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Abstract

Synthetic gene drive constructs are being developed to control disease vectors,
invasive species, and other pest species. In a well-mixed random mating population
a sufficiently strong gene drive is expected to eliminate a target population, but it
is not clear whether the same is true when spatial processes play a role. In species
with an appropriate biology it is possible that drive-induced reductions in density
might lead to increased inbreeding, reducing the efficacy of drive, eventually
leading to suppression rather than elimination, regardless of how strong the
drive is. To investigate this question we analyse a series of explicitly solvable
stochastic models considering a range of scenarios for the relative timing of mating,
reproduction, and dispersal and analyse the impact of two different types of gene
drive, a Driving Y chromosome and a homing construct targeting an essential
gene. We find in all cases a sufficiently strong Driving Y will go to fixation and the
population will be eliminated, except in the one life history scenario (reproduction
and mating in patches followed by dispersal) where low density leads to increased
inbreeding, in which case the population persists indefinitely, tending to either
a stable equilibrium or a limit cycle. These dynamics arise because Driving Y
males have reduced mating success, particularly at low densities, due to having
fewer sisters to mate with. Increased inbreeding at low densities can also prevent

∗Corresponding author, email: p.beaghton@imperial.ac.uk

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.11.11.468225doi: bioRxiv preprint 

mailto:p.beaghton@imperial.ac.uk
https://doi.org/10.1101/2021.11.11.468225
http://creativecommons.org/licenses/by/4.0/


a homing construct from eliminating a population. For both types of drive, if
there is strong inbreeding depression, then the population cannot be rescued by
inbreeding and it is eliminated. These results highlight the potentially critical role
that low-density-induced inbreeding and inbreeding depression (and, by extension,
other sources of Allee effects) can have on the eventual impact of a gene drive on
a target population.

Keywords: Genetic biocontrol / Population dynamic model / Difference equations /
Discrete time dynamical systems / Local mate competition / Neimark-Sacker bifurcation

1 Introduction
Gene drive is a process of biased inheritance whereby a genetic element can be transmit-
ted from parents to offspring at a greater-than-Mendelian rate and thereby increase in
frequency in a population (Burt & Crisanti, 2018). Many naturally-occurring gene drive
systems have been described (Burt & Trivers, 2006; Lindholm et al., 2016; Fishman
& McIntosh, 2019; Burga et al., 2020), and there is increasing interest in potentially
using synthetic drivers to control disease vectors, harmful invasive species, and other
pests (Bier, 2021; Hay et al., 2021; Nolan, 2021). This interest derives in part from the
fact that driving elements can spread in populations even if they cause some harm to
the organisms carrying them, even disrupting reproduction to such an extent that the
population could be substantially suppressed or eliminated (Burt, 2003; Godfray et al.,
2017). Potential strategies for population suppression include the use of gene drive
constructs to produce a male-biased sex ratio, or to knock-out genes needed for survival
or reproduction, or both (Galizi et al., 2014; Kyrou et al., 2018; Simoni et al., 2020).

Because drive depends on a deviation from Mendelian transmission it cannot operate
in wholly asexual populations, and, moreover, it will tend to be less effective in inbred
populations (i.e., with mating of close relatives), where the frequency of heterozygotes is
reduced relative to outcrossed populations (Burt & Trivers, 2006; Agren & Clark, 2018).
The extent of inbreeding in a population can be affected by many factors, including,
potentially, population density. In particular, in some species, when densities are low, the
only mates available may be relatives, and the frequency of inbreeding correspondingly
high. In such a species, release of a gene drive could lead to a reduction in population
density, which in turn leads to increased inbreeding, reducing the effectiveness of the
drive and the ultimate impact on population density (relative to what would have
occurred had there been no change in inbreeding), potentially even making the difference
between the target population persisting or being eliminated (Bull et al., 2019).

Previous modelling has investigated some aspects of this problem. The reduced efficacy
of drive in the face of inbreeding has been analysed in numerous contexts, including the
autosomal killers (Petras, 1967), B-chromosomes (Burt & Trivers, 1998), transposable
elements (Wright & Schoen, 1999), and engineered gene drive constructs for population
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suppression (Drury et al., 2017). In each case the breeding system was treated as
an exogenously determined variable. Hamilton (1967) demonstrated that, in species
whose biology is such that low density leads to increased inbreeding, low density could
be a barrier to the spread of a Driving Y chromosome. Again, population density in
his model was an exogenous variable, rather than an endogenous one responding to
the presence of the Driving Y. In the closest precedent for the modelling presented
here, Bull et al. (2019) analysed the impact of two different types of gene drives on a
population when the frequency of sib mating is assumed to increase as population mean
fitness declines, and found that population elimination could be prevented, even with
perfect drives. However, they did not model population density explicitly. Finally, while
deterministic spatial models using partial differential equations can show population
elimination by sufficiently strong drives (Beaghton et al., 2016), stochastic individual-
based models often lead to suppression but not elimination (North et al., 2013, 2019,
2020; Eckhoff et al., 2017), potentially consistent with a role for low density inbreeding,
though inbreeding was not monitored or manipulated in these models. More recently,
Champer et al. (2021) analysed an individual-based model of gene drives in continuous
space, and observed that preventing inbreeding promoted elimination, consistent with
expectations, but did not study this result in detail.

To more fully investigate the potential role of low-density-induced inbreeding in prevent-
ing population elimination, we have analysed a series of explicitly solvable stochastic
models that include spatial structure, gene drive, and alternative life history scenarios
of mating, dispersal, and reproduction. We first focus on Driving Y chromosomes, and
consider seven life history scenarios. In all of them a sufficiently strong Driving Y will
eliminate a population, except the one scenario in which low population density leads to
increased inbreeding, in which case there is suppression but not elimination, no matter
how strong the drive. We then show that the same life history also prevents population
elimination by a gene drive that uses the homing reaction. In both cases populations
persist because inbreeding gives a fitness advantage to the wildtype chromosome over
the driver; incorporating strong inbreeding depression into the models removes this
fitness advantage, and the population is then eliminated. These results highlight the
key role that low-density-induced inbreeding can have on the fate of a population faced
with a gene drive, and emphasize the importance of incorporating inbreeding depression
(and, by extension, other negative effects of low density on population growth rates) in
models of suppressive gene drives.

2 Driving Y
We model an infinite sized population with discrete generations. Two key events in
a species’ life history are mating of males and females, and offspring production by
mated females to make the (unmated) males and females of the next generation. Each
of these activities can occur either in an infinite well-mixed population (“in the cloud”),
or after individuals have settled randomly into an infinite array of “patches”, so in
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addition to mating and reproduction there is also movement. Mating is random, so that
if mating occurs in the cloud then it is according to the proportion of the different types
in the cloud, whereas if it occurs in patches, then it is according to the different types
in the particular patch. Females mate only once in their life, and store the sperm for
subsequent reproduction, whereas a male may mate multiple times, and all females get
mated as long as there is at least one male in the cloud or patch. Offspring production
is density-dependent, according to the Beverton & Holt (1957) model; if reproduction
is occurring in the cloud then the average number of offspring produced per female
depends on the density (of mated females) in the cloud, whereas if reproduction is
occurring in patches then it is the local density that counts.

We first consider the release of males carrying a Driving Y chromosome engineered to be
transmitted to more than 50% of the offspring (e.g., by disrupting transmission of the X
chromosome (Galizi et al., 2014; Fasulo et al., 2020)). There are thus two types of males,
those with Wildtype (W) and Driving (D) Y chromosomes and two types of mated
females, those mated to a W-male and those mated to a D-male. W-mated females
produce on average equal numbers of female and W-male offspring, whereas D-mated
females produce on average female and D-male offspring at a ratio (1−m) : m.

We now consider a range of scenarios for the location of mating and reproduction (cloud
or patches) and the timing of movement between them. Results are summarised in
Figure 1.

