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Abstract 

Although there is mounting evidence that input from the dorsal visual pathway is crucial for object 

processes in the ventral pathway, the specific functional contributions of dorsal cortex to these 

processes remains poorly understood. Here, we hypothesized that dorsal cortex computes the 

spatial relations among an object’s parts – a processes crucial for forming global shape percepts – 

and transmits this information to the ventral pathway to support object categorization. Using 

multiple functional localizers, we discovered regions in the intraparietal sulcus (IPS) that were 
selectively involved in computing object-centered part relations. These regions exhibited task-

dependent functional connectivity with ventral cortex, and were distinct from other dorsal regions, 

such as those representing allocentric relations, 3D shape, and tools. In a subsequent experiment, 

we found that the multivariate response of posterior IPS, defined on the basis of part-relations, 

could be used to decode object category at levels comparable to ventral object regions. Moreover, 

mediation and multivariate connectivity analyses further suggested that IPS may account for 

representations of part relations in the ventral pathway. Together, our results highlight specific 

contributions of the dorsal visual pathway to object recognition. We suggest that dorsal cortex is a 

crucial source of input to the ventral pathway and may support the ability to categorize objects on 

the basis of global shape.  

Keywords: dorsal stream, ventral stream, two visual streams, object recognition, shape perception, 

visual cortex 
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Introduction 

A central organizing principle of the brain is that the visual system is segregated into a ventral 

visual pathway for recognizing objects and a dorsal visual pathway for locating and interacting with 

objects (Mishkin et al., 1983; Ungerleider & Haxby, 1994). However, research increasingly shows 

that the dorsal pathway computes some of the same object properties as the ventral pathway 

(Farivar, 2009; Freud et al., 2020; Freud et al., 2016), and may even play a functional role in object 

recognition (Freud et al., 2020; Holler et al., 2019). Despite these findings, the dorsal pathway is 
rarely included in conceptual or computational models of visual recognition (Gauthier & Tarr, 2016; 

Zhuang et al., 2021). Indeed, artificial neural network models (ANNs) trained for object recognition 

are almost exclusively modelled on ventral cortex processes (Blauch et al., 2021; Kubilius et al., 

2019). One potential reason for this exclusion, is that the specific functional contributions of the 

dorsal pathway to object recognition are poorly understood. 

The primary function of the dorsal pathway has long been considered to be the computation of 

visuospatial  information in the service of coordinating actions (Goodale & Milner, 1992; Mishkin et 

al., 1983). However, dorsal cortex, particularly the posterior parietal cortex (PPC), also computes 

object properties relevant for recognition. For instance, many studies find robust sensitivity to 

shape information in the PPC (Bracci & Op de Beeck, 2016; Freud et al., 2017; Georgieva et al., 

2008), akin to ventral object regions such as the lateral occipital complex (LOC; Grill-Spector et al., 

2001; Kourtzi & Kanwisher, 2001). As in LOC, dorsal shape representations are seemingly robust to 

changes in size and orientation, as well as format (i.e., 3D vs. 2D; Konen & Kastner, 2008; Vaziri-

Pashkam & Xu, 2019). Object representations in the dorsal pathway also appear to code relatively 

abstract representations, such that the multivariate responses in PPC corresponds to perceived 

semantic similarity among objects, even when controlling for low-level visual properties (Bracci & 

Op de Beeck, 2016; Jeong & Xu, 2016).  

Although these studies highlight the similarities between dorsal and ventral pathways, object 

representations in dorsal cortex are not simply redundant with those in the ventral cortex (Bracci & 

Op de Beeck, 2016; Freud et al., 2015; Vaziri-Pashkam & Xu, 2019). What, then, are the unique 

contributions of the dorsal stream to object recognition? One possibility, consistent with its role in 

visuospatial processing (Kravitz et al., 2011; Mishkin et al., 1983), is that dorsal cortex computes 

the spatial relations among an object’s component parts – that is, the object’s topological structure.  

Many studies have demonstrated that a description of part relations is crucial for forming invariant 

‘global shape’ representations (Biederman, 1987; Hummel, 2000), which may be key for 

recognizing objects across variations in viewpoint or across category exemplars (Ayzenberg & 

Lourenco, 2019; Hummel & Stankiewicz, 1996). Indeed, an inability to represent the part relations 

results in marked deficits in object recognition (Behrmann et al., 2006). Such a representation may 

be particularly important for basic-level object categorization because members of a category 

typically have similar spatial structures, but vary in regards to their component parts (Ayzenberg & 

Lourenco, 2019; Barenholtz & Tarr, 2006; Rosch et al., 1976).  

Surprisingly, few studies have investigated whether the dorsal pathway represents object-centered 

part relations, with most, historically, focusing on allocentric spatial coding (Haxby et al., 1991), 

and even fewer have examined the relation between such coding in the dorsal pathway and object 

recognition processes in the ventral pathway (c.f. Zachariou et al., 2017). Thus, in the current study, 

we tested whether the dorsal visual pathway represents the relations among component parts, and 
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the extent to which coding in this region is independent of allocentric relations and other object 

properties represented by the dorsal pathway, such as 3D shape and tools. Furthermore, we 

investigated the contributions of such a region to object recognition processes in the ventral 

pathway. 

Materials and Methods 

Participants 

We recruited 12 participants (3 female; Mage = 27.50, SD = 3.61) for Experiment 1, in which 

functional regions of interest (ROIs) were identified, and 12 participants (6 female; Mage = 26.83, SD 

= 3.7) for Experiment 2, in which the ROIs’ contributions to object recognition were explored. 

Where possible, the same participants completed both Experiment 1 and 2, so that their pre-

defined ROIs could be used for analysis. In total, eight participants from Experiment 1 also 

participated in Experiment 2. The four new participants in Experiment 2 were scanned in a second 

session (following the procedure of Experiment 1) in order to define their individual functional 

ROIs. All participants were right-handed and had normal or corrected-to-normal visual acuity. 

Participants were recruited from the Carnegie Mellon University community, gave informed 

consent according to a protocol approved by the Institutional Review Board (IRB), and received 

payment for their participation.  

MRI scan parameters 

Scanning was done on a 3T Siemens Prisma scanner at the CMU-Pitt Brain Imaging Data Generation 

& Education (BRIDGE) Center. Whole-brain functional images were acquired using a 64-channel 

head matrix coil and a gradient echo single-shot echoplanar imaging sequence. The acquisition 

protocol for each functional run consisted of 48 slices, repetition time = 1 s; echo time = 30 ms; flip 

angle = 64°; voxel size = 3 × 3 × 3 mm. Whole-brain, high-resolution T1-weighted anatomical 

images (repetition time = 2300 ms; echo time = 2.03 ms; voxel size = 1 × 1 ×1 mm) were also 

acquired for each participant for registration of the functional images.  

