiplexed

imaging technologies, spatial single-cell analysis, and spatial visualization.

During image pre-processing, steinbock generates text files containing the summarized inten-

sity per cell and channel, properties of the segmented cells (e.g., location, morphology), and

spatial object graphs indicating cells in close proximity. The imcRtools package reads the stein-

bock output and jointly stores single-cell and neighborhood information in a SpatialExperiment

or SingleCellExperiment object (Figure 1). These classes directly support single-cell analysis

using a variety of analysis packages, including scater [24], scran [23], BayesSpace [26], and cy-

tomapper [27]. The following sections describe functions provided by imcRtools that take a

SpatialExperiment or SingleCellExperiment object as standardized input.

2.4.1 Spatial data visualization

The visualization of multi-channel images and mapping of cellular features onto segmentation

masks can be performed using the cytomapper package [27]. Complementary to this pixel-level

visualization strategy, the imcRtools package supports visualizing locations of cells as well as

spatial object graphs. The centroids of cells are visualized as points, and lines are drawn between

cells in spatial proximity (also referred to as neighboring cells). The lines represent edges in the

spatial object graphs computed by steinbock or imcRtools. The imcRtools package allows coloring

of cells based on marker expression or cellular metadata (e.g., cell type, morphological features;

Figure 5A). The size and shape of points can also be adjusted based on cellular metadata. Lines

between neighboring cells can be colored by edge features or cellular metadata associated with

the cell from which the edge originates (Figure 5B).

2.4.2 Spatial data analysis

Single-cell resolved multiplexed imaging produces data that allows analysis of cells with regards

to their spatial location. Over the past five years, spatial data analysis approaches have been

developed that yield biologically meaningful insights from highly multiplexed imaging data [4,

16, 28, 36, 37]. The imcRtools package supports such data analysis approaches in a standardized

fashion within the Bioconductor framework.

The imcRtools package can be used to summarize each cell’s neighborhood by aggregating ei-

ther across cellular metadata or the expression of neighboring cells. Cells can now be clustered
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Figure 5: Spatial visualization of cells and their neighborhood information. (A) Points rep-

resent the centroids of segmented cells and are colored based on the cells’ phenotypes as defined in the

original publication [32]. Cells from images displayed in Figure 4 were selected. Islet cells are shown in

red; immune cells except T helper (Th) cells and cytotoxic T (Tc) cells are shown in dark blue. (B) A

k-NN spatial object graph was constructed with k = 5. Only pancreatic islet cells are visualized. As in

(A), points represent the centroids of segmented cells and are colored by their phenotype. Cells in spatial

proximity are visualized as lines (i.e., edges) between points. Lines are colored by the phenotypes of the

cells from which edges originate.

based on aggregated values of neighboring cells, an approach that has been previously proposed

by Goltsev et al. [4] and Schürch et al. [36] to characterize cellular neighborhoods. To demon-

strate the neighborhood aggregation approach with subsequent clustering, we used imcRtools

to analyze a type 1 diabetes dataset provided by Damond et al. [32] as part of the imcdatasets

R/Bioconductor package [38]. For each cell, the proportion of cell types among the 10 nearest

neighbors were computed. This information was subsequently used to cluster all cells. The

spatial clusters detected in this manner represent different tissue compartments: spatial clusters

1, 4, and 5 contain islet cells, and spatial clusters 3, 6, 7, 8, and 9 include mainly cells from

exocrine tissue. Within the latter, clusters 6, 7, and 9 contain ductal and acinar cells, and clus-

ters 3 and 9 contain a mix of exocrine and stromal cells. Spatial cluster 10 is mainly composed

of T cells and endothelial cells, and cluster 2 involves aggregates of B and T cells (Figure 6A).

Interestingly, spatial cluster 2 appears in proximity to islets in images obtained from early onset

diabetes patients (Figure 6B), possibly indicating immune cell and islet cell interactions.

As an alternative approach, the algorithm developed by Hoch et al. can be used to detect

patches [37], where patches are defined as cells of a specific phenotype in spatial proximity. In

an optional step, a concave or convex hull is built around the detected patches. This hull can

be expanded to include cells in direct vicinity as demonstrated for islet cell types (Figure 6C)
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and immune cell types (Figure 6D).

The imcRtools package further allows statistical testing of whether cell types interact more or

less frequently than expected by chance using a method implemented by Schapiro et al. as part

of the histoCAT software [16]. In this context, interacting cells are defined as cells in spatial

proximity (i.e., neighboring cells detected by constructing a spatial object graph). First, for

each cell of type A the number of neighbors of type B are counted. In each image, this count is

averaged in one of three different ways, depending on the question at hand:

1. The count is divided by the total number of cells of type A. The final count can be

interpreted as “How many neighbors of type B does a cell of type A have on average?”.