2.1 Scenario 1: A well-mixed population
Our starting point is a non-spatial model in which both mating and offspring production
occur in the cloud, which is of infinite size and contains individuals at a finite density.
The Driving Y is introduced at a given density at t = 0 into a wildtype (W) population at
equilibrium. The (finite) population density then evolves from generation to generation
as

(Total density of offspring)t+1

= 2 (Total density of mated females)t
R

1 + β(Total density of mated females)t

⇒ F ′U +M′
W +M′

D = 2R (FW + FD)
1 + β (FW + FD) (1)

where FW,FD are the densities of W- and D-mated females in generation t and
F ′U,M′

W,M′
D are the densities of female, W-male and D-male offspring in genera-

tion t+ 1, R is the intrinsic (or low density) rate of increase of the population, and β is
a parameter describing the strength of density dependence, where 1/β is the density at
which the population growth rate is half its maximum value.

Before the release of the Driving Y and at equilibrium, we have F eq
U +Meq

W = 2RFeq
W

(1+β Feq
W ) .

Since W-mated females produce on average equal number of female and W-male offspring
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Scenario Opportunity 
for inbreeding? z’/z Outcome 

(Y)
Outcome 

(Pop)

1 No 2m Fix Elimination

2 No 2m Fix Elimination

3 No 2m Fix Elimination

4 No 2m Fix Elimination

5 Yes See 

Eq 21b Variable Persistence

6 No 2m Fix Elimination

7 No See SI

Eq 31b Fix Elimination

Reproduction

Mating

Reproduction

Mating

ReproductionMating

Reproduction Mating

ReproductionMating

Cloud activities

Patch activities

Reproduction
♀

Mating

♂
Reproduction Mating

Figure 1: Consequences of alternative life histories for the fate of a Driving Y and the
population. z′/z: Odds ratio for a male carrying a Driving Y in one generation to that
in the previous generation. Outcome (Y): Outcome for the proportion of males carrying
the Driving Y. Fix: Driving Y goes to fixation; Variable: Driving Y may go to fixation,
remain polymorphic, or be lost. Outcome (Pop): Outcome for the population assuming
a sufficiently strong drive (e.g., m = 1).
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and since all the female offspring turn into W-mated females, we have F eq
U =Meq

W =
F eq

W . The prerelease equilibrium equation becomes

2F eq
W = 2RF eq

W
1 + β F eq

W

⇒ F eq
W = (R− 1)/β.

W-mated females produce female offspring and W-male offspring in equal numbers
(averaged over the entire cloud) whereas D-mated females produce a skewed ratio of
(1−m) : m female offspring vs D-male offspring, so

{F ′U,M′
W,M′

D} = R{(FW + 2 (1−m)FD) ,FW, 2mFD}
1 + β (FW + FD) (2)

As mating is random, the probability that a female offspring becomes a W-mated female
isM′

W/(M′
W +M′

D) = FW/(FW + 2mFD) whereas the probability that she becomes
a D-mated female isM′

D/(M′
W +M′

D) = 2mFD/(FW + 2mFD). So, the densities of
W- and D-mated females in generation t+ 1 are

{F ′W,F ′D} = R {FW (FW + 2 (1−m)FD) , 2mFD (FW + 2 (1−m)FD)}
(FW + 2mFD) (1 + β (FW + FD)) (3)

We now introduce a change of variables S = FW + FD and z = FD/FW and the
equations above become

{S ′, z′} =
{
RS (1 + 2 (1−m) z)

(1 + β S) (1 + z) , 2mz

}
(4)

The recurrence equations (4) for {S, z} are sufficient to update the system from genera-
tion t to generation t+ 1. Note that as long as m > 0.5, z will increase without bound,
implying that the Driving Y tends to fixation and, if m is sufficiently large, then the
population will tend to elimination – most obviously if m = 1, then the population will
tend to be all male.

2.2 Scenario 2: Local mating
Now suppose male and female offspring settle randomly into patches, there is local
competition within each patch among males to mate with the females, and then the
mated females return to the cloud and reproduce in a density-dependent manner as
described in Scenario 1. In Scenario 1, the pre-release equilibrium density of W-mated
females was shown to be F eq

W = (R− 1)/β.

In this model, the total density of offspring is again given by (1). We allocate the
well-mixed offspring population in the cloud into (an infinite number of) patches of
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volume V . The actual (integer) number of offspring in each patch is Poisson distributed
with a mean

V (F ′U +M′
W +M′

D) = 2RV (FW + FD)
1 + β (FW + FD)

and ranges from zero to infinity. We restrict mating only among members of the same
patch and all females mate if there is at least one male in the patch. Due to stochasticity,
a fraction of patches will contain zero males and as a result a fraction of the females
will not mate (the lower the population density in the cloud, the larger the fraction of
females that will be unsuccessful in mating due to a lack of males in their patch).

Equation (2) that gives the number of offspring in the next generation holds
here too, so a patch of males and females of volume V consists (on average) of
(FW + 2 (1−m)FD)RV/(1 + β (FW + FD)) females, FW RV/(1 + β (FW + FD)) W-
males and 2mFD RV/(1 + β (FW + FD)) D-males. The probabilities of having a
Poisson-distributed set of {FU,MW,MD} offspring in a patch are thus

pF =
e
− (FW+2(1−m)FD)RV

1+β (FW+FD)
(

(FW+2(1−m)FD)RV
1+β (FW+FD)

)FU

FU!

pW =
e
− FWRV

1+β (FW+FD)
(

FWRV
1+β (FW+FD)

)MW

MW!

pD =
e
− 2mFD RV

1+β (FW+FD)
(

2mFD RV
1+β (FW+FD)

)MD

MD!

The probability that a patch contains MW = MD = 0 males is pW |MW=MD=0

pD |MW=MD=0= e
− (FW+2mFD)RV

1+β (FW+FD) , which goes to 0 when V → ∞ and goes to 1 when
V → 0 (i.e. when the volume V is so infinitesimally small that it is certain that any
patch with a female will contain no males).

The probability of k females, out of the FU females in a patch, becoming W-mated
females is ( MW

MW+MD
)k ( MD

MW+MD
)FU−k FU!

k!(FU−k)! since every female undergoes a Bernoulli
trial in picking a male out of the MW W-males and MD D-males in her patch. The
expected number of W-mated females in a patch, conditional on {FU,MW,MD}, is thus

FU∑
k=0

k

(
MW

MW + MD

)k ( MD

MW + MD

)FU−k FU!
k! (FU − k)! = FU MW

MW + MD
= FU gW

where gW = MW
MW+MD

is the fraction of W-males in the patch. Similarly, the expected
number of D-mated females in a patch, conditional on {FU,MW,MD}, is FU gD =
FU

MD
MW+MD

.

We introduce M = MW + MD and use Wolfram Mathematica to evaluate the densities of
W-mated and D-mated females arising from the two types of pairings, averaged over all

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.11.11.468225doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468225
http://creativecommons.org/licenses/by/4.0/


the mating cohorts (the division by V converts the expected number of mated females
in the mating cohorts to a density):

F ′W = 1
V

∞∑
M=1

M∑
MW=1

∞∑
FU=1

FU gW pF pW pD =

= (1− e−
(FW+2mFD)RV

1+ β(FW+FD) )(FW + 2 (1−m)FD)RFW

(FW + 2mFD) (1 + β(FW + FD)) (5a)

F ′D = 1
V

∞∑
M=1

M∑
MD=1

∞∑
FU=1

FU gD pF pW pD =

=
2
(

1− e−
(FW+2mFD)RV

1+β (FW+FD)

)
(FW + 2 (1−m)FD)mRFD

(FW + 2mFD) (1 + β(FW + FD)) (5b)

We introduce the change of variables S = V (FW + FD), z = FD/FW and α = β/V ;
equations (5a)-(5b) now become:

{S ′, z′} =


(

1− e−
S(1+2mz)R
(1+αS)(1+z)

)
RS (1 + 2 (1−m) z)

(1 + αS) (1 + z) , 2mz

 (6)

The recurrence equations (6) are again sufficient to update this system from generation
t to generation t + 1. The transition equation for z is the same as in Scenario 1,
indicating, again, that the Driving Y will go to fixation, and, if m is sufficiently large,
the population will be eliminated.

2.3 Scenario 3: Local density-dependent reproduction
We now reverse the location of events, so mating occurs in the cloud and reproduction
occurs in patches (subject to local density dependence). The cloud densities of W-
and D-mated females in generation t are {FW,FD}, and a Poisson-distributed random
sample of {FW,FD} W- and D-mated females with means {V FW, V FD}, is drawn from
the cloud and settles in each patch. The probabilities of having FW and FD mated
females in a patch are

{P (FW | V FW) ,P (FD | V FD)} =
{
e−V FW(V FW)FW

FW! ,
e−V FD(V FD)FD

FD!