Data Analysis 

All images were skull-stripped (Smith, 2002) and registered to the Montreal Neurological Institute 

(MNI) 2mm standard template. Prior to statistical analyses, images were motion corrected, de-

trended, and intensity normalized. To facilitate functional-connectivity analyses, 18 additional 

motion regressors generated by FSL were also included. All data were fit with a general linear 

model consisting of covariates that were convolved with a double-gamma function to approximate 

the hemodynamic response function. Data used to define regions of interest (ROIs) was spatially 

smoothed using a 6 mm Gaussian kernel. All other data were unsmoothed. All data were analyzed 

using the peak 100 voxels within a region (as defined by the functional localizer) or using a 6mm 

sphere (~120 voxels) centered on the peak voxel. Qualitatively similar results were found for all 

analyses when ROI sizes were varied parametrically from 100 to 400 voxels (the size of the smallest 

ROI). Analyses were conducted using FSL (Smith et al., 2004), and the nilearn, nibabel, and Brainiak 

packages for in Python (Abraham et al., 2014; Kumar et al., 2020).  

Experimental design  

Experiment 1: Localization of object-centered part relations 
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Participants completed four localizer scans to measure voxels activated by object-centered part 

relations, allocentric relations, depth information, and tool images. We first used a ROI approach to 

define regions in parietal cortex that represent part relations. Then, we used independent data to 

test the selectivity of these ROIs to part relations or to other visual properties represented by the 

dorsal stream, namely allocentric relations (Haxby et al., 1991), depth information (Georgieva et al., 

2008), and tools (Mahon et al., 2007). Furthermore, we conducted conjunction analyses to examine 

the degree of overlap between dorsal ROIs sensitive to part relations and the other dorsal 

properties. Finally, we conducted task-dependent functional connectivity analyses to examine the 

degree to which dorsal ROIs sensitive to part relations are correlated with ventral regions.  

For each localizer, we defined posterior and anterior parietal ROIs by overlaying posterior 

intraparietal sulcus (pIPS) and anterior IPS (aIPS) binary masks and selecting voxels within those 

masks that survived a whole-brain cluster-corrected threshold (p < .001). Broad pIPS and aIPS 

masks were created by combining IPS0 with IPS1 and IPS1with IPS2 probabilistic masks, 

respectively, from the Wang et al. (2014) atlas. For comparison of the activation profiles from 

dorsal regions, an object-selective ROI in the ventral stream was defined similarly within the lateral 

occipital complex (LOC) probabilistic parcel (Julian et al., 2012).  

Object-centered part relations localizer. Participants completed six runs (320 s each) of an object-

centered part relations localizer consisting of blocks of object images where either the spatial 

arrangement of component parts varied from image to image (part-relations condition), while the 

parts themselves stayed the same; or the local features of the component parts varied from image 

to image (feature condition), while the spatial arrangement of the parts stayed the same (Figure 

1A). Objects could have one of 10 possible spatial arrangements, and one of 10 possible part 

features. Spatial arrangements were selected to be qualitatively different from one another as 

outlined by the recognition-by-components (RBC) model (e.g., end-to-end; end-to-middle; 

Biederman, 1987). The component parts were comprised of qualitatively different features as 

outlined by the RBC model (e.g., sphere, cube). All stimuli subtended ~6° visual angle on screen. 

Each block of the part relations localizer contained 20 images, displaying each spatial arrangement 

or part feature twice per block depending on the condition. Each image was presented for 800 ms 

with a 200 ms interstimulus interval (ISI) for a total of 20 s per block. To minimize visual 

adaptation, the location of object images on the screen varied by ~2° every trial. The image order 

within the block was randomized. Participants also viewed blocks of a fixation cross (20 s). 

Participants viewed 5 repetitions of each block per run, with blocks presented in a pseudorandom 

order under the constraint that all three block types (relations, feature, fixation) were presented 

once before repetition. To maintain attention, participants performed an orthogonal one-back task, 

in which they responded via key press when detecting the repetition of an image on consecutive 

presentations.   

Object-centered part relations ROIs in pIPS and aIPS were defined in each individual using 4 out of 

the 6 runs as those voxels that responded more to the part-relations than the feature condition. 

Selectivity was measured for each voxel in an ROI by extracting standardized parameter estimates 

for each condition (relative to fixation) in left out runs (2 out of 6).  

Allocentric relations localizer. Participants completed two runs (368 s each) of an allocentric 

relations localizer wherein some blocks they judged whether displayed objects had the same 

allocentric relations, in this case the same distances between objects (distance condition), or had 
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the same brightness (brightness condition; Zachariou et al., 2017). A nearly identical display was 

shown in both conditions, consisting of two diagonally arranged displays, each containing a line and 

circle (Figure 1B). In the distance condition, the allocentric relations (i.e., distances) between the 

line and circle, either matched across the two displays or differed. In the brightness condition, the 

brightness of the circles across the two displays either matched or differed. On each trial, 

participants were required to indicate whether the two displays were the same or different 

(according to distance or brightness). Each display subtended ~4° visual angle on screen. Prior to 

the start of the scan, participants’ individual sensitivity to distance and brightness (blocked) was 

measured using an adaptive task where the distances and brightness of the stimuli was titrated 

until accuracy on each of the tasks was approximately 75%. 

Each block contained 10 distance or brightness trials, in which five trials had matching displays and 

five trials had different displays. Each trial was presented for 1700 ms with a 300 ms interstimulus 

interval (ISI) for a total of 20 s per block. The trial order within the block was randomized. 

Participants also viewed blocks of fixation (20s). Participants viewed 6 repetitions of each block per 

run, with blocks presented in a pseudorandom order under the constraint that all three block types 

(distance, brightness, fixation) were presented once before repetition.  

Allocentric relation ROIs were defined in each individual as those voxels that responded more to 

the distance than the brightness condition. Selectivity was measured for each voxel in an ROI by 

extracting standardized parameter estimates for each condition (relative to fixation).  

