1 Full protection against all four SARS-CoV-2 variants of concern (VOC) in hamsters requires 2 revision of spike antigen used for vaccination. Sapna Sharma^a, Thomas Vercruysse^{a, b}, Lorena Sanchez-Felipe^a, Winnie Kerstens^{a, b}, Rana Abdelnabi 3 ^a, Caroline Foo ^a, Viktor Lemmens ^a, Dominique Van Looveren ^{a, b}, Piet Maes ^c, Guy Baele ^d, Birgit 4 Weynand^e, Philippe Lemey^d, Johan Neyts^a, Hendrik Jan Thibaut^{a, b, &}, and Kai Dallmeier^{a, &, #} 5 6 7 ^a KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 8 Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium. 9 ^b KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 10 Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, 11 Leuven, Belgium. 12 ^c KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 13 Laboratory of Clinical and Epidemiological Virology, Zoonotic Infectious Diseases Unit, Leuven, 14 Belgium. 15 ^d KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, 16 Laboratory of Clinical and Epidemiological Virology, Evolutionary and Computational Virology, 17 Leuven, Belgium. 18 ^e KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 19 Leuven, Belgium. 20 21 & contributed equally 22 # correspondence should be addressed to: kai.dallmeier@kuleuven.be 23 24 25 Abstract 26 Current licensed COVID-19 vaccines are based on antigen sequences of initial SARS-CoV-2 isolates 27 that emerged in 2019. By mid 2021 these historical virus strains have been completely replaced by new 28 cosmopolitan SARS-CoV-2 lineages. The ongoing pandemic has been further driven by emerging 29 variants of concern (VOC) Alpha, Beta, Gamma and, lately predominant, Delta. These are characterized 30 by an increased transmissibility and possible escape from naturally acquired or vaccine-induced

31 immunity. We here show, using a YF17D-vectored first-generation COVID-19 vaccine (Sanchez-Felipe

- 32 et al., 2021) and a stringent hamster challenge model (Abdelnabi et al., 2021) that the immunity elicited
- 33 by a prototypic spike antigen is insufficient to provide optimal protection against the Beta VoC, urging
- 34 for an antigenic update. We therefore designed an updated second-generation vaccine candidate that
- 35 carries the sequence of a spike antigen that includes crucial epitopes from multiple VOCs. This vaccine

- 36 candidate yielded a marked change in target antigen spectrum covered as demonstrated by (*i*) antigenic
- 37 cartography and (*ii*) full protection against infection and virus-induced disease caused by any of the four
- 38 VOCs (Alpha, Beta, Gamma and Delta) used for challenge. This more universal COVID-19 vaccine
- 39 candidate also efficiently blocked direct transmission of VOC Delta from vaccinated infected hamsters
- 40 to non-vaccinated sentinels under prolonged co-housing conditions. In conclusion, our data suggest that
- 41 current first-generation COVID-19 vaccines need to be adapted to cover emerging sequence diversity
- 42 of VOC to preserve vaccine efficacy and to contain virus spread at the community level.
- 43
- 44 Key Words: SARS-CoV-2, variants of concern (VOC), vaccine efficacy, antigenic cartography, virus
- 45 transmission, hamster model
- 46

47 Introduction

48 Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) emerged as zoonosis likely from a limited number of spill-over events into the human population (Holmes et al., 2021). Nevertheless, the 49 50 ongoing COVID-19 pandemic is entirely driven by variants that evolved during subsequent large-scale 51 human-to-human transmission. In particular, mutations within the viral spike protein are under continuous surveillance (ECDC, 2021) considering their role in viral pathogenesis and as target for 52 53 virus-neutralizing antibodies (nAb). Following early diversification, the D614G SARS-CoV-2 variant 54 (B.1 lineage) became dominant in March 2020. Consecutively, Variants of Concern (VOC) were 55 identified in many countries with increased transmissibility, virulence and evidence for escape from 56 naturally acquired and vaccine-induced immunity (Tian et al., 2021). Each of the four currently 57 recognized VOCs harbor a unique set of partially convergent, partially unique spike mutations as 58 compared to prototypic (Wuhan) or early European D614G (B.1) lineages of SARS-CoV-2, namely 59 VOC Alpha (B.1.1.7; N501Y D614G), Beta (B.1.351; K417N E484K N501Y D614G), Gamma (P.1; 60 K417T E484K N501Y D614G) and Delta (B.1.617.2; K417T L452R T478K D614G P681R)(Cella et 61 al., 2021). N501Y first detected in VOC Alpha has been linked to an enhanced transmissibility due to 62 an increased affinity for the human ACE-2 receptor (Liu et al., 2021a; Moyo-Gwete et al., 2021). 63 Subsequent emergence of E484K within this lineage hampers the activity of nAb suggestive for immune 64 escape (Graham et al., 2021; Muik et al., 2021; Wu et al., 2021). Likewise, a combination of K417N 65 E484K (Greaney et al., 2021) may explain a marked reduction in vaccine efficacy (VE) of some vaccines 66 such as ChAdOx1 nCoV-19 (AstraZeneca, Vaxzevria) in clinical trials in South Africa during high 67 prevalence of VOC Beta (Madhi et al., 2021). Similarly, sera from vaccinees immunized with first-68 generation mRNA (Pfizer-BioNTech, Cormirnaty; Moderna, mRNA-1273) or nanoparticle subunit 69 vaccines (Novavax) showed a substantial drop in neutralizing capacity for VOC Beta (Wang et al., 70 2021). Furthermore VOC Gamma harboring K417T E484K emerged in regions of Brazil with high 71 seroprevalence, hence despite naturally acquired immunity against prototypic SARS-CoV-2 (Sabino et 72 al., 2021). VOC Delta was first identified in October 2020 in India (Cherian et al., 2021; Hoffmann et 73 al., 2021; Yadav et al., 2021) and has since then become the predominant SARS-CoV-2 lineage 74 worldwide, driven by a substantially increased transmissibility (Liu et al., 2021b).