}
(7)

In this model the reproduction rate of mated females depends on the number of the
mated females in the local patch. We assume the number of surviving offspring that each
mated female produces is Poisson-distributed with a mean λ = 2R/ (1 + α (FW + FD)),
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where α > 0 is a density dependence parameter appropriate for patches instead of the
cloud. Note that the maximum low-density rate of increase is now R/ (1 + α). The
probability that the FW + FD mated females generate j offspring in total in a given
patch is then

P (j | FW,FD) = e−λ(FW+FD)λj (FW + FD)j

j! =
2je−

2(FW+FD)R
1+α (FW+FD)

(
(FW+FD)R

1+α (FW+FD)

)j
j! .

(8)

These j offspring are made up of iF females, iW W-males and j − iF− iW D-males. The
probability of a {iF, iW, j − iF − iW} triplet is derived from a multinomial distribution
with j trials and normalised weights

{
FW/2+FD(1−m)

FW+FD
, FW/2

FW+FD
, mFD

FW+FD

}
, since, on average,

fractions of 1/2 and 1−m of W-mated and D-mated females’ offspring are female, with
the rest of the offspring being W- and D-males, respectively.

Hence, the probability P (iF, iW, j − iF − iW | j,FW,FD) of having {iF, iW, j − iF − iW}
female, W-male and D-male offspring in the patch (conditional on j total offspring from
{FW,FD} mated females) using the weights above is

P (iF, iW, j − iF − iW | j,FW,FD) = 2−iWFW
iW (mFD)−iF−iW

(
mFD

FW + FD

)j

×
(

FW

2 + FD (1−m)
)iF j!

iF! iW! (j − iF − iW)! (9)

and the expected numbers of female, W-male and D-male offspring in the patch
(conditional on j total offspring from {FW,FD} mated females) is obtained by summing
over all possible values of iF and iW:

E[females | j,FW,FD] =
j∑

iF=0

j−iF∑
iW=0

iF P (iF, iW, j − iF − iW | j,FW,FD)

= j (FW + 2 (1−m) FD)
2 (FW + FD)

E [W - males | j,FW,FD] =
j∑

iF=0

j−iF∑
iW=0

iW P (iF, iW, j − iF − iW | j,FW,FD)

= j FW

2 (FW + FD) (10)

E[D - males | j,FW,FD] =
j∑

iF=0

j−iF∑
iW=0

(j − iF − iW)P (iF, iW, j − iF − iW | j,FW,FD)

= j mFD

FW + FD
.
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We use (7), (8) and (10) to evaluate the densities of the offspring that will aggregate
back in the cloud, {F ′U,M′

W,M′
D}, by summing the respective products over all possible

values of FW, FD and j from 0 to infinity and dividing by V :

The cloud density F ′U of female offspring before mating is:

F ′U = 1
V

∞∑
FW=0

∞∑
FD=0

∞∑
j=0

E[females | j,FW,FD]P (j | FW,FD)P (FW | V FW)P (FD | V FD)

= R

α
e−V (FW+FD)(FW + 2 (1−m)FD)(−V (FW + FD))−

1+α
α γ

[
1 + 1

α
,−V (FW + FD)

]
(11)

where γ is the lower incomplete gamma function.

The cloud densityM′
W of W-male offspring is:

M′
W = 1

V

∞∑
FW=0

∞∑
FD=0

∞∑
j=0

E[W - males | j,FW,FD]P (j | FW,FD) P (FW | V FW) P (FD | V FD)

= R

α
e−V (FW+FD)FW (−V (FW + FD))−

1+α
α γ

[
1 + 1

α
,−V (FW + FD)

]
(12)

The cloud densityM′
D of D-male offspring is:

M′
D = 1

V

∞∑
FW=0

∞∑
FD=0

∞∑
j=0

E[D - males | j,FW,FD]P (j | FW,FD) P (FW | V FW) P (FD | V FD)

= 2mR

α
e−V (FW+FD)FD(−V (FW + FD))−

1+α
α γ

[
1 + 1

α
,−V (FW + FD)

]
(13)

All the aggregated offspring in the cloud form a single mating pool, with each female
choosing a random mate. Given that there will always be at least one male in the
(infinite) mating pool, all unmated females become mated females (i.e. F ′W +F ′D = F ′U)
and the fractions of the resulting W- and D-mated females are simply equal to the
fractions of W- and D-males in the cloud, i.e. M′W

M′W+M′D
and M′D

M′W+M′D
. From (11),(12)

and (13) it follows that the fractions of W- and D-males in the cloud mating pool reduce
to M′W
M′W+M′D

= FW
FW+2mFD

and MD
MW+MD

= 2mFD
FW+2mFD

, respectively. Thus, the densities of
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mated females in the cloud in generation t+ 1 are

{F ′W,F ′D} =
{
F ′U

FW

FW + 2mFD
,F ′U

FW

FW + 2mFD

}
⇒ F ′W = F ′U

FW

FW + 2mFD

= R

α
e−V (FW+FD)FW (FW + 2 (1−m)FD)

FW + 2mFD
(−FW −FD)−

1+α
α γ

[
1 + 1

α
,−FW −FD

]
,

(14a)

F ′D = F ′U
2mFD

FW + 2mFD

= 2mR

α
e−V (FW+FD)FD (FW + 2 (1−m)FD)

FW + 2mFD
(−FW −FD)−

1+α
α γ

[
1 + 1

α
,−FW −FD

]
(14b)

The change of variables used in previous models, S = V (FW + FD) and z = FD/FW,
gives the recurrence equations that update the state variables from generation t to
generation t+ 1:

{S ′, z′} =

−e
−SR (−S)−1

α (1 + 2 (1−m) z) γ
[
1 + 1

α
,−S

]
α (1 + z) , 2mz

 (15)

Again, the Driving Y tends to fixation, and, for sufficiently large m, the population will
tend to elimination.

2.4 Scenario 4: Local mating followed by local reproduction
In this scenario males and unmated females settle randomly into patches, mate locally,
reproduce in a (locally) density-dependent manner, then males and unmated females
rise back again to the cloud to be re-assorted back to patches. It is convenient to
derive the recurrence equations for this model by starting with the stage in generation
t at which all the female and male offspring find themselves well-mixed in a cloud,
which contains an (infinite) number of (unmated) females, W- and D-males with (finite)
densities {FU,MW,MD}. All the cloud inhabitants then settle into patches, with
each patch containing on average V (FU +MW +MD) individuals. As in Scenario
2, the actual number of individuals in a patch is Poisson-distributed with means
{V FU, V MW, V MD}, for the females, W-males and D-males, respectively. The
probabilities {pF, pW, pD} of having a set of {FU,MW,MD} individuals in a patch are

{pF, pW, pD} =
{
e−V FU (V FU)FU

FU! ,
e−V MW (V MW)MW

MW! ,
e−V MD (V MD)MD

MD!

}
(16)

Each of the FU unmated females settling in a patch will randomly chose a single W-male
or D-male partner from within her patch. The probability of the FU unmated females
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in a patch becoming {FW,FU − FW} W- and D-mated females, respectively, is thus
P(FW,FU − FW | FU,MW,MD)

=

( MW
MW+MD

)FW( MD
MW+MD

)FU−FW FU!
FW! (FU−FW)! if FU (MW + MD) 6= 0

0 if FU (MW + MD) = 0
(17)

We set FD = FU−FW and then use (8) for the probability P (j | FW,FU − FW) that the
FU mated females in a given patch generate j offspring in total and (9) for the probabil-
ity P (j − iM, iW, iM − iW | j,FW,FU − FW) of having {iF = j − iM, iW, iD = iM − iW}
female, W-male and D-male offspring in the patch (conditional on j total offspring from
{FW,FU − FW} mated females).