Depth localizer. Participants completed two runs (308 s each) of a depth localizer wherein they 
viewed blocks of object images that contained 3D shapes as defined from depth shading cues (3D 

condition), or 2D shapes with comparable low-level properties (2D condition; Figure 1C). Each 

condition was comprised of ten 3D or 2D object images from (Georgieva et al., 2008). All stimuli 

were ~6° visual angle on screen. Each block contained 20 images, displaying each possible 3D or 2D 

image twice per block. Each image was presented for 700 ms with a 100 ms interstimulus interval 

(ISI) for a total of 16 s per block. The image order within the block was randomized. Participants 

also viewed blocks of fixation (16 s). Participants viewed 6 repetitions of each block per run, with 

blocks presented in a pseudorandom order under the constraint that all three block types (3D, 2D, 

fixation) were presented once before repetition. To maintain attention, participants performed an 

orthogonal one-back task, responding to the repetition of an image on consecutive presentations.  

Depth ROIs were defined in each individual as those voxels that responded more to the 3D than the 

2D condition. Selectivity was measured for each voxel in an ROI by extracting standardized 

parameter estimates for each condition (relative to fixation) in left out runs. 

Tool and object localizer. Participants completed two runs (340 s) of a tool localizer wherein they 
viewed blocks of object images that contained tools (tool condition), manipulable non-tool objects 

(non-tool condition), or box-scrambled object images (scrambled conditions; Figure 1D). Each 

condition was comprised of ten tools, non-tools, or scrambled object images from (Chen et al., 2018; 

Chen et al., 2016). Each block contained 20 images, displaying each possible tool, non-tool, or 

scrambled image twice per block. All stimuli subtended ~6° visual angle on screen. Each image was 

presented for 700 ms with a 100 ms interstimulus interval (ISI) for a total of 16 s per block. The 

image order within the block was randomized. Participants also viewed blocks of fixation (16 s). 

Participants viewed 5 repetitions of each block per run, with blocks presented in a pseudorandom 

order under the constraint that all four block types (tool, non-tool, scrambled, fixation) were 
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presented once before repetition. To maintain attention, participants performed an orthogonal one-

back task, responding to the repetition of an image on consecutive presentations.  

Tool ROIs were defined in each individual as those voxels that responded more to the tool than the 

non-tool condition. Object ROIs in LOC were defined as those voxels that responded more to objects 

(tool + non-tool) than scrambled. Selectivity was measured for each voxel in an ROI by extracting 

standardized parameter estimates for each condition (relative to fixation). 

 

Figure 1. Example stimuli from the (A) object-centered part relations, (B) allocentric relations (C) depth, (D) 

and tool localizers used in Experiment 1. 

Task-dependent functional connectivity. We conducted psychophysiological interaction (PPI; Friston 

et al., 1997) analyses to examine whether there is task-dependent functional connectivity between 

dorsal regions involved in computing part relations, and ventral regions involved in object 

recognition (Friston et al., 1997). A contrastive psychological task covariate was created from the 

part relations localizer by assigning timepoints corresponding to part-relations blocks a value of 1 

and assigning timepoints corresponding to feature blocks a value of -1, then convolving the 

covariate with a standard HRF. Physiological covariates were generated from each participant’s 

cleaned residual timeseries by extracting the timeseries from a 6 mm sphere centered on the peak 

voxel in dorsal ROIs that respond more to the relations than feature condition in the part relations 

localizer. Finally, a psychophysiological interaction covariate was created for each participant by 

multiplying the psychological and physiological covariates.  

For each participant, 4 runs (randomly selected) of the object-centered spatial localizer were used 

to identify the peak voxel that responded more to the spatial than feature condition in pIPS and 
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aIPS parcels. The cleaned residual timeseries from the left-out two runs were then normalized, 

concatenated, and then further regressed on the psychological and physiological covariates 

generated for those runs. A whole-brain functional connectivity map was generated by correlating 

the residual timeseries of every voxel with the interaction covariate, and applying a fisher 

transform on the resulting map.  

Data were analyzed in a cross-validated manner, such that every possible permutation of localizer 

(4 runs) and left-out runs (2 runs) was used to define the seed region separately, and then analyze 
connectivity. An average map was created by computing the mean across all permutations and a 

final group map was created by computing the mean across subjects. Significant voxels were 

determined by standardizing the group map and applying FDR-correction (p < 0.05). Together, this 

procedure ensures that any correlation between regions is driven by the task-dependent neural 

interaction, and not by the baseline correlation between regions or shared task activation.  

Experiment 2: Basic-level object categorization in parietal ROIs 

We tested whether the multivariate pattern in parietal ROIs that represent object-centered part 

relations can support basic-level object categorization. We further used representational similarity 

analyses (RSA), to examine the visual contributions of these ROIs to object recognition. Finally, we 

used multivariate functional connectivity analyses to examine the degree to which the part relation 

ROIs in the dorsal pathway interact with the ventral pathway. 

To this end, participants completed 8 runs (330 s each) where they viewed images of common 

objects. The object set was comprised of five categories (boat, camera, car, guitar, lamp) each with 

five exemplars. Objects were selected from the ShapeNet 3D model dataset (Chang et al., 2015) and 

rendered to have the same orientation, texture, and color. The original texture and color 

information was removed to ensure that similarity among objects was on the basis of shape 

similarity, rather than other features. All stimuli subtended ~6° visual angle on screen (see Figure 

2). 

Objects were presented in an event-related design with the trial order and ISI optimized to 

maximize efficiency using Optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq/). Each stimulus 

was presented for 1 s, with a jittered ISI between 1 and 8 seconds. Participants viewed 4 repetitions 

of each object per run. For each participant, parameter estimates for each object (relative to 

fixation) were extracted for each voxel. Responses to the stimuli in each voxel were then 

normalized by subtracting the mean response across all stimuli. 
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Figure 2. Object stimuli presented in Experiment 2. Participants viewed five exemplars from five categories in 

an event-related design.  

Representational similarity analyses. A 25 × 25 symmetric neural representational dissimilarity 

matrix (RDM) was created for each ROI and participant by correlating (1-Pearson correlation) the 

voxel-wise responses for each stimulus with every other stimulus in a pairwise fashion. Neural 

RDMs were then Fisher transformed and averaged across participants separately for each ROI. Only 

the upper triangle of the resulting matrix (excluding the diagonal) was used in subsequent analyses. 