75 All currently licensed COVID-19 vaccines and vaccine candidates in advanced clinical development are 76 based on antigen sequences of early SARS-CoV-2 isolates that emerged in 2019 (Kyriakidis et al., 77 2021). We also reported on a YF17D-vectored SARS-CoV-2 vaccine candidate using prototypic spike 78 as vaccine antigen (YF-S0; S0) that had an outstanding preclinical efficacy against homologous 79 challenge (Sanchez-Felipe et al., 2021). However, we now demonstrate to what extent VE of S0 and 80 hence first-generation spike vaccines in general, may decline when trialed against VOC Beta in a 81 stringent hamster model (Abdelnabi et al., 2021). Therefore, a second-generation vaccine candidate (YF-82 S0*) was designed by (i) modifying its antigen sequence to catch up with the evolving spike variant

- 83 spectrum, in combination with (ii) a further stabilized protein conformation (Juraszek et al., 2021).
- 84 Furthermore, we here demonstrate that this new S0* vaccine candidate provides full protection against
- 85 all current VOCs (Alpha, Beta, Gamma and Delta). Finally, hamsters vaccinated with S0* do no longer
- 86 transmit the virus to non-vaccinated sentinels during close contact, even under conditions of prolonged
- 87 co-housing and exposure to a high infectious dose of VOC Delta.
- 88 Our findings suggest that first-generation COVID-19 vaccines may need to be adapted to follow the
- 89 evolution of SARS-CoV-2 variants fueling the ongoing pandemic. This is important as new variants
- 90 may emerge that contain critical combinations of driver mutations responsible for both nAb escape (e.g.,
- 91 E484K) (Greaney et al., 2021) and enhanced transmission (e.g., N501Y; P681R/H) (Collier et al., 2021)
- 92 already observed in variant of interest (VOI) Mu (B.1.621) currently in surge in some regions of Latin
- 93 America (ECDC, 2021).
- 94

95 Results and Discussion

96 Reduced efficacy of first-generation spike vaccine against VOCs Alpha and Beta

97 To assess VE of prototypic spike antigen against VOCs, hamsters were vaccinated twice with each 10^4 98 PFU of YF-S0 (S0) or sham at day 0 and 7 via the intraperitoneal route (Sanchez-Felipe et al., 2021) 99 (Fig. 1A). Serological analysis at day 21 confirmed that 30/32 (94%) vaccinated hamsters had 100 seroconverted to high levels of nAbs against prototypic SARS-CoV-2 with geometric mean titre (GMT) 101 of 2.3 \log_{10} (95% CI 2.0-2.6) (Fig. 1B). Next, animals were challenged intranasally with 1×10^3 TCID₅₀ 102 of either prototypic SARS-CoV-2, VOC Alpha or Beta as established and characterized before in the 103 hamster model (Abdelnabi et al., 2021). At day four after infection (4 dpi), viral replication was 104 determined in lung tissue by qPCR and virus titration (Fig. 1C, D). In line with what was originally 105 described for S0 (Sanchez-Felipe et al., 2021), a marked reduction in viral RNA and infectious virus 106 loads down to undetectable levels (up to $6\log_{10}$ reduction) was observed in the majority of animals 107 challenged with either prototypic SARS-CoV-2 (8/10; 86% VE) or VOC Alpha (9/10; 88% VE). In 108 those animals (2/10 and 1/10, respectively) that were not completely protected, virus loads were at least 109 100 times lower than in infected sham controls. By contrast and despite full immunization, S0 110 vaccination proved to be less effective against VOC Beta, with only 4/12 hamsters without detectable 111 infectious virus (60% VE). Nonetheless, in the remaining 8/12 animals with breakthrough infection by 112 VOC Beta, viral replication was tempered as vaccination still resulted in a 10 to 100-fold reduction in 113 infectious virus titres relative to sham.

114 Logistic regression used to define immune correlates of protection (van der Lubbe et al., 2021) 115 confirmed that comparable nAb levels were required for protection against prototypic SARS-CoV-2 116 (1.5 log₁₀ for 50% and 2.9 log₁₀ for 90% protection) and VOC Alpha (1.2 log₁₀ for 50% and 2.5 log₁₀ for 117 90% protection) (Fig. 1E). Intriguingly, for VOC Beta a markedly (up to 25x) higher nAb threshold (2.6 118 log₁₀) was required for 50% protection. Importantly, no 90% protective nAb threshold could be defined 119 anymore for VOC Beta infection, considering the high number of S0 vaccinated animals with viral 120 breakthrough (> 10^2 TCID₅₀/100mg lung tissue) (van der Lubbe et al., 2021). Overall, these data suggest 121 that first-generation vaccines employing prototypic spike as antigen may generally suffer from a 122 markedly reduced efficacy against emerging SARS-CoV-2 variants, such as VOC Beta.

123 Updated spike antigen offers complete protection against full range of VOCs

Although prototype S0 showed induction of high titres of nAb against prototypic SARS-CoV-2 (Fig.
125 1B) and protective immunity against prototypic SARS-CoV-2 and VOC Alpha (Fig. 1C-E), the
prototypic spike antigen failed to induce consistent nAb responses against remaining VOCs (Fig. 2A).
Most importantly, YF-S0 vaccination resulted only in poor seroconversion and low nAb titres against
VOC Beta (seroconversion rate 15/32; GMT 1.0 log₁₀, 95% CI of 0.6-1.3;) and Gamma (19/32; GMT

1.3 log₁₀, 95% CI 0.9-1.8). Intriguingly, also a pool of human convalescent serum used as benchmark
(WHO standard NIBSC 20/130) originating from 2020 prior to the surge of VOC (Fig. 2A-B) showed
a similar loss of activity against VOC Beta, in line with what was observed in our hamster sera (Fig.

132 **2**A).