We can now derive the new cloud densities {F ′U,M′
W,M′

D}, having
started from {FU,MW,MD} in the previous generation. We start with
{iF = j − iM, iW, iD = iM − iW} new female, W-male and D-male offspring in a
patch, conditional on {FU,MW,MD = M−MW} offspring from the previous generation
having settled in the patch and having produced {FW,FU − FW} mated females who
in turn have produced j = iF + iW + iD offspring in total. We then combine the various
probabilities in (8), (9), (16) and (17), introduce iF = j − iM and MD + MW = M,
and sum over all possible values of {iW, iM, j,FW,MW,M,FU} to evaluate the average
numbers of female, W-male and D-male offspring (across all patches) and then divide
them by V to convert them into the densities {F ′U,M′

W,M′
D} in the next generation

(we use Wolfram Mathematica to evaluate each of the 7-deep nested sums):

{F ′U,M′
W,M′

D} = 1
V

∞∑
FU=1

∞∑
M=1

M∑
MW=0

FU∑
FW=0

∞∑
j=0

j∑
iM=0

iM∑
iW=0
{j − iM, iW, iM − iW} pF pW pD

× P (j | FW,FU − FW) P (j − iM, iW, iM − iW | j,FW,FU − FW)
× P (FW,FU − FW | FU,MW,MD)

⇒



F ′U = e−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FU (MW + 2MD (1−m))R (−FU V )−

1+α
α γ

[
1 + 1

α
,−FU V

]
(MW +MD)α

M′
W =

e−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FUMW R (−FUV )−

1+α
α γ

[
1 + 1

α
,−FU V

]
(MW +MD)α

M′
D =

2me−(FU+MW+MD)V
(
−1 + e(MW+MD)V

)
FUMD R (−FUV )−

1+α
α γ

[
1 + 1

α
,−FU V

]
(MW +MD)α

(18)
The ratio z′ = M′

D/M′
W of D-male density to W-male density in the cloud can be

obtained by dividing the two male densities in (18):

z′ = M
′
D

M′
W

= 2m MD

MW
= 2mz.

As in earlier scenaria, given that 2m > 1, z → ∞ as t → ∞ and the Driving Y
asymptotically fixes in the population with MW∞ → 0 and MD∞

FU∞
→ m

1−m , and, for
sufficiently large m, the population will be eliminated.
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2.5 Scenario 5: Local reproduction followed by local mating
Now suppose both mating and reproduction are again local, but the order of events
is changed, such that it is mated females that disperse, rather than unmated males
and females. Note that in this scenario where reproduction is local and there is no
pre-mating dispersal there is the opportunity for inbreeding to occur (i.e., a female to
mate with her brother), and the probability of this occurring will tend to increase as
the population density decreases.

Similarly to previous scenaria, the cloud densities of W- and D-mated females in
generation t are {FW,FD}, and the numbers {FW,FD} of W- and D-mated females
settling in a patch is Poisson-distributed with means {V FW, V FD}.

The j offspring of the {FW,FD} mated females in each patch mate locally, and to obtain
the expected number of new W-mated females in the patch, conditional on {j,FW,FD},
we use (9) from Scenario 3 for the probability P (iF, iW, j − iF − iW | j,FW,FD) of having
{iF, iW, j− iF− iW} female, W-male and D-male offspring in the patch and sum over all
possible iF and iW, noting that iF = 0 and iF = j are excluded from the iF-summation
as they both result in no mated females (because of either no female offspring, i.e.
iF = 0, or all female offspring, iF = j, and thus no males to mate with):

E[W-mated | j,FW,FD] =
j−1∑
iF=1

j−iF∑
iW=1

iF
iW

j − iF
P (iF, iW, j − iF − iW | j,FW,FD)

=
j FW

(
FW+2 FD−2mFD

FW+FD
− 21−j

(
FW+2 FD−2mFD

FW+FD

)j)
2 (FW + 2mFD) (19a)

Similar analysis gives the expected number of D-mated females in each patch, conditional
on j total offspring from {FW,FD} mated females:

E[D-mated | j,FW,FD]

=
j mFD

(
(FW − 2 (−1 +m) FD)− 21−j (FW + FD)1−j (FW − 2 (−1 +m) FD)j

)
(FW + FD) (FW + 2mFD)

(19b)

At this stage, the mated females in each patch migrate to the cloud. In order to calculate
the density of W-mated females in the cloud, we combine (7) for the probabilities
P (FW | V FW) and P (FD | V FD) of having FW and FD mated females in a patch, (8)
for the probability P (j | FW,FD) that the FW + FD mated females generate j offspring
in total in the patch (since scenario 3 and 5 share the same (local) density dependent
reproduction mechanism) and (19a) for the expected number of W-mated females,
conditional on j offspring from FW and FD mated females in the patch. Their product
is then summed over all possible values of FW,FD and j to give the average number of
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W-mated females across all patches, and is then divided by V , to give the expression
for F ′W, the density of W-mated females in the cloud in generation t+ 1:

F ′W = e−V (FW+FD)

V

∞∑
FW=1

∞∑
FD=0

V FW+FDe
− 2 (FW+FD)R

1+α (FW+FD)FW
FWFD

FDFW

2 (FW + FD)(FW + 2mFD)FW!FD!

×
∞∑
j=2

1
j! j (2j(FW + 2 (1−m) FD)− 2 (FW + FD)1−j(FW + 2 (1−m) FD)j)

×
(

R (FW + FD)
1 + α (FW + FD)

)j

The innermost summation over j can be calculated analytically so the expression above
reduces to a double infinite sum over FW and FD:

F ′W = Re−V (FW+FD)

×
∞∑

FW=1

∞∑
FD=0

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FWFD
FDFW(FW + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW!FD!
(20a)

Similar analysis gives F ′D, the density of D-mated females in the cloud:

F ′D = 2mRe−V (FW+FD)

×
∞∑

FW=0

∞∑
FD=1

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FWFD
FDFD(FW + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(20b)

The change of variables S = V (FW + FD) and z = FD/FW gives:

S ′ = Re−S
∞∑

FW=0

∞∑
FD=0

(FW + 2mFD)C(FW,FD, S, z, R,m, α) (21a)

z′ = 2m
∑∞

FW=0
∑∞

FD=1 FD C (FW,FD, S, z, R,m, α)∑∞
FW=1

∑∞
FD=0 FW C (FW,FD, S, z, R,m, α) (21b)

where

C (FW,FD, S, z, R,m, α) =

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
zFD

(
S

1+z

)FW+FD (FW + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD! .
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The double infinite sums in (21a) and (21b) can be calculated numerically in an efficient
way by noting that the maximum value of the summands occurs at {FWmax,FDmax}={
IntegerPart

[
S

1+z

]
± 1, IntegerPart

[
Sz

1+z

]
± 1

}
and they decay rapidly for values of FW

and FD below and above FWmax and FDmax, respectively, with the infinite sums thus
converging quickly without needing to calculate a prohibitively large number of the
coefficients C.

In all the scenarios analysed thus far we have seen that the Driving Y tends to fixation
and therefore, if m is sufficiently high, the population is eliminated. Numerical analysis
of (21a) and (21b) shows that is not the case for this scenario. Instead, there is a range
of possible outcomes. For most combinations of R and α, the Driving Y will invade
and establish in a population, and then there are three possible outcomes, according to
the strength of drive. If m is low, then the Driving Y will go to fixation and suppress
(but not eliminate) the population. If m is somewhat higher, then Driving Y does
not eliminate the Wildtype Y, but instead goes to a stable intermediate equilibrium
frequency; again, the population is suppressed but not eliminated. Finally, for some
values of R and α, if m is higher still, then the frequency of the Driving Y and the
population size tend to a limit cycle, oscillating forever. These different behaviours
are illustrated in Figure 2, and Figure 3a shows, for a specific value of m(= 0.95) the
dynamics for different values of R and α.

There is also a region of parameter space in which R is sufficiently low that the wildtype
population is not able to establish from rare, but instead there needs to be a critical
density of females for the population to establish (i.e., it shows a strong Allee effect;
Courchamp et al. (2008)). Within this region, it seems a population can be eliminated if
a Driving Y suppresses it below its invasion threshold, though we have not investigated
this phenomenon in detail as it occurs only with relatively small R.