Neural RDMs were compared to RDMs created from a model that approximates the spatial relations 

among component parts, namely a model based on the medial axis shape skeleton. Shape skeletons 

provide a quantitative description of the spatial arrangement of component parts via internal 

symmetry axes (Blum, 1973), and are tolerant to variations in the parts themselves (Ayzenberg et 

al., 2019; Feldman & Singh, 2006). For our skeletal model, we used a flux-based medial axis 

algorithm (Dimitrov et al., 2003; Rezanejad & Siddiqi, 2013) which computes a ‘pruned’ skeletal 

structure tolerant to local variations (Feldman & Singh, 2006). Skeletal similarity between objects 

was computed as the mean Euclidean distance between each point on one object’s skeleton 

structure with the closest point on a second object’s skeleton structure.  

We also compared neural RDMs for models of low- and high-level vision, namely the Gabor-jet 

model, a model of image-similarity that approximates the response profile of early visual regions 

(Margalit et al., 2016), and the penultimate layer of CorNet-S, a recurrent artificial neural network 

designed to approximate the response profile of the ventral visual pathway in monkeys (Kubilius et 

al., 2019). Object similarity for both Gabor-jet and CorNet-S were computed as the mean Euclidean 

distance between feature vectors for each object image (see Figure 8A). 

Multivariate connectivity analyses. We conducted multivariate pattern dependence (MVPD) analyses 

(Anzellotti et al., 2017) to examine whether dorsal ROIs involved in computing part relations 

interact with ventral object regions during object viewing. MVPD tests the degree to which the 

multivariate activation timeseries of a seed region accounts for the variance of the multivariate 

activation timeseries of a target region.  

For each participant, data were split into a training (6 runs) and test (2 runs) set. A multivariate 

timeseries was generated from each participant’s cleaned residual timeseries training data by 

extracting the timeseries of each voxel from a 6 mm sphere centered on the peak voxel in dorsal 

ROIs that responds more to the part-relations than feature blocks in the object-centered relations 
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localizer. The dimensionality of the voxel timeseries was then reduced by applying principal 

components analysis (PCA) and selecting the components that explain 90% of the variance. The 

same procedure was then repeated for a target region using a searchlight with 6 mm sphere. Next, 

using the training data, a linear regression was fit separately on each component of the target 

region using the components from the seed region as predictors. This procedure results in a series 

of beta weights describing the linear mapping between the principal components of the seed region 

to each individual principal component of the target region. For computational efficiency, the 

searchlight was conducted within an extended visual cortex mask created using an atlas from Wang 

et al. (2014) comprised of occipital, dorsal, and ventral visual cortices. 

The beta weights from the training data are then used to generate a predicted multivariate 

timeseries for left-out runs of the target region, which is then correlated (Pearson) with the actual 

observed timeseries of the target region. A final fit value is computed as the weighted mean of 

correlations across target region principal components, with the weighting of each correlation 

determined by the proportion of variance explained by each target component. A single map for 

each participant is created by averaging the weighted correlations following 5-fold cross-validation, 

and then Fisher transforming the correlations. A final group map is created by computing mean 

across participants. Significant voxels were determined by standardizing the group map and 

applying FDR-correction (p < 0.05). 

Results 

Experiment 1: Selectivity for object-centered relations in the dorsal pathway 

ROI definition. See Table 1 for a summary of significant group-level clusters from every localizer. 

The part relations localizer (4 runs) identified significant clusters in pIPS and aIPS in the right 

hemisphere (rpIPS, raIPS) of every participant and in 10 out of 12 participants in the left 

hemisphere (lpIPS, laIPS; see Figure 3A). Likewise, a group averaged map created using 2 runs (left 

out to measure selectivity) from every participant also revealed significant clusters in pIPS and 

aIPS, though these were found exclusively in the right hemisphere (see Figure 3B).  
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Figure 3. Significant activation to part relations (versus features) condition from the object-centered part 

relations localizer displayed (A) for each individual participant and in (B) a group average map inflated 

(above) and flattened (below). Values reflect the standardized parameter estimate. 
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Table 1. Significant group level clusters for the object-centered part relations, allocentric spatial relations, and 

tool localizer. MNI Coordinates correspond to the peak voxel within each cluster. The depth localizer is not 

listed because there were no significant clusters at the group level. 

Localizer Region 
MNI Coordinate 

x y z 

Object part relations           
  1 R Posterior Intraparietal Sulcus (IPS0) 26 -76 44 
  2 R Ventral Intraparietal Complex (VIP) 22 -58 64 
  3 R Middle Temporal Area (MT) 42 -78 12 
  4 R Temporal Parietal Junction (TPJ) 52 -60 -2 
            
Allocentric spatial relations           
  1 L Intraparietal sulcus (IPS1) -26 -72 24 
  2 L Ventral Intraparietal Complex (VIP) -16 -68 58 
  3 R Ventral Intraparietal Complex (VIP)  16 -62 56 
  4 L Secondary Somatosensory Cortex (S2) -38 -38 48 
  5 R Secondary Somatosensory Cortex (S2)  45 -40 63 
  6 R V3A/V3B  34 -78 16 
  7 L Middle Temporal Area (MT) -48 -72 2 
  8 L Fundal Superior Temporal (FST) -48 -66 -6 
            
Tools           
  1 L Lateral Interparietal Area (LIP) 24 -58 64 
  2 R Ventral Intraparietal Complex (VIP) -22 -54 58 
  3 L Middle Temporal Area (MT) -46 -76 6 
  4 L Temporal Parietal Junction (TPJ) -58 -72 0 
  5 R Temporal Parietal Junction (TPJ)  56 -68 4 
            

 

Selectivity for part relations. To test whether these ROIs are selective for object-centered part 

relations, we examined the response in this region (relative to fixation; see Material and Methods) 

to (1) activation in the relations blocks of the part relations localizer (independent runs), as well as 

the other dorsal conditions, namely, (2) distance as determined from the allocentric relations 

localizer, (3) 3D shape from the depth localizer, and (4) tools from the tool localizer.  

A repeated-measures ANOVA with ROI (pIPS, aIPS), hemisphere (left, right), and condition (part 

relations, distance, 3D shape, tools) as within-subjects factors revealed that there was a significant 

main-effect of condition, F(3, 24) = 8.26, p < .001,  ηp2  = 0.53. There were no other main-effects or 

interactions (ps > .102). Post-hoc comparisons (Holm-Bonferroni corrected) revealed that 

activation to the part-relations condition was higher than distance (t[11] = 4.64, p < .001, d = 1.55), 

3D shape (t[11] = 4.16, p = .002, d = 1.39), and tool (t[11] = 4.48, p = .008, d = 1.16) conditions. 