133 It is not clear if the full spectrum of antigenic variability of current VOCs and emerging variants can be 134 covered by a COVID-19 vaccine that is based on a single antigen (Lopez Bernal et al., 2021; Rubin, 135 2021). In an attempt to generate a more universal SARS-CoV-2 vaccine (YF-S0*, S0*), we adapted the 136 spike sequence in our original YF-S0 construct to include the full amino acid spectrum from VOC 137 Gamma, plus three extra proline residues (A892P, A942P and V987P) to stabilize spike in conformation 138 favorable for immunogenicity (Hsieh et al., 2020; Juraszek et al., 2021) (Fig. 2C). YF-S0* proved to be 139 highly immunogenic against prototypic SARS-CoV-2, with nAb levels reaching GMT of 2.2 log₁₀ (95% 140 CI 1.8-2.6) and a seroconversion rate of 21/24 (Fig. 2D), comparable to original YF-S0 (GMT 2.3 log₁₀, 141 95% CI 2.0-2.6; 30/32 seroconversion rate) (Fig. 2A). Also, for both constructs, seroconversion rates 142 and nAb levels against VOC Delta were similar (YF-S0: 30/32; GMT 2.0 log₁₀, 95% CI 1.7-2.2; YF-143 S0*: 22/24; GMT 2.0 log₁₀, 95% CI 1.6-2.3). Notably, for YF-S0*, nAb levels and seroconversion rates 144 against VOC Beta (GMT 2.9 log₁₀, 95% CI 2.6-3.2; seroconversion rate 23/24) and Gamma (GMT 3.0

 $145 \quad \log_{10}, 95\%$ CI 2.8-3.2; seroconversion rate 24/24) were markedly increased (by 50 to 80-fold for GMT;

146 1.7 to 2-times more frequent seroconversion) (**Fig. 2A, D**).

147 We further studied the pattern of cross-reactivity of the sera raised by the original (YF-S0) and updated 148 (YF-S0*) vaccine antigen against four different virus variants (prototype; VOCs Beta, Gamma and 149 Delta) using antigenic cartography (Smith et al., 2004). VOC Alpha was not considered since it did not 150 differ from the prototype virus, neither regarding VE of S0 nor nAb titre as correlate protection (Fig. 1). 151 Specifically, we constructed a two-dimensional projection that geometrically maps median serum 152 neutralization titres (SNT₅₀) between sera and respective antigens as antigenic distances. This revealed 153 a pattern of antigenic diversification between prototype virus on the one hand and VOCs Beta and 154 Gamma on the other hand, with VOC Delta being mapped closer to the prototype virus as compared to 155 Beta and Gamma. This is consistent with recently described patterns of convergent evolution in spike 156 for VOCs Beta and Gamma, and Delta climbing a different fitness peak (Martin et al., 2021). In line 157 with the visual pattern of clustering, antigenic distances for S0* sera were significantly larger to 158 prototype and VOC Delta as compared to Beta and Gamma (t-test; p<0.001). Intriguingly, this obvious 159 antigenic drift did not reduce the overall higher potency of S0*, which included an equally strong 160 humoral response to prototypic spike and VOC Delta (Fig. 2A, D).

161 S0*-vaccinated animals were subsequently challenged with each 10^3 TCID₅₀ of either of the four VOCs

162 Alpha, Beta, Gamma or Delta, and sacrificed 4 dpi for assessment of viral loads in the lung (Fig. 2F, G)

and associated lung pathology (Fig. 2H, I). In S0*-vaccinated hamsters, viral RNA loads were uniformly

reduced compared to matched sham controls by ~3 (VoC Delta) up to ~6 log₁₀ (VoC Gamma) depending
on the respective challenge virus under study (Fig. 2F). Importantly, no infectious virus could be
detected anymore (~6log₁₀ reduction) in any of the animals vaccinated with S0*, irrespective of which
VOC they had been exposed to (Fig. 2G), confirming 100% VE conferred by S0* against all four VOCs.

168 Protection from infection also translated in a markedly reduced pathology (Fig. 2H, I). Non-vaccinated 169 sham animals developed characteristic signs of bronchopneumonia with perivascular and peribronchial 170 infiltrations, edema and consolidation of lung tissues (Abdelnabi et al., 2021; Boudewijns et al., 2020). 171 In contrast, lungs of S0*-vaccinated hamsters remained markedly less affected with a clear reduction in 172 overall histological scores, irrespectively of the VOC used (Fig. 2H, I). In conclusion, second-173 generation YF-S0* expressing an updated S0* antigen induced consistently high levels of broadly 174 neutralizing antibodies (Fig. 2D) which translated into efficient protection from lower respiratory tract 175 infection and COVID-19-like pathology by the entire spectrum of circulating VOCs (Fig. 2G, H). VE 176 of S0* covered VOC Beta and Gamma, i.e. variants harbouring key mutations K417N/T and E484K 177 escaping original spike-specific nAb activity (Fig. 2B), and may therefore offer protection against other

178 emerging variants such as VOI Mu (E484K) with a similar signature.

179 Blocking of viral transmission

180 An added benefit of vaccination at the population level would be an efficient reduction in viral shedding 181 and transmission by vaccinated people (Eyre et al., 2021), ideally from single-dose vaccination. For 182 experimental assessment, two groups of hamsters (N=6 each) were either vaccinated once with 10^4 PFU 183 of S0* or sham (Sanchez-Felipe et al., 2021), and were three weeks later intranasally infected with a high dose comprising 10⁵ TCID₅₀ of VOC Delta to serve as index (donor) animals for direct contact 184 185 transmission (Fig. 3A). At 2 dpi, i.e. at onset of increasing viral loads and shedding (Kaptein et al., 2020; 186 Sia et al. 2020), index animals were each co-housed with one non-vaccinated sentinel for two 187 consecutive days. At 4 dpi, index hamsters were sacrificed, and lungs were assessed for viral RNA, 188 infectious virus and histopathology. Sentinels were sacrificed another two days later and analyzed 189 accordingly.

As expected from previous experiments, viral loads in S0*-vaccinated index animals were much lower than in non-vaccinated index animals, or than in sentinels that had been in close contact with nonvaccinated donors (**Fig. 3B, C**). Importantly, only very low levels of viral RNA and no infectious virus was observed in non-vaccinated sentinels that had been co-housed with S0*-vaccinated donors. Also, lung pathology was reduced significantly in vaccinated index and co-housed sentinels as compared to sham vaccinated index and respective co-housed sentinels (**Fig. 3D**). To our knowledge, this is first experimental evidence for full protection from SARS-CoV-2 transmission by any vaccine. The block

- 197 conferred by S0* appears to be more complete than that observed in humans by current vaccines (Siddle
- 198 et al., 2021).