For parameter values in which the Driving Y is neither fixed nor lost, linear stability
analysis of the fixed point corroborates the simulations. We set S = S∞, z = z∞ in (21a)
and (21b), solve (numerically) for the fixed point {S∞, z∞} that corresponds to a given
parameter set {R,m, α} and then evaluate the 2x2 Jacobian matrix J (S, z;R,m, α) of
the RHS of (21a) and (21b) at the fixed point to obtain J∗ = J (S∞, z∞;R,m, α). For
an extensive range of parameters {R,m, α}, the matrix J∗ has a conjugate pair of com-
plex eigenvalues λ which indicates the presence of oscillatory dynamics around the fixed
point {S∞, z∞}. When the modulus |λ| < 1, the fixed point is linearly stable and the
variables exhibit dampened oscillations and asymptotically converge to it. When |λ| > 1,
the variables oscillate on a unique and stable closed invariant curve that bifurcates from
the (unstable) fixed point. The interface between these two regions, i.e., where |λ| = 1,
represents surfaces of Neimark-Sacker bifurcation points in the three-dimensional param-
eter space {R,m, α}. We have also shown numerically that the various nondegeneracy
conditions associated with Neimark-Sacker bifurcations hold (Kuznetsov, 2004; Khan,
2016) and that the Neimark-Sacker bifurcation is supercritical. For example, one such
Neimark-Sacker bifurcation triplet is {R,m, α} = {6.0, 0.01, 0.946389}; keeping R amd
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Figure 2: Dynamics and impact of a Driving Y chromosome in a spatial model with
local reproduction followed by local mating (Scenario 5). Example dynamics for
3 different strengths of drive (m), shown as time-courses (top; population density
in blue, proportion females mated to Driving Y males in red) and as phase planes
(bottom), illustrating fixation of the Driving Y (left), an oscillatory approach to a stable
intermediate fixed point (middle), and an approach to a stable limit cycle (right). In
each case R = 6, α = 0.01.
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Figure 3: Numerical analysis of Driving Y dynamics with local reproduction followed
by local mating (Scenario 5). (a) Critical values of R and α where the dynamics change
from the Driving Y going to fixation, to a stable intermediate fixed point, and to a
stable limit cycle, for m = 0.95. The red shaded area at the bottom shows the region
where the wildtype population exhibits an invasion threshold (i.e., Allee effect), and
the effect of a Driving Y can depend on the initial conditions, potentially including
population elimination due to the population being driven below its invasion threshold.
(b) Closed invariant curves for m = 0.95 to 1.00; in each case R = 6, α = 0.01. (c)
Contour plot showing the change across generations in the log-odds that a female has
mated a Driving Y male (calculated as Ln[z′/z], where z is the ratio of D- to W-mated
females) as a function of the initial log-odds and population density, for R = 6, α = 0.01
and m = 0.95. Solid line shows the 0 contour (no change); contours to the left show
negative values (reductions in the D/W ratio), while contours to the right show positive
values. Note that all the contours are less than Ln[2m] ≈ 0.642, which is the change
in the D/W ratio due to drive, indicating that throughout the investigated parameter
space the effect of mating selection is to reduce this ratio.
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α constant, we have |λ| > 1 for m > 0.946389 and a unique closed invariant curve
exists for every value of 1 ≥ m > 0.946389. The size/area of the closed invariant curve
(and correspondingly the amplitude of the oscillations in the state variables) increases
monotonically from zero at m = 0.946389 to a maximum at m = 1 (Fig. 3b). The
period of the oscillations in the vicinity of the bifurcation point, i.e. at m ' 0.946389,
is ' 2π/Im[λm=0.946389] = 14.03 and decreases monotonically to 10.30 generations as
the amplitude increases as m increases from m = 0.946389 to 1. There is also a range
of parameters {R,m, α} (generally for lower values of m) where the eigenvalues are real
and with modulus < 1; the variables decay monotonically to a stable fixed point and
Driving Y fixation.

Further insight can be gotten by considering the ratio z = FD/FW, and how that
changes from one generation to the next (i.e., z′/z). In all previously considered
scenarios this ratio is equal to 2m, but here it is more complex, and is a function of
both the frequency of the Driving Y and, notably, population density, with low densities
associated with reductions in the frequency of the Driving Y (Fig. 3c). This total
change in the frequency of the Driving Y across a generation can be partitioned between
the two relevant events in the life cycle, mating and reproduction. The change in z
due to reproduction (which isolates the effect of drive) can be quantified by comparing
M′

D/M′
W, i.e., the ratio of D-males to W-males, to FD/FW, i.e. the ratio of the

mated females that gave rise to them. Equations (12) and (13) from Scenario 3 hold
here too and show that the quantity (M′

D/M′
W) / (FD/FW) is always 2m, regardless

of frequency or density. The change in z due to mating is derived from the D/W
ratio in mated females to that in the males they had the opportunity to mate with
(i.e., (F ′D/F ′W) / (M′

D/M′
W), all in the same generation), which isolates the effect of

differential mating success or sexual selection. In all cases investigated this ratio is less
than 1, indicating a reduction in the D/W ratio, and particularly so at low densities.
This is because D-males typically have fewer females to mate with than W-males,
because they have fewer sisters, and the difference is greatest at low densities, when
sisters are a greater proportion of the potential mates. At the low-density limit, where
patches receive at most one female and mating in the next generation will necessarily
be between siblings, patches settled by W-mated females will produce more daughters,
and therefore more W-mated females, than patches settled by D-mated females will
produce D-mated females, and so the frequency of W increases. By contrast, when
population density is high and many females settle in each patch, the difference in
mating success is much reduced, and the advantage of the Driving Y due to its biased
inheritance predominates.

In summary, the one life history scenario we have analyzed in which reductions in
density lead to an increased probability of inbreeding shows population persistence
regardless of how strong the drive is. This is because Driving Y males have reduced
mating success, particularly at low densities, because they have fewer sisters. To
further test the hypothesis that it is inbreeding which is protecting the population from
elimination, we considered two additional scenarios, in which there is an additional
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stage of either males or females dispersing before mating (Scenarios 6 and 7, Fig. 1). In
either case sib-mating is prevented, and the result, as expected, is the Driving Y goes
to fixation, and, for sufficiently high m, the population is eliminated (Supplementary
Information). Finally, patches in Scenario 5 are arenas for both local density-dependent
reproduction and local mating, but it can be shown that only the latter role is needed
for the persistence of the Wildtype Y and the population: if reproduction depends on
global rather than local density (as if females competed in the cloud for resources that
determined their fecundity after settling in patches), the same qualitative outcomes are
obtained.

3 Homing
To investigate the generality of these results we now consider the same life history
scenario (local reproduction followed by local mating, then dispersal) and a completely
different form of population suppression gene drive that is autosomal, is transmitted to
1/2 < d ≤ 1 of progeny of both male and female heterozygotes, has no effect on the
fitness of heterozygotes, and causes homozygotes to die as embryos. Such a gene drive
has no effect on the sex ratio, and in non-spatial models (with d < 1) it does not tend
to fixation in a population, but instead to an intermediate equilibrium frequency, but
still can impose a sufficient load on a population to eliminate it.

We consider two types of alleles, the wild type allele W and the drive allele D, that are
found in 3 female genotypes, FWW, FWD, FDD, and 3 male genotypes, MWW, MWD,
MDD. In this model we assume that both FDD and MDD die as embryos so the only
mated females that are possible are WW/WW, WW/WD, WD/WW and WD/WD
(using the notation female genotype / male genotype). WW/WW females only produce
WW offspring, WW/WD and WD/WW females give WW and WD offspring with
proportions (1− d) : d, and WD/WD females give WW, WD and DD offspring with
proportions (1− d)2 : 2 d (1− d) : d2 and, as noted, the DD offspring die early. In this
model there is no sex bias so male and female offspring are produced, on average, in
equal numbers.

Because transmission rates are equal in the two sexes and there are no heterozygous
fitness effects, WW/WD and WD/WW mated females behave identically and can
be grouped together so we define {D0,D1,D2} as the cloud densities of WW/WW,
(WW/WD + WD/WW) and WD/WD mated females in generation t. The number of
WW/WW, (WW/WD + WD/WW) and WD/WD mated females settling in a patch is
Poisson-distributed with means {VD0,VD1,VD2}, and therefore the probability of
having {D0, D1, D2} mated females in a patch is

P (D0, D1, D2 | VD0, V D1, V D2) = e−V (D0+D1+D2) VD0+D1+D2 DD0
0 DD1

1 DD2
2

D0!D1!D2!
(22)

The probability P (iFWW, jF − iFWW, iMWW, j − iMWW − jF | j,D0, D1, D2) that the
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{D0, D1, D2} mated females generate {jF , j − jF} female and male offspring, split
as {iFWW, jF − iFWW, iMWW, j − iMWW − jF}, is:

P (iFWW, jF − iFWW, iMWW, j − jF − iMWW | j,D0, D1, D2)

=
2−j j! (d(D1 + 2 (1− d)D2))j−iFWW−iMWW

(
D0 +D1 (1− d) + (1− d)2D2

)iFWW+iMWW(D0 +D1 + (1− d2)D2)−j

iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)!

where {iFWW, jF − iFWW, iMWW, j − jF − iMWW} are the numbers of FWW, FWD,
MWW and MWD (viable) offspring, respectively (FDD and MDD offspring die as
embryos and we only focus on viable offspring).