Thus, these analyses suggest that the dorsal pathway represents object-centered part relations, and 

that this representation is independent of allocentric spatial relations and other object properties 

represented by the dorsal pathway. 

Although these analyses did not reveal a significant difference between left and right hemisphere 

ROIs, examination of the group map suggests that the part relations may be more strongly 

represented in the right hemisphere. To explore these possible differences, we also analyzed each 
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ROI separately. Note, due to the exploratory nature of this analysis, these results should be 

interpreted with caution.  

Separate repeated measures ANOVAs were conducted for participants’ left and right pIPS and aIPS 

which revealed main-effects of condition in all four regions (lpIPS: F[3, 33] = 3.92, p = .021, ηp2  = 

0.33; rpIPS: F[3, 33] = 8.70, p < .001, ηp
2  = 0.44; laIPS: F[3, 33] = 4.69, p = .009, ηp

2  = 0.34; raIPS: F[3, 

33] = 12.57, p < .001, ηp2  = 0.53), with the response to part relations numerically highest in each 

region (see Figure 4). However, post-hoc comparisons (Holms-Bonferroni corrected) revealed that 
activation to part relations was statistically highest only in the right hemisphere parietal regions, 

but not the left hemisphere parietal regions. Namely, in the right hemisphere, the activation to part 

relations was significantly higher than distance (rpIPS: t[11] = 4.66, p < .001, d = 1.34; raIPS: t[11] = 

4.18, p < .001, d = 1.21), 3D shape (rIPS: t[11] = 3.47, p = .006, d = 1.00; raIPS: t[11] = 5.77, p < .001, 

d = 1.67), and tools (rpIPS: t[11] = 4.05, p = .001, d = 1.17; raIPS: t[11] = 4.52, p < .001, d = 1.31). By 

contrast, in the left hemisphere, pIPS responses to part relations were higher than distance (t[11] = 

3.21, p = .023, d = 1.07), but not 3D shape or tools (ts < 2.65, ps > .071, ds < 0.88). In left aIPS, 

responses were higher than distance (t[11] = 3.51, p = .010, d = 1.1) and 3D shape (t[11] = 2.87, p = 

.039, d = 0.91), but not tools (t[11] = 2.39, p = .097, d = 0.75). In combination with the group 

statistical map (Figure 3), these results suggest that object-centered part relations may be 

represented more strongly in the right than left hemisphere parietal regions. 
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Figure 4. Activation to the part relations (left-out runs), allocentric distance, 3D shape, and tools conditions in 

(A) left pIPS and (B) right pIPS, (C) left aIPS, and (D) right aIPS. Activation values reflect the standardized 

parameter estimate. Error bars reflect standard error of the mean. 

Conjunction analyses. To explore further the degree to which parietal regions involved in computing 

part relations overlap with regions computing other dorsal properties, we conducted whole-brain 

conjunction analyses. First, group-averaged statistical maps were created for every localizer and a 

cluster-correction threshold applied (p < .001; see Figure 3). The resulting statistical maps were 

consistent with prior research on the neural basis of the allocentric relations (Zachariou et al., 

2017) and of tool representations (Chen et al., 2016; Gallivan et al., 2013). No significant clusters 

were found for the activation profiles on the depth localizer (Georgieva et al., 2008).  

Next, we calculated the proportion of independent and overlapping voxels by converting the 

thresholded statistical map from each group-averaged localizer into binary masks and overlying 

them with the thresholded statistical map from part relations localizer. Binomial tests revealed 

that, in right pIPS, there were significantly more independent than overlapping voxels that 

responded to part relations. Here, the allocentric relations ROI had the greatest amount of overlap 

with part relations ROI in pIPS (overlapping voxels: 42%, p < .001). There were no overlapping 
voxels from the depth or tool ROIs above the cluster corrected threshold. By contrast, in right aIPS, 

there were significantly more voxels that overlapped with the allocentric relations ROI than were 
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independent (overlapping voxels: 65%, p < .001). There was also overlap with the tool ROIs 

(overlapping voxels: 43%, p < .001), but there were significantly more independent voxels than 

overlapping ones. There were no overlapping voxels with the depth localizer (0%). Thus, part 

relations were represented along a gradient within the dorsal stream, with both distinct and 

overlapping components.  

Finally, to visualize this gradient better, statistical maps were converted into proportions, such that, 

for each voxel, a value closer to 1 indicates a greater response to part relations and a value closer 0 
indicates a greater response to one of the other dorsal properties (e.g., allocentric relations; see 

Figure 5). Consistent with the analyses above, these maps reveal the least overlap between part 

relations and other dorsal ROIs in pIPS and the most overlap in aIPS.  
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Figure 5. Conjunction maps illustrating areas of distinct and overlapping coding for object-centered part 

relations and (A) allocentric relations, (B) depth, and (C) tools. A value closer 1 indicates a greater response 

to part relations; a value closer to 0 indicates a greater response to the control localizer. Maps are zoomed in 

on the visual cortex for easier inspection. 

Task-dependent functional connectivity. If the role of the dorsal pathway in object recognition is to 

compute object-centered part relations, then a prediction is that pIPS and aIPS will also be 

functionally connected to the ventral pathway – the nexus of object recognition processing. More 

specifically, the prediction is that functional connectivity between right and left pIPS or aIPS with 

ventral cortex will depend on the task demands, such that connectivity would be greatest when 

perception of part relations is needed, as in the relations, but not feature condition of the localizer. 

To test this prediction, we conducted PPI analyses to examine whether there was task-dependent 
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functional connectivity between left and right pIPS and aIPS regions involved in computing object-

spatial relations, and ventral regions involved in object recognition (see Materials and Methods).   

Examination of the group map (Figure 6) revealed significant connectivity between right 

hemisphere pIPS and aIPS with bilateral ventral stream regions. Interestingly, there was relatively 

little connectivity with other dorsal regions, suggesting that the function of right hemisphere pIPS 

and aIPS may be specifically in the service of object recognition processes in the ventral stream 

rather than action processes in other dorsal regions. There was no significant connectivity with left 

pIPS or aIPS that survived FDR correction. 