2. The count is divided by the number of cells of type A that have at least one neighbor of

type B. The final count can be interpreted as “How many neighbors of type B has a cell

of type A on average, given it has at least one neighbor of type B?”

3. For each cell, the count is binarized to 0 (less than a specified number of neighbors of type

B) or 1 (more than or equal to a specified number of neighbors of type B). The binarized

counts are averaged across all cells of type A. The final count can be interpreted as “What

fraction of cells of type A have at least a given number of neighbors of type B?”. This

counting strategy was proposed by Schulz et al. [28].

Next, the computed count is compared to an empirical null distribution of interaction counts. To

derive such a distribution, cell labels are randomized a number of times, and for each iteration

the interaction count is computed. Statistical inference is performed by comparing the actual

interaction count to the empirical null distribution.

As an example, we analyzed the type 1 diabetes data reported by Damond et al. [32]. For all three

example images, we observed that α, β, and δ cells interact more often than expected when cell

types are randomly distributed across the images (Figure 6E). This result was expected, because

α, β, and δ cells are locally confined in pancreatic islets. In addition, we observed increased

interactions between näıve cytotoxic T cells (näıve Tc), cytotoxic T cells (Tc) and helper T cells

(Th) (Figure 6E).

As these examples demonstrate, the imcRtools package provides functionality to (i) handle data

extracted from multiplexed images, (ii) visualize cellular information in a spatial manner and

(iii) perform spatial data analysis to detect cell aggregates and enriched interactions between cell

types. Building upon standardized data classes, the imcRtools package connects bioimage pro-

cessing as performed using steinbock with downstream analyses supported by the Bioconductor

project.
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Figure 6: Spatial analysis strategies supported by imcRtools. Figure legend on next page.
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Figure 6: Spatial analysis strategies supported by imcRtools. (A) Cells of the type 1 diabetes

dataset generated by Damond et al. [32] were clustered based on cell type proportions among their 10

nearest neighbors. Cell type proportions within each spatial cluster (rows, colored by cluster) are shown

as a heatmap. Columns are rescaled between 0 and 1. (B) Points represent the centroids of segmented

cells and their color indicates spatial clusters. Cells from images displayed in Figure 4 were selected. (C)

α, β, δ, and γ cells were selected to detect connected patches of islet cells and patches were expanded

by 10 µm. Colored points represent cells within islet patches and grey points indicate cells outside islet

patches. (D) Immune cells were selected to detect immune cell aggregates. Colored points represent cells

within immune patches and grey points indicate cells outside immune patches. (E) The interaction count

between pairs of cell types visualized in form of one heatmap per image. Cell types that interact more

often than expected by chance are indicated by a green star (interaction). Cell types that interact less

often are indicated by a red star (avoidance). Statistical significance was defined at an empirical p-value

threshold of 0.01.

3 Discussion

Here, we present a modular workflow for analyzing highly multiplexed imaging data, introduc-

ing the steinbock framework for multi-channel data processing and imcRtools for spatial data

analysis. The workflow standardizes common processing and data analysis tasks and integrates

bioimage and single-cell analysis in a user-friendly fashion. Due to its modular structure, the

workflow is easily extendable to additional image processing steps and new approaches for single-

cell and spatial analysis.

Starting from multi-channel TIFF files or raw data from supported imaging platforms, the stein-

bock framework extracts data for downstream analysis. Depending on the imaging platform,

additional pre-processing, such as the alignment of consecutive images for cyclic immunofluo-

rescence modalities [1, 2], may be required before steinbock is run. For IMC, however, steinbock

can be directly applied to raw acquisition data, and it performs established pre-processing rou-

tines [9]. Explicit support for other imaging platforms may be added in the future. Further-

more, processing of large images is enabled by image tiling/stitching. As with all bioimaging

approaches, meticulous quality control should be performed at each step of the image processing

workflow, including careful inspection of the raw imaging data using tools such as napari [31].

A core task of multi-channel image processing is the segmentation of spatial entities such as

cells. The steinbock framework currently supports two previously published image segmentation

approaches [9, 15]. The first is the random forest-based approach [9], which is highly customiz-

able, allows for dataset-specific tuning, and has been applied in several multiplexed imaging

applications [28, 32, 39]. By adapting the provided Ilastik [7] and CellProfiler [8] pipelines,

this approach enables segmentation of arbitrary spatial entities such as tumor/stroma regions

or pancreatic islets. However, the random forest classifier needs to be manually trained for each

dataset and is limited in its applicability to other projects. The second approach is based on

deep learning [15], which builds on existing annotations [15] and can be used to rapidly segment
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cells or nuclei without the need for manually training a classifier. Irrespective of the chosen

approach, the validity of the obtained segmentation masks always needs to be verified using

tools such as cytomapper [27]. Further approaches for multi-channel image processing may be

added in the future.