199 Discussion

200 Little is known about how well current first-generation vaccines protect against the full spectrum of 201 VOCs. While likely protecting from severe COVID-19 caused by any SARS-CoV-2 strain, a clear drop 202 in VE was observed during clinical trials conducted in regions with high circulation of VOC Beta as 203 paradigm of an E484K Spike variant and others known to escape nAb recognition (Sadoff et al., 2021). 204 Experimentally, such a drop in protective immunity is confirmed by higher viral loads in macaques 205 vaccinated with an Adenovirus-vectored prototype spike antigen (Ad26.COV2.S) and challenged with 206 VOC Beta (Yu et al., 2021). Likewise, in the more stringent hamster model, immunity acquired during 207 previous SARS-CoV-2 (prototype) infection, or by Ad26.COV2.S vaccination, led only to partial 208 restraint of heterologous VOC Beta replication (Tostanoski et al.). In the latter case, replicative viral 209 RNA was still detectable two weeks after challenge ($< 2 \log_{10}$ reduction compared to sham), which is 210 completely in line with the observed failure of prototypic YF-S0 to confer full protection against VOC 211 Beta (Fig. 1F-H). By contrast, viral replication was reduced to undetectable levels for all four VOCs by 212 YF-S0* vaccination using an updated spike antigen (Fig. 2G). Finally, S0* blocked transmission of 213 VOC Delta (Fig. 3). In summary, our findings strongly suggest that first-generation COVID-19 vaccines 214 will need to be adapted to keep up with the evolution of variants driving the ongoing global SARS-CoV-215 2 pandemic, including variants in surge that contain critical combinations of driver mutations 216 responsible for both nAb escape and enhanced transmission. The stringent hamster model is particularly 217 well suited to assess both aspects of preclinical VE, individual protection and transmission (Abdelnabi 218 et al., 2021).

Overall combined experimental and abundant clinical evidence suggests that first-generation COVID-19 vaccines employing the prototypic spike (from 2019/early 2020) as antigen may not suffice to cover current circulating and emerging SARS-CoV-2 variants anymore; in particular variants carrying mutations in key epitopes (e.g., those containing K417 and E484) targeted by nAb (Greaney et al., 2021).

224 Methods

225 Viruses and animals

226 All virus-related work was conducted in the high-containment BSL3 facilities of the KU Leuven Rega 227 Institute (3CAPS) under licenses AMV 30112018 SBB 219 2018 0892 and AMV 23102017 SBB 219 228 2017 0589 according to institutional guidelines. All SARS-CoV-2 strains used throughout this study 229 were isolated in house (University Hospital Gasthuisberg, Leuven) and characterized by direct 230 sequencing using a MinION as described before (Boudewijns et al., 2020). Strains representing 231 prototypic SARS-CoV-2 (Wuhan; EPI ISL 407976) (Boudewijns et al., 2020), VOC Alpha (B.1.117; 232 EPI ISL 791333) and Beta (B.1.351; EPI ISL 896474) have been described (Abdelnabi et al., 2021). 233 Strains representing VOC Gamma (P.1; EPI ISL 1091366) and Delta (B.1.617.2; EPI ISL 2425097) 234 were local Belgian isolates from March and April 2021, respectively. All virus stocks were grown on 235 Vero E6 cells and used for experimental infections at low in vitro passage (P) number, P3 for prototype 236 and P2 for all four VOCs. Absence of furin cleavage site mutations was confirmed by deep sequencing. 237 Median tissue culture infectious doses (TCID₅₀) were defined by titration as described (Abdelnabi et al., 238 2021; Boudewijns et al., 2020) using Vero E6 cells as substrate, except for VOC Delta, for which A549 239 cells were used for a more pronounced virus induced cytopathic effect (CPE). 240 Housing and experimental infections of hamsters have been described (Boudewijns et al., 2020; Kaptein 241 et al., 2020; Sanchez-Felipe et al., 2021) and conducted under supervision of the ethical committee of 242 KU Leuven (license P050/2020 and P055/2021). In brief, 6 to 8 weeks old female Syrian hamsters 243 (Mesocricetus auratus) were sourced from Janvier Laboratories and kept per two in individually 244 ventilated isolator cages. Animals were anesthetized with ketamine/xylazine/atropine and intranasally 245 infected with 50 μ L of virus stock (25 μ L in each nostril) containing either 10³ or 10⁵ TCID₅₀ as specified 246 in the text and euthanized 4 days post infection (dpi) for sampling of the lungs and further analysis.

- 247 Animals were monitored daily for signs of disease (lethargy, heavy breathing, or ruffled fur).
- 248

249 Vaccine Candidate

The general methodology for the design and construction of a first YF17D-based SARS-CoV-2 vaccine candidate (YF-S0) has been described (Sanchez-Felipe et al., 2021). Several mutations were introduced into original YF-S0 to generate second-generation vaccine candidate YF-S0*. The first series of mutations is based on the spike sequence of VOC Gamma: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F. A second series of mutations is based on a locked spike variant described by Juraszek et al. (2021), stabilizing the protein in a more immunogenic prefusion confirmation: A892P, A942P, V987P (Juraszek et al., 2021).