To further examine the specificity of task-dependent connectivity to these regions, we reanalyzed 

the data from the part relations localizer using the peak voxel from the allocentric relations ROI in 

the left hemisphere as our seed region. This ROI was chosen because it does not overlap with part 

relations ROIs, but nevertheless has a conceptually similar representation. These analyses revealed 

no significant connectivity between allocentric relations ROIs in the left hemisphere and the ventral 

visual pathway. Moreover, a direct comparison between regions (Holm-Bonferroni corrected), 

revealed that task-dependent connectivity with LOC, a ventral object region, was significantly 

stronger with right pIPS (lLOC: t(11) = 3.41, p = .005, d =0.99; rLOC: t(11) = 3.28, p = .007, d =0.95) 

and aIPS (lLOC: t(11) = 4.36, p < .001, d =1.26; rLOC: t(11) = 4.56, p < .001, d =1.32) than left 

allocentric relations ROIs. There were no differences in connectivity between the other pIPS and 

aIPS regions (ps > .217). Together, these findings suggest that dorsal regions involved in computing 

object-centered part relations, particularly in the right hemisphere are preferentially connected to 

the ventral stream to support object recognition. 
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Figure 6. Task-based functional connectivity results. (A-B) Functional connectivity map (zoomed in on the 

visual cortex) for (A) right pIPS and (B) right aIPS. Seed regions are displayed as white circles. There was no 

functional connectivity above the cluster corrected threshold in left pIPS, left aIPS, or the left allocentric ROI. 

(C) Plots comparing the connectivity between pIPS, aIPS, and the other ROIs in left LOC and right LOC ROIs. 

Error bars reflect standard error of the mean. 

Experiment 2: Dorsal contributions to object recognition 

Category decoding. To test whether dorsal regions that compute object-centered part relations 

contribute to object recognition, we examined whether multivariate pattern within these regions 

could be used to classify objects (see Figure 2). Using a 20-fold cross-validation procedure, an SVM 

classifier was trained on the multivariate pattern for three exemplars from each category, and then 

predicted the category of the two left out exemplars.  

One-sample comparisons to chance (0.20) revealed that category decoding was significantly above 

chance in right pIPS, M = 32.7%, t(11) = 3.15, p = .009, d = 0.91, but not in right aIPS, left pIPS or left 

aIPS defined on the basis of part relation (Ms < 23.4%, ps > .110, ds < 0.72; Figure 7). To further 

examine the specificity of category decoding the dorsal stream, we also tested how well a left 

hemisphere allocentric relations ROI can decode object categories. These analyses revealed that 
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decoding was not above chance in the left allocentric ROI, M = 18.7%, t(11) = -0.82, p = .780, d = 

0.23. Direct comparisons between right pIPS and the other regions (Holm-Bonferroni corrected) 

further confirmed that, categorization accuracy was significantly higher in right pIPS than left 

allocentric regions (t[11] = 3.88, p = .004, d = 1.23 and laIPS (t[11] = 4.32, p = .001, d = 1.37), though 

not raIPS (t[11] = 2.65, p = .096, d = 0.837) nor lpIPS (t[11] = 2.48, p = .127, d = 0.78). Next, we 

examined how category decoding in the dorsal stream compares to ventral stream object 

recognition regions, namely LOC. As would be expected, categorization accuracy was above chance 

in left and right LOC, (lLOC: M = 26.0% , t[11] = 3.56, p = .004, d = 1.03; rLOC: M  = 26.7%  t[11] = 

2.30, p = .042, d = 0.66), with the neither region differing significantly from right pIPS (ts < 1.62, ps > 

.357, ds < 0.42). Thus, regions in right posterior IPS involved in computing object-centered part 

relations can support categorization of object exemplars. 

 

Figure 7. Object categorization accuracy for pIPS, aIPS, the left allocentric ROI, and LOC. Error bars reflect 

standard error of the mean.  

Representational content of dorsal ROIs. The results above show that a region in pIPS defined on the 

basis of part relations can be used to decode the category of objects. Yet, despite the fact that this 

region was defined using a part relations localizer, it is possible that categorization was 

accomplished using other visual properties. Indeed, it is well known that pIPS retains a retinotopic 

organization (Wang et al., 2014) and is tightly connected to early visual cortex (Greenberg et al., 

2012). Thus, it is possible that the categorization performance of right pIPS may have been 

achieved on the basis of low-level image-level similarity. Moreover, it is unclear to what degree 

categorization in right pIPS is accomplished using high-level visual representations distinct from 

those in the ventral stream.  

To examine whether right pIPS accomplished object categorization on the basis of object-centered 

part relations, we used representational similarity analyses (RSA). Specifically, we tested whether a 

skeletal model, which approximates object-centered part relations, explains unique variance in 

pIPS over and above other models of vision (see Materials and Methods). Skeletal models describe 

the spatial arrangement of object parts via a low-dimensional symmetry axis (see Figure 8A). For 

comparison, we also tested Gabor-jet (GBJ), a model of low-level image similarity (Margalit et al., 

2016; see Figure 8A), as well as CorNet-S a neural network model whose upper layers approximate 
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the response profile of high-level ventral regions in monkeys (Kubilius et al., 2019; Schrimpf et al., 

2018; see Figure 8A).   

To test whether the skeletal model explained unique variance in right pIPS, we conducted linear 

regression analyses with the neural RDM from pIPS as the dependent variable and the different 

models of visual similarity as predictors (Skeleton ∪ GBJ ∪ CorNet-S; see Figure 8B). These analyses 

revealed that only skeletal model explained unique variance in right pIPS (β = 0.33, p < .001), not 

the other models (GBJ: β = 0.04, p = .493; CorNet-S: β = -0.02, p = .839). To examine the specificity of 
this effect to rpIPS, we also examined whether the skeletal model explained unique variance in the 

left pIPS, as well as left and right aIPS ROI defined on the basis of object-centered relations. The 

skeletal model did not explain significant unique variance in any of these ROIs (β < 0.14, ps > .068; 

see Figure 8B-C). These results suggest that categorization in right pIPS was accomplished by 

representing the object-centered relations, not other low- or high-level visual properties.  
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Figure 8. Models and results of the representational similarity analyses (RSA). (A) Representational 

dissimilarity matrices (RDMs) and a schematic illustration of the (left) the skeletal model, (middle) Gabor-jet 

model, and (right) CorNet-S. (B-D) Standardized coefficients (Betas) from the linear regression analyses 

examining the fit of the skeletal, Gabor-jet, and CorNet-S models for left and right (B) pIPS, (C) aIPS), and (D) 

LOC.  

Unique contributions of dorsal ROIs to ventral stream processing. Next, we examined whether right 

pIPS represents distinct visual information from ventral object regions such as LOC. We repeated 

the linear regression analyses, except here we used neural RDMs from left and right LOC as the 

dependent variable. These analyses revealed that, the skeletal model explained unique variance in 

left (β = 0.17, p = .023), but not right LOC (β = 0.04, p = .582; see Figure 8D). 