Female and male offspring in the patch are paired randomly to generate mated females
of WW/WW, (WW/WD + WD/WW) and WD/WD types. By averaging over all
possible probability-weighted values of iFWW, iMWW and jF , we obtain the expected
numbers of mated females in the patches, conditional on {j,D0, D1, D2}:

E[{WW/WW, (WW/WD + WD/WW),WD/WD} | j,D0, D1, D2]

=
j−1∑
jF=1

P (jF | j)
jF∑

iFWW=0

j−jF∑
iMWW=0

P (iFWW, jF − iFWW, iMWW, j − iMWW − jF | j,D0, D1, D2)iFWW
iMWW

j − jF
, iFWW

(j − jF − iMWW)
j − jF

+ (jF − iFWW) iMWW

j − jF
, (jF − iFWW)(j − jF − iMWW)

j − jF


= (1− 21−j) j

(D0 +D1 + (1− d2)D2)2

(D0 + (1− d) (D1 + (1− d)D2))2

2 ,

d (D1 + 2 (1− d)D2) (D0 + (1− d) (D1 + (1− d)D2)) ,
d2(D1 + 2 (1− d)D2)2

2


where P (jF | j) = 2−j j!

(j−jF )! jF ! is the probability of having jF female offspring out of j
total offspring.

In this model all types of mated females generate offspring, but the D2 WD/WD
females in a patch only generate, on average, a fraction of (1− d2) viable offspring (the
remainder of the offspring, namely FDD and MDD, die as embryos and thus do not
compete with other genotypes). The total number of offspring produced in a patch is
Poisson-distributed and the probability of having generated j viable offspring in total
in a given patch is then

P (j | D0, D1, D2) =
e
−

2R(D0+D1+(1−d2)D2)
1+α (D0+D1+(1−d2)D2)

(
2R (D0+D1+(1−d2)D2)
1+α (D0+D1+(1−d2)D2)

)j
j!

and the expected numbers of mated females in the patches, conditional on {D0, D1, D2},
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is obtained by averaging over all probability-weighted values of j from 2 to infinity:

E[{WW/WW, (WW/WD + WD/WW),WD/WD} | D0, D1, D2]

=
∞∑
j=2

P (j | D0, D1, D2)E[{WW/WW, (WW/WD + WD/WW),WD/WD} | j,D0, D1, D2]

= R (1− e−
R (D0+D1+(1−d2)D2)

1+α (D0+D1+(1−d2)D2) )
(D0 +D1 + (1− d2) D2) (1 + α (D0 +D1 + (1− d2)D2))
×
{

(D0 + (1− d)D1 + (1− d)2 D2)
2
, 2 d (D1 + 2 (1− d)D2) (D0 + (1− d)D1 + (1− d)2 D2),

d2 (D1 + 2 (1− d)D2)2
}

(23)

At this stage the mated females in each patch migrate to the cloud. In order to calculate
the densities {D′0,D′1,D′2} of the newly mated females in the cloud for generation t+ 1,
we average the expected numbers of newly mated females in a patch, calculated in
(23), over all values {D0, D1, D2} of mated females that arrived in the patches from the
cloud during generation t, weighted by P (D0, D1, D2 | V D0, V D1, V D2) in (22).

{D′0,D′1,D′2}

=
∞∑

Dtot=0

Dtot∑
D2=0

Dtot−D2∑
D1=0

P (D0, D1, D2 | V D0, V D1, V D2)

E[{WW/WW, (WW/WD + WD/WW),WD/WD} | D0, D1, D2]

=
e−V (D0+D1+D2)R

V

∞∑
Dtot=0

V Dtot DDtot
0

Dtot∑
D2=0

(1− e−
R (Dtot−d

2 D2)
1+α (Dtot−d2 D2) ) (D2

D0
)D2

D2! (Dtot − d2 D2) (1 + α (Dtot − d2 D2))

×
Dtot−D2∑
D1=0

(D1
D0

)D1

D1!

{
(Dtot − dD1 + (d− 2) dD2)2,

2 d (D1 + 2 (1− d)D2) (Dtot − dD1 − (2− d) dD2), d2 (D1 + 2 (1− d)D2)2
}

(24)

where Dtot = D0 +D1 +D2.

The innermost sum in D1 can be calculated analytically so (24) for {D′0,D′1,D′2} reduces
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to an outer infinite sum in Dtot and an inner finite sum in D2:

{D′0,D′1,D′2} = Re−V (D0+D1+D2)
∞∑

Dtot=0
V Dtot−1(D0 +D1)Dtot−2

×
Dtot∑
D2=0

(
1− e−

R (Dtot−d
2 D2)

1+α (Dtot−d2 D2)

) (
D2

D0+D1

)D2

D2! (Dtot −D2)! (Dtot − d2 D2) (1 + α (Dtot − d2 D2))

{
d2 D2

2 ((2− d)D0 + (1− d)D1)2

+Dtot (d2D0D1 +Dtot (D0 + (1− d)D1)2)− dD2 (dD0D1 + 2Dtot ((2− d)D2
0 − (3− d) (1− d)D0D1

−(1− d)2D2
1)),−2 d2 D2

2 ((2− d)D0 + (1− d)D1) (2 (1− d)D0 + (1− 2d)D1)− 2 dDtotD1 ((d−Dtot)D0

+ (−1 + d)DtotD1)− 2 dD2 (−dD0D1 +Dtot (2 (−1 + d)D2
0

+(−3 + (8− 3 d) d)D0D1 + (−1 + (4− 3 d) d)D2
1)), d2 D2

2 (2 (−1 + d)D0 + (−1 + 2 d)D1)2

+d2 DtotD1 (D0 +DtotD1) + d2 D2D1 ((−1− 4 (−1 + d)Dtot)D0 + 2 (1− 2d)DtotD1)
}

(25)

The recurrence vector equation (25) is sufficient to describe the dynamics of this system
and is used to calculate the densities of mated females in the cloud from one generation
to the next.

To aid understanding, we present the results of the model in terms of S =
V (D0 +D1 +D2), the (global) average number of mated females per patch, p =
(D1/2 + D2)/ (D0 +D1 +D2), the frequency of D heterozygotes that participated
in the matings (and twice the frequency of the D allele itself), and f = 1 −
(D1/ (D0 +D1 +D2))/ (2 p(1− p)), analogous to the standard inbreeding coefficient,
except it measures the correlation of mates rather than of fusing gametes. If we iterate
the transition equations using different parameter values and initial conditions then,
assuming the pure wildtype population does not have an invasion threshold, the driver
typically either goes to a stable fixed point or, for stronger drive, to a stable limit
cycle, and in either case the population persists, regardless of how strong the drive is.
Example dynamics are shown in Fig. 4a.

Again, we can partition the total change in frequency of the construct due to the various
processes occurring through the life cycle. In this case, it is more convenient to measure
changes in raw frequencies. There is no differential mating success, so the two relevant
processes are drive and differential survival due to the death of DD embryos. It can
be shown that if p and f are defined for the adults of one generation, then the ratio
of the frequency of the D allele in the zygotes they produced to that in the adults
(p), which isolates the effect of drive, is 2 d, and the ratio of the frequency in the next
generation of adults to the zygotes from which they were derived, which isolates the
effect of differential mortality, is (1− d p− d (1− p) f)/(1− d2 p (p+ (1− p) f)). As
expected, it is always <1.