257

258 Production of spike-pseudotyped virus and serum neutralization test (SNT)

259 Virus-neutralizing antibodies (nAb) were determined using a set of VSV spike-pseudotype viruses 260 essentially as described (Sanchez-Felipe et al., 2021). For this purpose, four different pseudotypes were 261 generated using expression plasmids of respective spike variants: for prototype B.1/D614G as before 262 (Sanchez-Felipe et al., 2021) or sourced from Invivogen for VOC Beta (Cat. No. plv-spike-v3), Gamma 263 (Cat. No. plv-spike-v5) and Delta (Cat. No. plv-spike-v8). Briefly, depending on the plasmid 264 background, BHK-21J cells (variant B.1/D614G) or HEK-293T cells (Beta, Gamma and Delta) were 265 transfected with the respective SARS-CoV-2 protein expression plasmids, and one day later infected 266 (MOI = 2) with GFP-encoding VSV Δ G backbone virus (Whitt, 2010). Two hours later, the medium was 267 replaced by medium containing anti-VSV-G antibody (I1-hybridoma, ATCC CRL-2700) to neutralize 268 residual VSV-G input. After 24h incubation at 32°C, the supernatants were harvested. To quantify 269 nAb, serial dilutions of serum samples were incubated for 1 hour at 37 °C with an equal volume of S-270 pseudotyped VSV particles and inoculated on Vero E6 cells for 18 hours. 271 The resulting number of GFP expressing cells was quantified on a Cell Insight CX5/7 High Content

- Screening platform (Thermo Fischer Scientific) with Thermo Fisher Scientific HCS Studio (v.6.6.0) software. Median serum neutralization titres (SNT₅₀) were determined by curve fitting in Graphpad Prism after normalization to virus (100%) and cell controls (0%) (inhibitor *vs.* response, variable slope, four parameters model with top and bottom constraints of 100% and 0%, respectively). The research reagent for SARS-CoV-2 RNA (NIBSC 20/130) was obtained from the National Institute for Biological Standards and Control, UK (Mattiuzzo et al., 2020).
- 278

279 Antigenic cartography

280 We used the antigenic cartography approach developed for influenza hemagglutination inhibition assay 281 data to study the antigenic characteristics of the SARS-CoV-2 Spikes (Smith et al., 2004). This approach 282 transforms SNT₅₀ data to a matrix of immunological distances. Immunological distance d_{ii} is defined as 283 $d_{ii} = s_i - H_{ii}$, where H_{ii} is the log₂ titre of virus *i* against serum *j* and s_i is the maximum observed titre to 284 the antiserum from any antigen $(s_j = \max(H_{lj}, ..., H_{nj}))$. Subsequently, a multidimensional scaling 285 algorithm was used to position points representing antisera and antigens in a two-dimensional space 286 such that their distances best fit their respective immunological distances. Even though distances are 287 measured between sera raised by vaccination using specific Spike antigens (and the pooled NIBSC 288 serum) and antigens, such an antigenic map also provides estimates of antigenic distances between the 289 antigens themselves.

290

291 Vaccination and challenge

292 COVID-19 vaccine candidate YF-S0 (Sanchez-Felipe et al., 2021) was used to vaccinate hamsters at

- 293 day 0 and day 7 (N=32) with a dose of 10^4 PFU via the intraperitoneal route and control animals (N=18)
- 294 were dosed with MEM (Modified Earl's Minimal) medium containing 2% bovine serum as sham
- 295 controls. Blood was drawn at day 21 for serological analysis and infection was done on the same day

- with prototype (N=10 vaccinated; N=6 sham), VOC Alpha (N=10 vaccinated; and N=6 sham), and Beta variant (N=12 vaccinated; N=6 sham) with the inoculum of 10^3 TCID₅₀ intranasally. Protective nAb levels were calculated using logistic regression analysis in GraphPad Prism (version 9) as described (van der Lubbe et al., 2021)
- 300 Similarly, hamsters were vaccinated twice with 10^4 YF-S0* (N=24) or sham (N=16) at day 0 and day 7. 301 Blood was collected at day 21 to analyze nAb in serum, and animals were infected on day 24 with 302 different variants, including VOC Alpha, Beta, Gamma and Delta with the inoculum of 10³ TCID50 303 intranasally (N=6 vaccinated and N=4 sham vaccinated infected against each variant). Lungs were 304 collected for analysis of viral RNA, infectious virus and for histopathological examination as described 305 in (Sanchez-Felipe et al., 2021). Resulting vaccine efficacy (VE) was calculated as [1 – (number of 306 vaccinated animals with detectable virus) / (number of all infected animals)] x 100% per group of hamsters infected with the same virus strain, whereby a lung viral load $>10^2$ TCID₅₀/100mg was set as 307 308 cutoff for infection (van der Lubbe et al., 2021).

309 Viral load and viral RNA quantification

310 Virus loads were determined by titration and RT-qPCR from lung homogenates was performed exactly

- 311 as previously described in detail (Boudewijns et al., 2020; Kaptein et al., 2020; Sanchez-Felipe et al.,
- 312 2021).
- 313

314 Histopathology

For histological examination, the lungs were fixed overnight in 4% formaldehyde, embedded in paraffin and tissue sections (5 μm) after staining with H&E scored blindly for lung damage (cumulative score of 1 to 3 each for congestion, intra-alveolar hemorrhage, apoptotic bodies in bronchial epithelium, necrotizing bronchiolitis, perivascular edema, bronchopneumonia, perivascular inflammation, peribronchial inflammation, and vasculitis) as previously established (Abdelnabi et al., 2021; Boudewijns et al., 2020)

321

322 Blocking of viral transmission

Hamsters (N=6) were vaccinated with 10^4 PFU of vaccine once, were bled at day 21 and infected with delta variant with $1x10^5$ TCID50, intranasally. Another group of non-vaccinated hamsters (N=6) were also infected. Two days post infection index animals were co-housed with sentinels for two days and separated after two days of exposure. All the index animals were euthanized on day four post infection and sentinels were sacrificed after 4 days of exposure. Lungs were analyzed for viral RNA and infectious virus and subjected to histopathology.