This finding raises the question: do regions of dorsal cortex compute object-centered part relations 

and then transmit that information to ventral cortex for object recognition? Or, are part relations 

computed in the ventral pathway, as previously proposed (Ayzenberg et al., accepted; Behrmann et 

al., 2006) and transmitted to dorsal regions such as right pIPS? Alternatively, part relations may be 

coded in parallel in both pathways. To investigate these possibilities, we examined whether 

multivariate response in pIPS mediates the relation between the skeletal model and the neural 

RDM in LOC. In other words, we tested whether skeletal coding in LOC is represented 

independently or by way of right pIPS. 

To test these possibilities, we first repeated the linear regression analyses in left LOC, but this time 

we included the neural RDM from right pIPS in addition to the skeleton, GBJ, and CorNet-S models. 

With pIPS included as a predictor, the skeletal model no longer explained unique variance in left 

LOC (β = 0.07, p = .345), only right pIPS (β = 0.31, p < .001) and CorNet-S (β = 0.14, p = .053) 

explained unique variance. By contrast, when linear regression analyses are conducted on right 

pIPS with the left LOC RDM as a predictor in addition to the skeleton, GBJ, and CorNet-S models, 

both the skeleton model (β = 0.28, p < .001) and left LOC RDM (β = 0.30, p < .001) explain unique 

variance. Finally, a mediation analysis (with GBJ and CorNet-S as covariates) confirmed that right 

pIPS fully mediated the relation between the skeletal model and left LOC (b = 0.10, 95% CI [.05, 

.16]). There was no direct relation otherwise (b = 0.07, 95% CI [-.074, .21]). By contrast, when left 

LOC is used as a mediator between the skeletal model and right pIPS, there continues to be a direct 

relation between the skeletal model and right pIPS (b = 0.28, 95% CI [0.14, 0.42]). Here, left LOC 

acts as only a partial mediator (b = 0.05, 95% CI [0.00, 0.10]). Together these results suggest that 

object-centered part relations, as approximated by a skeletal model, are computed in right pIPS 

independently of ventral regions. Moreover, representations of part relation in ventral regions such 

as left LOC may arise via input from right pIPS.  

Multivariate connectivity. Thus far, we have documented that a ROI in pIPS, particularly in the right 

hemisphere, is sensitive to object-centered part relations, able to categorize objects, and account for 

the representation of part relations in the ventral stream. Together, these results suggest that this 

region interacts with ventral regions in support of object recognition. To provide converging 

evidence for this result, we used multivariate pattern dependence (MVPD) analyses to test whether 

right pIPS also exhibits functional connectivity with ventral stream regions during object viewing 

(see Materials and Methods). 
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Examination of the group map (Figure 9B) revealed broad connectivity between both right pIPS 

with bilateral dorsal and ventral regions. To examine the specificity of this interaction between 

right pIPS and ventral regions, we also examined the multivariate connectivity patterns of left pIPS 

and bilateral aIPS defined on the basis of part relations. Like right pIPS, these regions also showed 

broad connectivity with bilateral dorsal and ventral regions (see Figure 9). Direct comparisons 

between these ROIs (Holm-Bonferroni corrected), revealed that connectivity between right pIPS 

and bilateral LOC was stronger than both left aIPS (lLOC: t(11) = 3.09, p = .028, d = 0.97; rLOC: t(11) 

= 3.77, p = .005, d = 1.19) and right aIPS (lLOC: t(11) = 2.62, p = .072, d = 0.83; rLOC: t(11) = 3.16, p 

= .019, d = 1.00). There were no differences between left and right IPS (ps > .312, ds < 0.70), nor 

among the other ROIs (ps > .130, ds < 0.71) Together, these findings suggest that right pIPS regions 

involved in computing object-centered part relations are connected to the ventral pathway. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.12.468414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.12.468414
http://creativecommons.org/licenses/by-nc-nd/4.0/


OBJECT-CENTERED RELATIONS IN DORSAL CORTEX  

 

Figure 9. Multivariate functional connectivity results. (A-D) Functional connectivity map for (A) left pIPS, (B) 

right pIPS, (C) left aIPS, and (D) right aIPS. Seed regions are displayed as a white circle. (C) Plots comparing 

the connectivity between ROIs in left LOC and right LOC ROIs. Error bars reflect standard error of the mean. 
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General Discussion 

Here, we examined the contribution of the dorsal visual pathway to object recognition. Given its 

sensitivity to spatial information and its contribution to object perception (Freud et al., 2020), we 

hypothesized that dorsal cortex may compute the relations among an object’s parts and transmit 

this information to ventral cortex to support object recognition. We found that regions in posterior 

and anterior IPS, particularly in the right hemisphere, displayed selectivity for part relations 

independent of allocentric spatial relations and other dorsal object representations, such as 3D 
shape and tools. Importantly, these regions also exhibited task-dependent functional connectivity 

with ventral regions, such that connectivity increased when part relations differed.  

Next, we found that object category could be decoded successfully in right pIPS, with categorization 

performance comparable to ventral object regions.  Similarity analyses further confirmed that 

decoding in right pIPS was supported by a representation of part relations, as approximated by a 

skeletal model, and not by low- or high-level image properties. Crucially, we found that the 

multivariate response in right pIPS mediated representations of part relations in ventral cortex, 

with pIPS also exhibiting higher multivariate connectivity with ventral cortex than several other 

parietal regions. Together, these findings highlight how object-centered part relations, a property 

crucial for object recognition, are represented neurally, and validate the strong link between dorsal 

and ventral visual cortex in accomplishing object recognition.  

Neural representations of object-centered part relations 

Many studies have examined how allocentric spatial information is represented neurally, but few 

have explored the representations of object-centered part relations. Lescroart and Biederman 

(2012) decoded the spatial arrangements of object parts in both ventral and dorsal cortices, but did 

not test whether these were independent of other dorsal representations nor whether other visual 

properties influenced the decoding. Ayzenberg et al. (accepted) identified ventral regions that 

coded for part relations (as approximated by a skeletal model) independent of other visual 

properties, with strongest coding in left LOC – a finding consistent with the RSA results of the 

current study. However, they did not investigate whether such representations also exist in dorsal 

cortex and could account for their effects. Finally, Behrmann et al. (2006) reported that patients 

with LOC damage and object recognition deficits were impaired in perceiving part relations, but not 

the features of object parts, suggesting a ventral locus for object-centered relations.  