Note that population size does not have an immediate impact on the change in construct
frequency due to drive or mortality selection (it does not appear in the above expressions),
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Figure 4: Population persistence in spatial models of a homing construct with local
reproduction followed by local mating (same as in Scenario 5 for the Driving Y). (a)
Example time courses and phase plots for R = 6, α = 0.005 and three different strengths
of drive d. For ease of viewing the time courses, the heterozygote frequency has been
multiplied by 100 and the correlation of mates by 1000. (b) Contour plot showing
how the natural log of the ratio of construct frequency in generation t+ 2 to that of
generation t + 1 depends on the population size and frequency of heterozygotes in
generation t. Changes calculated for an initial correlation of mates of f = 0.2; other
values of f give comparable results. Calculations are for d = 0.995, R = 6, α = 0.005.
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but it does have a delayed effect. In particular, a smaller population density in generation
t leads to a larger correlation between mates (f) in generation t+ 1, because there is an
increased frequency of mating between siblings. This larger correlation in generation
t+ 1 leads to a larger reduction in the frequency of the driver from generation t+ 1 to
generation t+ 2, because of the lower productivity of WD/WD mated females, which
in turn is due to the differential embryonic mortality – the death of DD embryos – in
generation t+ 2. This delayed inverse density-dependent selection against the driver is
illustrated in Fig 4b.

Thus, though the details differ from the case of Driving Y, the overall result remains
the same: an increased frequency of inbreeding at low population densities leads to
increased selection against the driver, reducing its frequency and allowing the population
to persist, regardless of how strong the drive is.

4 Inbreeding depression
Our analyses have demonstrated that when reductions in population density lead to an
increase in inbreeding, that can increase the natural or sexual selection against the driver
and allow the population to persist. However, inbreeding can only rescue a population
to the extent that the inbred progeny are themselves fit enough to contribute. Thus far
we have assumed no difference in fitness between inbred and outcrossed progeny. To
further test the hypothesis that inbreeding plays a central role in the observed dynamics,
we now allow for inbreeding depression, in which inbred progeny have reduced fitness.
At the limit of inbred progeny being completely inviable or sterile, we might expect the
dynamics to revert to population elimination.

4.1 Driving Y
This scenario involves the same local mating, global mixing of mated females, and local
reproduction steps as Scenario 5. However, in this model some or all of the females
mated by sibling males are sterile and are thus removed from the mated females that
disperse to new patches for local reproduction. We define the inbreeding depression
coefficient 0 ≤ δ ≤ 1 as the probability a sibling-mated female is sterile; δ also represents
the fraction of sibling-mated females that is removed from the ensemble of mated females
that travel to the cloud and then disperse into patches (mathematically, there is no
difference between removing the sterile mated females before or after they travel to the
cloud). As in Scenario 5, the FW + FD mated females generate j offspring in total in
the patch. However in this scenario, the j offspring are made up of iFW females from
W-mated mothers, j− iFW − iM females from D-mated mothers, i2 W-males and iM− i2
D-males (where iM = i2 + i3 is the total number of male offspring). The probability of
a {iFW , j − iFW − iM, i2, iM − i2} quadruplet is derived from a multinomial distribution
with j trials and normalised weights { FW/2

FW+FD
, FD(1−m)

FW+FD
, FW/2

FW+FD
, mFD

FW+FD
}, since, on average,
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fractions of 1/2 and 1−m of W-mated and D-mated females’ offspring are female, with
the rest of the offspring being W- and D-males, respectively.

Hence, the probability P(iFW , j−iFW−iM, i2, iM−i2 | j,FW,FD) of having {iFW , j−iFW−
iM, i2, iM − i2} offspring in the patch (conditional on j total offspring from {FW,FD}
mated females) using the weights above is

P
(
iFW , j − iFW − iM, i2, iM − i2 | j,FW,FD

)
=

(FW
2 )iFW +i2 (mFD)−i2+iM (FD(1−m))−iFW−iM+j j!
iFW ! i2! (iM − i2)! (j − iFW − iM)! (FW + FD)j

(26)
In order to remove, on average, a fraction 0 ≤ δ ≤ 1 of sibling-mated females from the
total number of new mated females in the patch, we present a proof by induction in
the Supplement (Section 7.3) that the expected number of new sibling-mated W-mated
females in the patch, conditional on {iFW , j−iFW−iM, i2, iM−i2} offspring from {FW,FD}
mated females, is iFW i2

iM FW
. A similar proof, not shown, gives the expected number of new

sibling-mated D-mated females in a patch, conditional on {iFW , j− iFW− iM, i2, iM− i2}
offspring from {FW,FD} mated females, as (j−iM−iFW ) (iM−i2)

iM FD
.

As a result, the expected number of new fertile W-mated females in a patch, conditional
on {iFW , j − iFW − iM, i2, iM − i2} offspring from {FW,FD} mated females is:

E[fertile W-mated females | iFW , j − iFW − iM, i2, iM − i2,FW,FD]

= i2 ((j − iM) FW − δ iFW)
iM FW

(27)

(the probability that each new sibling-mated female is sterile is δ, so we removed a
fraction δ of the sibling-mated females’ contribution to the total number of expected
number of fertile mated females in the patch).

To obtain the expected number of W-mated females in the patch, conditional on
{j,FW,FD}, we now sum over all possible iFW , iM and i2, noting that iM ≥ i2 ≥ 1 to
ensure the presence of at least one W-male and j − 1 ≥ iM to ensure the presence of at
least one female:

E[fertile W-mated females | j,FW,FD]

=
j−1∑
iM=1

iM∑
i2=1

j−iM∑
iFW =0

E[fertile W-mated females | {iFW , j − iFW − iM, i2, iM − i2},FW,FD]

× P (iFW , j − iFW − iM, i2, iM − i2 | j,FW,FD)

=====⇒
(26),(27)

E[fertile W-mated females | j,FW,FD]

= FW

FW + 2mFD
2−1−j j (FW + FD)−1−j (FW − δ + 2 (1−m) FD)(FW + 2 (1−m) FD)−1+j

× (−2 (FW + FD) + 2j (FW + FD)j(FW + 2 (1−m) FD)1−j) (28)
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At this stage the fertile mated females in each patch migrate to the cloud. In order
to calculate the density of W-mated females in the cloud, we combine (7) for the
probabilities P (FW | V FW) and P (FD | V FD) of having FW and FD mated females in a
patch, (8) for the probability P (j | FW,FD) that the FW + FD mated females generate
j offspring in total in the patch and (28) for the expected number of W-mated females,
conditional on j offspring from FW and FD mated females in the patch. Their product
is then summed over all possible values of FW,FD and j to give the average number of
W-mated females across all patches, and is then divided by V , to give the expression
for F ′W, the density of W-mated females in the cloud in generation t+ 1 (the innermost
summation over j is calculated analytically so the result below is in terms of a double
infinite sum over FW and FD):

F ′W = 1
V

∞∑
FW=1

∞∑
FD=0

P(FW | V FW)P (FD | V FD)
∞∑
j=0

P (j | FW,FD)E[fertile W-mated females | j,FW,FD]

=⇒ F ′W =

Re−V (FW+FD)
∞∑

FW=1

∞∑
FD=0

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FW FD
FD FW (FW − δ + 2 (1−m) FD)

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(29a)

Similar analysis gives F ′D, the density of D-mated females in the cloud:

F ′D =

2mRe−V (FW+FD)
∞∑

FW=0

∞∑
FD=1

V −1+FW+FD

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW

FW FD
FD FD (FW + 2 (1−m) (FD − δ))

(FW + 2mFD) (1 + α (FW + FD)) FW! FD!
(29b)

The RHSs of (29a) and (29b) contain a negative term, proportional to δ, which
represents the population suppression effect due to inbreeding. When δ = 0, i.e. when
the sibling-mated females are all fertile, (29a) and (29b) reduce to (20a) and (20b).