329

330 Statistical analysis

- 331 All statistical analyses were performed using GraphPad Prism 9 software (GraphPad, San Diego, CA,
- USA). Results are presented as $GM \pm IQR$ or medians $\pm IQR$ as indicated. Data were analyzed using
- 333 uncorrected Kruskal-Wallis test and considered statistically significant at p-values ≤ 0.05 .
- 334

335 Acknowledgements

We are grateful to Prof. Michael A. Whitt (University of Tennessee Health Science Center) for
generously sharing of plasmids for rescue of VSVΔG, and Dr. Maya Imbrechts and Dr. Nick Geukens
(PharmAbs, KU Leuven) for help with hybridoma culture. We thank Carolien De Keyzer and Lindsey
Bervoets (Rega) for excellent technical assistance with animal experimentation as well as the staff of
the Rega animalium for strong support. We thank Jasper Rymenants, Tina van Buyten, Dagmar Buyst
and Thibault Francken for steady and timely help with analysing of tissue samples and virus titrations.
We finally thank Jasmine Paulissen, Madina Rasulova, Catherina Coun and Nathalie Thys (TPVC) for

- 343 diligent serology assessment and skilled generation of plasmid constructs.
- 344

345 Current work was supported by the Flemish Research Foundation (FWO) emergency COVID-19 fund 346 (G0G4820N) and the FWO Excellence of Science (EOS) program (No. 30981113; VirEOS project), the 347 European Union's Horizon 2020 research and innovation program (No 101003627; SCORE project and 348 No 733176; RABYD-VAX consortium), the Bill and Melinda Gates Foundation (INV-00636), KU 349 Leuven Internal Funds (C24/17/061) and the KU Leuven/UZ Leuven Covid-19 Fund (COVAX-PREC 350 project). G.B. acknowledges support from the KU Leuven Internal Funds (Grant No. C14/18/094) and 351 the Research Foundation - Flanders ("Fonds voor Wetenschappelijk Onderzoek - Vlaanderen," 352 G0E1420N, G098321N). P.L. acknowledges funding from the European Research Council under the 353 European Union's Horizon 2020 research and innovation program (grant agreement no. 725422-354 ReservoirDOCS). K.D. acknowledges grant support from KU Leuven Internal Funds (C3/19/057 Lab 355 of Excellence).

356

357 Contributions

S.S. and K.D. conceptualization; S.S. animal experimentation; S.S., T.V., W.K. and H.J.T. data
generation, analysis and curation; S.S. and K.D. original manuscript draft; S.S. and H.J.T. visualization;
T.V. and L.S.F. construct design; T.V., W.K. and D.V.L. serological analysis; R.A. and C.S.F. VoC
hamster models; B.W. histological analysis; P.L. and G.B. antigenic cartography; L.S.F., V.L. and P.M.
vaccine stocks and virus isolation; J.N., H.J.T., and K.D. supervision, writing and project administration;

363 J.N. and K.D. funding acquisition. All authors read, edited and approved the final version of the

- 364 manuscript.
- 365

366 **References**

367

- Abdelnabi, R., Boudewijns, R., Foo, C.S., Seldeslachts, L., Sanchez-Felipe, L., Zhang, X., Delang,
- L., Maes, P., Kaptein, S.J.F., Weynand, B., *et al.* (2021). Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine *68*, 103403.
- Boudewijns, R., Thibaut, H.J., Kaptein, S.J.F., Li, R., Vergote, V., Seldeslachts, L., Van Weyenbergh, J., De Keyzer, C., Bervoets, L., Sharma, S., *et al.* (2020). STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat Commun *11*, 5838.
- Cella, E., Benedetti, F., Fabris, S., Borsetti, A., Pezzuto, A., Ciotti, M., Pascarella, S., Ceccarelli,
 G., Zella, D., Ciccozzi, M., *et al.* (2021). SARS-CoV-2 Lineages and Sub-Lineages Circulating
 Worldwide: A Dynamic Overview. Chemotherapy *66*, 3-7.
- Cherian, S., Potdar, V., Jadhav, S., Yadav, P., Gupta, N., Das, M., Rakshit, P., Singh, S., Abraham,
 P., Panda, S., *et al.* (2021). Convergent evolution of SARS-CoV-2 mutations, L452R, E484Q and
 P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv,
 2021.2004.2022.440932.
- Collier, D.A., De Marco, A., Ferreira, I., Meng, B., Datir, R.P., Walls, A.C., Kemp, S.A., Bassi, J., Pinto, D., Silacci-Fregni, C., *et al.* (2021). Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccineelicited antibodies. Nature *593*, 136-141.
- 385 ECDC (2021). SARS-CoV-2 variants of concern as of 7 October 2021.
- 386 Eyre, D.W., Taylor, D., Purver, M., Chapman, D., Fowler, T., Pouwels, K.B., Walker, A.S., and
- 387 Peto, T.E. (2021). The impact of SARS-CoV-2 vaccination on Alpha & Delta variant transmission.
- 388 medRxiv, 2021.2009.2028.21264260.
- Graham, M.S., Sudre, C.H., May, A., Antonelli, M., Murray, B., Varsavsky, T., Kläser, K., Canas, L.S., Molteni, E., Modat, M., *et al.* (2021). Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet
- 392 Public Health *6*, e335-e345.
- 393 Greaney, A.J., Loes, A.N., Crawford, K.H.D., Starr, T.N., Malone, K.D., Chu, H.Y., and Bloom, J.D.
- (2021). Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain
 that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe *29*, 463 476.e466.
- 397 Hoffmann, M., Arora, P., Groß, R., Seidel, A., Hörnich, B.F., Hahn, A.S., Krüger, N., Graichen, L.,
- Hofmann-Winkler, H., Kempf, A., *et al.* (2021). SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell *184*, 2384-2393.e2312.
- 400 Holmes, E.C., Goldstein, S.A., Rasmussen, A.L., Robertson, D.L., Crits-Christoph, A., Wertheim,
- 401 J.O., Anthony, S.J., Barclay, W.S., Boni, M.F., Doherty, P.C., *et al.* (2021). The origins of SARS-
- 402 CoV-2: A critical review. Cell *184*, 4848-4856.
- 403 Hsieh, C.L., Goldsmith, J.A., Schaub, J.M., DiVenere, A.M., Kuo, H.C., Javanmardi, K., Le, K.C.,
- 404 Wrapp, D., Lee, A.G., Liu, Y., *et al.* (2020). Structure-based design of prefusion-stabilized SARS-
- 405 CoV-2 spikes Science *369*, 1501-1505.