Consistent with these studies, we too found that part relations are represented in ventral cortex. 

However, our data suggest that this information arises via input from dorsal cortex. We 

documented functional connectivity between IPS and LOC, and show that right pIPS mediates the 

representation of part relations in ventral regions, and not the other way around. This finding is 
compatible with research showing that visual object information reaches posterior parietal cortex 

earlier than ventral regions (Regev et al., 2018), that topological object properties may only become 

represented in the ventral pathway through feedback connections (Bar et al., 2006; Wang et al., 

2020), and that temporary inactivation of posterior parietal regions impairs ventral object 

processing (Van Dromme et al., 2016; Zachariou et al., 2017). Altogether, these studies suggest a 

causal role for dorsal cortex in ventral object processing. 

Our results also uncovered a posterior-to-anterior gradient, especially evident in Experiment 2. 

Although selectivity for part relations was found in both pIPS and aIPS, only right pIPS was able to 

decode object category. Moreover, right pIPS exhibited the highest multivariate functional 
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connectivity with LOC, and its representation of object similarity was most consistent with a model 

of part relations (i.e., medial axis skeleton). This gradient may reflect a common organizing 

principle of the dorsal pathway. Regions of posterior parietal cortex exhibit greater sensitivity for 

object properties in the service of recognition (Freud et al., 2017; Gillebert et al., 2015; Van 

Dromme et al., 2016), and greater connectivity to ventral object regions (Janssen et al., 2018; 

Takemura et al., 2016; Webster et al., 1994). By contrast, anterior parietal cortex shows greater 

sensitivity to properties that afford action (Chao & Martin, 2000; Chen et al., 2017; Chen et al., 2016; 

Culham et al., 2003). Whereas right pIPS may be more involved in computing part relations for the 

purpose of recognition, right aIPS may be more involved in computing part relations to help 

coordinate grasping behaviors. Relatedly, we found greater overlap between right aIPS and regions 

involved in representing allocentric relations and tools – which are both critical for coordinating 

action.  

Object-centered relations and other dorsal representations 

We found that IPS regions responded more to object-centered part relations than allocentric 

relations, 3D shape, and tools, suggesting selectivity in these regions. However, our conjunction 

analyses also revealed that object-centered relations may be represented along a continuum in 

parietal cortex, with varying degrees of overlap with other dorsal properties, particularly, with 

allocentric spatial relations. The overlap between object-centered and allocentric relations in 

parietal cortex may reflect a broader organizing principle for spatial coding in dorsal cortex in 

which reference frames are organized topographically. Recent evidence suggests that the dorsal 

pathway represents visual information at different spatial scales ranging from single objects to 

large, multi-object perspectives (Josephs & Konkle, 2020). This possibility is also consistent with a 

rich literature on hemi-spatial neglect, in which right parietal damage impairs object perception on 

the left side of space (Caramazza & Hillis, 1990; Corbetta & Shulman, 2011; Heilman & Valenstein, 

1979), and that, depending on the scope of the damage, multiple reference frames are often affected 

simultaneously, suggesting that the representations overlap or abut (Halligan et al., 2003; Medina 

et al., 2009). Thus, although our results show selectivity for part relations, we suggest that such 

representations are situated within a broader topographic map for spatial coding.  

We found relatively little overlap between regions involved in representing part relations and those 

involved in representing tools – with overlap occurring exclusively in aIPS. This finding is 

consistent with the hypothesis formulated earlier, that coding of part relations in aIPS may be in 

support of coordinating grasping behaviors. It is important to note that here we used a particularly 

stringent definition of tool ROIs, wherein tools were contrasted with other manipulable objects 

(Chen et al., 2018), and this decision may have minimized the degree to which we observed activity 

related to object action affordances (since all stimuli afforded action). Moreover, by using objects 

with elongated axes in the part-relations localizer (an important indicator of action affordance;  

Chen et al., 2017), we may have further suppressed the degree to which regions representing part 

relations overlapped with those representing tools. Future work may use a more direct object 

affordance localizer (Freud et al., 2018; Snow et al., 2011) and a more variable stimulus set to 

localize part relations.  

Finally, extensive pilot work (Ayzenberg et al., unpublished data) suggested that depth regions in 

parietal cortex could be reliably localized with the 3D and 2D shape stimuli used here. However, we 

were unable to do so in current study – precluding conjunction analyses. Two runs of the depth 

localizer may have been insufficient to identify regions involved in processing 3D shape, and/or 
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depth from shading (as used here) may be less consistently represented than depth from texture or 

disparity (Georgieva et al., 2008). Given that the computation of depth structure in the dorsal 

pathway is critical for object recognition (Farivar, 2009; Freud et al., 2020; Van Dromme et al., 

2016; Welchman, 2016), future work is required to explore the link between regions subserving 

part relations and 3D shape. 

The role of object-centered part relations in object recognition 

Representations of object-centered part relations are thought to be critical for object recognition 

because they describe an object’s global shape structure – a key organizing feature of most basic-

level categories (Barenholtz & Tarr, 2006; Hummel, 2000; Mervis & Rosch, 1981). Such a 

representation may even support rapid object learning in infancy when experience with objects is 

minimal (Ayzenberg & Lourenco, 2021; Kraebel & Gerhardstein, 2006; Rakison & Butterworth, 

1998). Yet, ANNs, the current best models of human object recognition, are largely insensitive to 

the relations among object parts and require extensive object experience to categorize novel 

objects (Baker et al., 2018; Baker et al., 2020). One potential reason for this deficit is that most 

current ANNs exclusively model ventral stream processes (Blauch et al., 2021; Schrimpf et al., 2020; 

Yamins et al., 2014). Indeed, the few ANNs that model dorsal cortex focus on action or motion 

related processes (Güçlü & van Gerven, 2017; Mineault et al., 2021). Here, we propose that the 

dorsal pathway may play a key role in object recognition by computing the object-centered part 

relations and propagating these signals to ventral object regions. Right pIPS, in particular, may be 

important for object recognition, in that its multivariate response was sufficient to decode object 

category and it was well explained by an object recognition model that computes the part relations 

(i.e., a skeletal model). Importantly, we consistently found connectivity between right pIPS regions 

and regions in ventral cortex, with evidence that right pIPS may even mediate the representation of 

part relations in LOC. Thus, by incorporating the dorsal pathway with the ventral pathway, we may 

gain a better understanding of the broader network that supports object recognition and the 

relative contributions of each pathway.   
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