Unlike most existing software, steinbock was not implemented as a pipeline, but as a collection of

independent, easy-to-use tools. Although these tools can be employed in streamlined pipelines,

they are intended to be used in step-by-step workflows that offer full control of the individual

tasks. This is reflected in the design principles underlying the steinbock framework, which focus

on usability and interoperability with external tools. By operating on standardized data formats,

steinbock integrates with the growing landscape of multiplexed imaging software and facilitates

exploratory bioimage analysis.

To bridge bioimage processing, segmentation and feature extraction with downstream analysis

strategies commonly performed in R, we developed the imcRtools package. The imcRtools

package offers analysis strategies applicable to single-cell data extracted from most multiplexed

imaging technologies [1–6] and can read in data generated by steinbock. It also supports spatial

analysis and visualization of single-cell data derived from spatial transcriptomic technologies such

as MERFISH [40] and seqFISH [41]. Furthermore, the imcRtools package contains functionality

specifically for handling and processing of IMC data. These include reading in raw IMC data into

CytoImageList objects for visualization with cytomapper or into SingleCellExperiment objects

to perform channel spillover correction using the CATALYST R/Bioconductor package [42].

As part of the Bioconductor project [22] building upon the SingleCellExperiment [25] and Spatial-

Experiment [33] data classes, the imcRtools package fully integrates with a variety of single-cell

and spatial analysis approaches and tools. It furthermore standardizes analysis approaches that

were previously developed for highly multiplexed imaging data [4, 16, 28, 36, 37] and there-

fore complements other spatial data analysis tools such as giotto [21] and spatial clustering

approaches including BayesSpace [26] and lisaClust [43]. As highly multiplexed imaging tech-

nologies and new ways of interpreting spatially annotated data develop, the imcRtools package

will provide a platform for implementing emerging data analysis strategies.
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4 Methods

4.1 Example data

To highlight the functionality of the imcRtools and cytomapper R/Bioconductor packages,

an IMC dataset containing pancreatic islets of healthy and type 1 diabetes patients was re-

analyzed [32]. The data are available in the imcdatasets R/Bioconductor package [38] (version

1.2.0) under the accessor: DamondPancreas2019Data.

4.2 Multi-channel image visualization

Raw IMC data from Damond et al. [32] was visualized using napari 0.4.11 and napari-imc 0.6.2

for illustration purposes (Figures 2, 3). Two acquisitions in spatial proximity were selected and

overlaid on the corresponding panorama (Figure 2), matching the acquisitions in downstream

analyses. Channels were configured to match Figure 4, applying the same channel-specific

settings to all image layers.

4.3 Multi-channel image processing

The steinbock framework was implemented in the steinbock Python package (version 0.10.0), with

Python modules corresponding to individual image processing tasks and including a command-

line interface (CLI). The steinbock Docker container bundles the steinbock Python package with

third-party software required for the individual tasks and exposes the steinbock CLI as Docker

entrypoint.

The pre-processing module of steinbock currently supports reading raw IMC data using read-

imc 0.4.2 (developed in-house). Random forest-based image segmentation was implemented

using Ilastik 1.3.3post3 [7] and CellProfiler 4.2.1 [8], and HDF5 files are used for loading multi-

channel images in Ilastik. Deep learning-based image segmentation was implemented using

DeepCell 0.11.0 [15], currently supporting Mesmer [15] for nuclear and cell segmentation. Fur-

ther details on object quantification, data output, and data export can be found in the online

documentation.

4.4 Segmentation quality control

Image visualization with cytomapper

All R based data analyses was performed using R version 4.1.2.

The cytomapper package version 1.6.0 was used to generate composite images and to overlay

segmentation masks on composite images using the plotPixels function to generate Figure 4.
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The three largest images considering the number of pixels were selected from the dataset. The

channel contrast was increased by scaling the intensities with a factor of 10 for Histone H3, 5

for E-/P-cadherin and 5 for CD99.

4.5 Spatial data analysis

Reading in the steinbock data

The imcRtools package provides the read steinbock function that reads in the summarized in-

tensities per cell and channel, properties of the segmented cells (e.g., location, morphology),

and spatial object graphs indicating cells in close proximity. These information are stored in

either a SpatialExperiment [33] or a SingleCellExperiment [25] object. The cell intensity data

are stored in the counts assay slot, object properties are stored in the colData slot, and the

spatial interaction graphs are stored in a colPair slot. In the case of the SpatialExperiment

object, spatial coordinates are stored in the spatialCoords slot, and spatial coordinates in a

SingleCellExperiment are stored in the colData slot.