- 406 Juraszek, J., Rutten, L., Blokland, S., Bouchier, P., Voorzaat, R., Ritschel, T., Bakkers, M.J.G.,
- 407 Renault, L.L.R., and Langedijk, J.P.M. (2021). Stabilizing the closed SARS-CoV-2 spike trimer.
- 408 Nat Commun *12*, 244.
- 409 Kaptein, S.J.F., Jacobs, S., Langendries, L., Seldeslachts, L., Ter Horst, S., Liesenborghs, L., Hens,
- 410 B., Vergote, V., Heylen, E., Barthelemy, K., et al. (2020). Favipiravir at high doses has potent
- 411 antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity.
- 412 Proc Natl Acad Sci U S A *117*, 26955-26965.
- 413 Kyriakidis, N.C., López-Cortés, A., González, E.V., Grimaldos, A.B., and Prado, E.O. (2021).
- 414 SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines
- 415 *6*, 28.
- Liu, J., Liu, Y., Xia, H., Zou, J., Weaver, S.C., Swanson, K.A., Cai, H., Cutler, M., Cooper, D., Muik,
- A., et al. (2021a). BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants.
 Nature 596, 273-275.
- Liu, Y., Liu, J., Johnson, B.A., Xia, H., Ku, Z., Schindewolf, C., Widen, S.G., An, Z., Weaver, S.C.,
- 420 Menachery, V.D., et al. (2021b). Delta spike P681R mutation enhances SARS-CoV-2 fitness over
- 421 Alpha variant. bioRxiv.
- 422 Lopez Bernal, J., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., Stowe, J.,
- 423 Tessier, E., Groves, N., Dabrera, G., et al. (2021). Effectiveness of Covid-19 Vaccines against
- 424 the B.1.617.2 (Delta) Variant. N Engl J Med *385*, 585-594.
- Madhi, S.A., Baillie, V., Cutland, C.L., Voysey, M., Koen, A.L., Fairlie, L., Padayachee, S.D.,
 Dheda, K., Barnabas, S.L., Bhorat, Q.E., *et al.* (2021). Efficacy of the ChAdOx1 nCoV-19 Covid19 Vaccine against the B.1.351 Variant. N Engl J Med *384*, 1885-1898.
- 428 Martin, D.P., Weaver, S., Tegally, H., San, J.E., Shank, S.D., Wilkinson, E., Lucaci, A.G., 429 Giandhari, J., Naidoo, S., Pillay, Y., *et al.* (2021). The emergence and ongoing convergent 430 evolution of the SARS-CoV-2 N501Y lineages. Cell *184*, 5189-5200.e5187.
- Mattiuzzo, G., Bentley, E.M., Hassall, M., Routley, S., Richardson, S., Bernasconi, V.,
 Kristiansen, P., Harvala, H., Roberts, D., Semple, M.G., Turtle, L.C.W., Openshaw P.J.M., *et al.*(2020). Establishment of the WHO International Standard and Reference Panel for anti-SARSCoV-2antibody. WHO/BS/2020.2403.
- Moyo-Gwete, T., Madzivhandila, M., Makhado, Z., Ayres, F., Mhlanga, D., Oosthuysen, B.,
 Lambson, B.E., Kgagudi, P., Tegally, H., Iranzadeh, A., *et al.* (2021). SARS-CoV-2 501Y.V2
 (B.1.351) elicits cross-reactive neutralizing antibodies. bioRxiv, 2021.2003.2006.434193.
- Muik, A., Wallisch, A.K., Sänger, B., Swanson, K.A., Mühl, J., Chen, W., Cai, H., Maurus, D.,
 Sarkar, R., Türeci, Ö., *et al.* (2021). Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus
 by BNT162b2 vaccine-elicited human sera. Science *371*, 1152-1153.
- Rubin, R. (2021). COVID-19 Vaccines vs Variants-Determining How Much Immunity Is Enough.
 Jama 325, 1241-1243.
- 443 Sabino, E.C., Buss, L.F., Carvalho, M.P.S., Prete, C.A., Jr., Crispim, M.A.E., Fraiji, N.A., Pereira,
- 444 R.H.M., Parag, K.V., da Silva Peixoto, P., Kraemer, M.U.G., et al. (2021). Resurgence of COVID-
- 445 19 in Manaus, Brazil, despite high seroprevalence. Lancet *397*, 452-455.

- 446 Sadoff, J., Gray, G., Vandebosch, A., Cárdenas, V., Shukarev, G., Grinsztejn, B., Goepfert, P.A.,
- 447 Truyers, C., Fennema, H., Spiessens, B., *et al.* (2021). Safety and Efficacy of Single-Dose
- 448 Ad26.COV2.S Vaccine against Covid-19. N Engl J Med *384*, 2187-2201.
- 449 Sanchez-Felipe, L., Vercruysse, T., Sharma, S., Ma, J., Lemmens, V., Van Looveren, D.,
- 450 Arkalagud Javarappa, M.P., Boudewijns, R., Malengier-Devlies, B., Liesenborghs, L., et al.
- 451 (2021). A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature
- 452 *590*, 320-325.
- 453 Siddle, K.J., Krasilnikova, L.A., Moreno, G.K., Schaffner, S.F., Vostok, J., Fitzgerald, N.A.,
- 454 Lemieux, J.E., Barkas, N., Loreth, C., Specht, I., et al. (2021). Evidence of transmission from fully
- 455 vaccinated individuals in a large outbreak of the SARS-CoV-2 Delta variant in Provincetown,
- 456 Massachusetts. medRxiv.
 - 457 Smith, D.J., Lapedes, A.S., de Jong, J.C., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D.,
 - and Fouchier, R.A. (2004). Mapping the antigenic and genetic evolution of influenza virus.
 Science *305*, 371-376.
 - 460 Tian, D., Sun, Y., Zhou, J., and Ye, Q. (2021). The global epidemic of SARS-CoV-2 variants and
 461 their mutational immune escape. J Med Virol. 2021 Oct 5. doi: 10.1002/jmv.27376.
 - 462 Tostanoski, L.H., Yu, J., Mercado, N.B., McMahan, K., Jacob-Dolan, C., Martinot, A.J., Piedra-
 - 463 Mora, C., Anioke, T., Chang, A., Giffin, V.M., *et al.* Immunity elicited by natural infection or 464 Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science 465 Translational Medicine *0*, eabj3789.
 - van der Lubbe, J.E.M., Rosendahl Huber, S.K., Vijayan, A., Dekking, L., van Huizen, E.,
 Vreugdenhil, J., Choi, Y., Baert, M.R.M., Feddes-de Boer, K., Izquierdo Gil, A., et al. (2021).
 Ad26.COV2.S protects Syrian hamsters against G614 variant SARS-CoV-2 and does not
 enhance respiratory disease. NPJ Vaccines 6, 39.
 - Wang, P., Nair, M.S., Liu, L., Iketani, S., Luo, Y., Guo, Y., Wang, M., Yu, J., Zhang, B., Kwong,
 P.D., *et al.* (2021). Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature *593*,
 130-135.
 - Whitt, M.A. (2010). Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on
 virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol
 Methods *169*, 365-374.
 - Wu, K., Werner, A.P., Moliva, J.I., Koch, M., Choi, A., Stewart-Jones, G.B.E., Bennett, H.,
 Boyoglu-Barnum, S., Shi, W., Graham, B.S., *et al.* (2021). mRNA-1273 vaccine induces
 neutralizing antibodies against mutants from global SARS-CoV-2 variants. bioRxiv,
 2021.2001.2025.427948.
 - Yadav, P.D., Sapkal, G.N., Abraham, P., Ella, R., Deshpande, G., Patil, D.Y., Nyayanit, D.A.,
 Gupta, N., Sahay, R.R., Shete, A.M., *et al.* (2021). Neutralization of variant under investigation
 B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis.
 - Yu, J., Tostanoski, L.H., Mercado, N.B., McMahan, K., Liu, J., Jacob-Dolan, C., Chandrashekar,
 A., Atyeo, C., Martinez, D.R., Anioke, T., *et al.* (2021). Protective efficacy of Ad26.COV2.S
 against SARS-CoV-2 B.1.351 in macaques. Nature *596*, 423-427.
 - 486

Figure 1. Immunogenicity and protective efficacy of first-generation Spike vaccine against VOCs Alpha and Beta. A, Vaccination scheme with prototypic YF17D-based vaccine candidate YF-S0 (S0). Syrian hamsters were immunized twice intraperitoneally with 10^4 PFU of S0 on day 0 and 7 and inoculated intranasally on day 21 with 10^3 median tissue-culture infectious dose (TCID₅₀) of either prototype SARS-CoV-2 (*grey circles*), VOC Alpha (*green triangles*) or VOC Beta (*blue squares*). B, nAb titers against prototypic spike (D614G) pseudotyped virus on day 21 after vaccination. Red datapoint indicates the NIBSC 20/130 human reference sample included as benchmark. C, D, Viral loads in hamster lungs four days after infection quantified by quantitative RT-PCR (C) and virus titration (D). E, correlates of protection against prototype SARS-CoV-2, VOC Alpha and VOC Beta. Logistic regression model to calculate nAb titers correlating with 50% and 90% probability for protection. '*Protected*' was defined by a viral load < 10^2 TCID₅₀/100mg lung tissue and '*infected*' by a viral load > 10^2 TCID₅₀/100mg lung tissue (van der Lubben et al., 2021). Shaded areas indicate 95% CI. LLOQ is lower limit of quantification. Error bars denote median ± IQR. Data were analyzed using uncorrected Kruskal-Wallis.

Figure 2. A vaccine based on the updated Spike antigen SO* offers complete protection against all four VOCs. A, nAb titers against prototypic (grey), VOC Beta (blue), VOC Gamma (orange) and VOC Delta (purple) spike pseudotyped virus on day 21 after vaccination with prototype YF-SO. Red datapoint indicates the NIBSC 20/130 human reference sample (see Fig. 1B). B, Neutralization curves for NIBSC 20/130 human reference sample against same set of pseudotyped viruses. C, Schematic of the updated YF-S0* (S0*) vaccine candidate based on VOC Gamma, plus three extra stabilizing proline residues. Vaccination scheme with YF-S0*. Syrian hamsters were immunized twice intraperitoneally with 10⁴ PFU of S0* on day 0 and 7 and inoculated intranasally on day 24 with 10³ median tissue-culture infectious dose (TCID₅₀) of either VOC Alpha (green), VOC Beta (blue), VOC Gamma (orange) and VOC Delta (purple). D, nAb titers against prototypic, VOC Beta, VOC Gamma and VOC Delta spike pseudotyped virus on day 21 after vaccination with YF-SO*. Red datapoint indicates the NIBSC 20/130 human reference sample. E, antigenic cartography. Cross-reactivity of the sera raised by original SO (grey squares) and updated SO* (orange squares) vaccine antigen against four different virus variants (circles: prototype, grey; VOC Beta, blue; Gamma, orange, and Delta, purple) plotted on two-dimensional distance map (Smith et al., 2004). F, G, Viral loads in hamster lungs four days after infection quantified by quantitative PCR with reverse transcription (RT–qPCR) (F) and virus titration (G). H, cumulative lung pathology scores from H&E-stained slides of lungs for signs of damage. I, Representative H&E-stained images of sham- or SO*-vaccinated hamster lungs after challenge. Perivascular inflammation (black arrows) with focal endothelialitis (green arrows); peri-bronchial inflammation (blue arrows); patches of bronchopneumonia (red arrows). Error bars denote median ± IQR. Data were analyzed using uncorrected Kruskal-Wallis.

Figure 3. A vaccine based on the updated Spike antigen S* completely prevents transmission of the Delta variant. Effect of YF-SO* vaccination on viral transmission to non-vaccinated contact hamsters. Index hamsters were either sham-vaccinated or vaccinated with a single dose of 10⁴ PFU of YF-SO* and infected intranasally on day 21 with 10⁵ TCID₅₀ of VOC Delta. Two days after infection, index animals were paired and co-housed with each one naïve sentinel. Index and sentinel animals were sacrificed each 4 days after infection or exposure, respectively. **B**, **C**, Viral loads in hamster lungs four days after infection quantified by quantitative RT-qPCR (**B**) and virus titration (**C**). **D**, cumulative lung pathology scores from H&E-stained slides of lungs for signs of damage. Error bars denote median ± IQR. Data were analyzed using uncorrected Kruskal-Wallis.