The imcRtools package contains functionality applicable across different multiplexed imaging

technologies. In addition, imcRtools further supports IMC-specific data handling. Raw IMC

data can be read into CytoImageList objects for visualization with cytomapper. Additionally,

raw .txt files from control acquisitions can be read into a SingleCellExperiment object for

spillover estimation using CATALYST [42].

Spatial graph construction and visualization

The graph construction, spatial visualization, and spatial analysis presented here were performed

using imcRtools version 1.0.0. To visualize the location of cells and their interactions in Figure 5,

a k-NN graph based on the cells’ centroids was constructed for k = 5 using the buildSpatialGraph

function from the imcRtools package. The buildSpatialGraph function additionally supports

constructing spatial object graphs based on distance thresholding or Delaunay triangulation to

identify cells in close spatial proximity. The plotSpatial function was used to visualize the cells’

locations as points and to draw lines between cells if they were detected as neighbors using the

5-nearest neighbor graph construction approach.

Spatial data analysis

For the unsupervised spatial clustering analysis presented in Figure 6A,B, a k-NN graph based

on the cells’ centroids was constructed for k = 10 using the buildSpatialGraph function. The

aggregateNeighbors function from the imcRtools package was used to calculate the proportions

of cell types among the 10-nearest neighbors. Cells were further clustered based on these pro-

portions using k-means clustering with k = 10. For each spatial cluster, the number of cells of
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each cell type was divided by the cluster size. Next, fraction values were rescaled between 0 and

1 per cell type (Figure 6A). Instead of aggregating the cell type, the mean or median expression

across all neighboring cells can be computed using the aggregateNeighbors function.

Figure 6C,D present an alternative approach to detect spatial aggregates (i.e., patches) of cells.

The imcRtools package provides the patchDetection function, which detects patches of neighbor-

ing cells of a pre-defined type. To detect the pancreatic islets (Figure 6C), a 10-nearest neighbor

graph was constructed using the cells’ centroids, and neighboring α, β, δ and γ cells were se-

lected to detect connected patches. A concave hull was constructed around individual patches,

and the hull was expanded by 10 µm to include cells in direct vicinity. Next, to detect patches

that define interacting immune cells (Figure 6D), the 10-nearest neighbor graph was used to find

patches of neighboring Tc, Th, näıve Tc, neutrophiles, macrophages, other immune cells and B

cells. Patches with at least 4 cells were considered to represent aggregations of immune cells.

To test whether cell types interact more or less frequently compared to a random distribution,

the testInteractions function available in the imcRtools package was used. First, a 10-nearest

neighbor graph was constructed to detect neighboring cells. For each cell type pair “A” and

“B”, the overall interaction count was divided by the number of cells of type “A” (Figure 6E).

The count is compared to the random distribution of interaction counts, which was derived by

permuting cell type labels 1000 times. Statistical significance for avoidance was defined if more

than 990 iterations of random permutations produced larger counts. Statistical significance for

association was defined if more than 990 iterations of random permutations produced smaller

counts.

5 Software and code availability

The readimc Python package is available from https://github.com/BodenmillerGroup/readimc

and installable via pip. Documentation is available at https://bodenmillergroup.github.io/

readimc.

The napari-imc Python package/napari plugin is available from https://github.com/BodenmillerGroup/

napari-imc and installable via pip, from within napari or from https://www.napari-hub.

org.

The steinbock framework is available from https://github.com/BodenmillerGroup/steinbock.

The steinbock Python package is installable via pip. The steinbock Docker container can be ob-

tained via Docker from ghcr.io/bodenmillergroup/steinbock. Documentation is available

at https://bodenmillergroup.github.io/steinbock

The xtiff Python package is available from https://github.com/BodenmillerGroup/xtiff

and installable via pip.
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The imcRtools development version is available from https://github.com/BodenmillerGroup/

imcRtools. The release version is installable via Bioconductor: https://bioconductor.org/

packages/imcRtools. Documentation is available at https://bodenmillergroup.github.io/

imcRtools/.

The images and masks shown for illustration purposes in Figure 3 were taken from publicly

available resources [32] and visualized using Python and napari. For convenience of the reader,

the corresponding Jupyter notebook for loading multi-channel images, cell masks and cell out-

lines in napari is available from https://github.com/BodenmillerGroup/IMCDataAnalysis/

tree/biorxiv_submission/code/mask_overlay.

The R analysis code used to highlight the functionality of the cytomapper and imcRtools

packages is available from https://github.com/BodenmillerGroup/IMCDataAnalysis/tree/

biorxiv_submission.
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