We focus on the extreme case of δ = 1 (i.e., females mated to their brothers produce no
viable offspring) and introduce the change of variables S = V (FW + FD), z = FD/FW
and FW = F− FD. We will show that the drive always goes to fixation by showing that
the quantity X = z′

z
− 1, derived from the equations above, is always positive:

X = z′

z
− 1 =

∑∞
F=1 S

FAF[m,R,α,z]

∑∞
F=1

( S
z+1)F

1+αF
∑F

FD=0

((1−2m)FD+F−1)zFD

(
1−e
−
R ((2m−1)FD+F)

1+αF

)
(F−FD)!FD!((2m−1)FD+F)

where the F-th coefficient AF = AF [m,R, α, z] is
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A = ∑F
FD=0

(
1− e−

R((2m−1)FD+F)
1+αF

)
× (FD

2 (2m+z)(1−2m)+FD (2m(F(z+1)−2(1−m))−z)+(1−F)F z)zFD−1

(z+1)F(1+αF)(F−FD)!FD!((2m−1)FD+F) =

−
(2m+z)

e (2m−1)R
1+αF +z−(z+1)e−

FR
1+αF

(
ze
− (2m−1)R

1+αF +1
z+1

)F


(z+1)(F−1)!(1+αF)
(
e

(2m−1)R
1+αF +z

) +

(z(2Fm+F−1)+4m(F+m−1))

(
1−e−

FR
1+αF

(
z e

R−2mR
1+αF +1
z+1

)F)
(2m−1)zF!(1+αF) −

2m((2F−1)z+2F+2m−2)
(

2F1(−F, F
2m−1 ; F+2m−1

2m−1 ;−z)−e− FR
1+αF 2F1

(
−F, F

2m−1 ; F+2m−1
2m−1 ;−e

R−2mR
Fα+1 z

))
(2m−1)z F!(1+αF)(z+1)F

where 2F1 (−F, a; a+ 1;x), F ∈ N, is a polynomial of order F in x and is a special case
of the Gauss Hypergeometric Function.

The denominator of X above is the transformed expression for F ′W, so it is always
positive and can be ignored. We postulate that all the coefficients AF in the numerator
are positive so that X is always positive. For a given set of parameters m,R, α, A only
depends on z ∈ [0,∞), i.e. it does not depend on S. At z = 0,

AF [m,R, α, 0] =
(2m−1)

(
e
− FR

1+αF−1
)

+F
(
e
− FR

1+αF

(
1−e−

(2m−1)R
1+αF

)
+(2m−1)

(
1−e−

R(F+2m−1)
1+αF

))
F (F−2)! (1+αF) (F+2m−1)

which is clearly positive for all m, R, and α. It can also be shown analytically that
AF [m,R, α, z →∞] → 0 for all m, R, and α. We have evaluated AF [m,R, α, z] for
a large set of m, R, and α and we always find that it decreases monotonically from
AF [m,R, α, z = 0] to 0 asymptotically as z →∞. Based on our analysis, we postulate
that AF [m,R, α, z] > 0 for all values of m, R, α and z. If so, it also means that
X = z′

z
− 1 > 0 for all values of m, R, α, i.e. the ratio z = FD/FW is always greater

in the next generation, irrespectively of the values of S and z (or FW and FD) in the
current generation. This can only result in fixation of the Driving Y as t→∞, and, if
m is sufficiently large, population elimination (Fig. 5a). Numerical analysis suggests
that z does not go to infinity for δ < 1, but still there is a large parameter range in
which the population is eliminated.

4.2 Homing
We now investigate the effect of inbreeding depression on the dynamics of a homing
construct. For the sake of simplicity, we will focus on the case of d = 1, i.e. where all
the progeny of WW/WD and WD/WW mated females are WD males and females and
all the progeny of WD/WD mated females are DD males and females, while, as before,
all the progeny of WW/WW mated females are WW males and females. As we assume
that DD males and females die as embryos, in this limit case of d = 1 we can ignore
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Figure 5: Time courses for population density after the release of a gene drive, demon-
strating that strong inbreeding depression (δ = 1) can lead to population elimination.
Top: A Driving Y (R = 6, α = 0.01,m = 0.95). Bottom: A homing construct
(R = 6, α = 0.005, d = 1).
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WD/WD mated females as they do not produce viable offspring.

We therefore consider 3 types of mated females: non-sibling-mated WW/WW females,
sibling-mated WW/WW females and (WW/WD + WD/WW) mated females. The
latter are all non-sibling-mated as they represent pairings between a WW male or female
(i.e. an offspring of WW/WW mother) and a WD female or male (i.e. an offspring of a
(WW/WD + WD/WW) mother), which cannot ever be siblings as they are produced
from two different types of mother.

We define as {D0,D0S,D1} the cloud densities of non-sibling-mated WW/WW, sibling-
mated WW/WW, and (WW/WD + WD/WW) mated females in generation t. Any
volume V in the cloud contains on average {V D0, V D0S, V D1} numbers of individuals.
In this model, the mated females in the cloud settle into patches with average numbers
of individuals equal to {V D0, V (1− δ)D0S,VD1}. The cloud density D0S of sibling-
mated females is derived from the entirety of the sibling-mated females in the patches.
We then only allow a fraction 1− δ of these females to disperse into patches.

We have assumed that the sibling-mated females that settle in the patches are the
(fully) fertile portion of the sibling-mated WW/WW females in the cloud, so once
settled in patches, they are indistinguishable from the non-sibling-mated WW/WW
females. They can therefore be combined inside each patch into a single cohort of
WW/WW mated females. A random sample of {D0, D1} WW/WW and (WW/WD +
WD/WW) mated females, different for each patch and Poisson-distributed with means
{V (D0+(1− δ)D0S), V D1}, is drawn from the cloud and settles in each patch (the
mean number of WW/WW females that settle in a patch is the sum of non-sibling mated
and fertile sibling mated females in the cloud). The probability of having {D0, D1}
mated females settle in a patch is

P (D0, D1 | {V (D0+(1− δ)D0S), V D1}) = e−V (D0+(1−δ)D0S+D1)V D0+D1DD1
1 (D0 + (1− δ)D0S)D0

D0!D1!
.

The mated females produce on aggregate j offspring. The number of successful offspring
that each mated female produces is Poisson-distributed with a mean λ = 2R

1+α (D0+D1) .
The probability that the D0 +D1 mated females generate j offspring in total in a given
patch is then

P (j | D0, D1) = e−λ (D0+D1) λj (D0 +D1)j
j! =

e
− 2R (D0+D1)

1+α (D0+D1)
(

2R (D0+D1)
1+α (D0+D1)

)j
j! .

Of the j offspring, jF are female and j − jF are male. The WW/WW females produce
{iFWW, iMWW}WW female and male offspring and the (WW/WD + WD/WW) females
produce {jF − iFWW, j − jF − iMWW} WD female and male offspring. The conditional
probability of having {{iFWW, iMWW}, {jF − iFWW, j − jF − iMWW}} offspring is:

P (jF , iFWW, iMWW | j,D0, D1) = 2−j j!DiFWW+iMWW
0 Dj−iFWW−iMWW

1 (D0 +D1)−j

iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)! .
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Each female offspring in the patch chooses a random male partner and the re-
sulting mated females fall into 3 categories: non-sibling-mated WW/WW, sibling-
mated WW/WW and (non-sibling) (WW/WD + WD/WW) females. As shown
in the Supplement for the Driving Y case, the expected fraction of new sibling-
mated females from offspring of n mothers is 1/n of the total new mated females
(and, as a result, the fraction of non-sibling mated females is (n − 1)/n). The
iMWW WW male and iFWW WW female offspring of D0 WW/WW females in the
patch produce, on average, { (D0−1) iFWW iMWW

D0(j−jF ) , iFWW iMWW
D0 (j−jF ) } non-sibling- and sibling-

mated WW/WW females. The expected number of each category, conditional
on {D0, D1} mated females settling in the patch, is thus derived by averaging
{ (D0−1) iFWW iMWW

D0(j−jF ) , iFWW iMWW
D0(j−jF ) ,

iFWW(j−iMWW−jF )+iMWW(jF−iFWW)
j−jF

} over all the probability
weighted values of j, jF , iFWW, and iMWW:

E[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1]

=
∞∑
j=2

P (j | D0, D1)
j−1∑
jF=1

jF∑
iFWW=0

j−jF∑
iMWW=0

P (jF , iFWW, iMWW | j,D0, D1)

{(D0 − 1) iFWW iMWW

D0(j − jF ) ,
iFWW iMWW

D0(j − jF ) ,
iFWW(j − iMWW − jF ) + iMWW(jF − iFWW)

j − jF

}

=
∞∑
j=2

j−1∑
jF=1

jF∑
iFWW=0

j−jF∑
iMWW=0

e
− 2R (D0+D1)

1+α (D0+D1)
(
D0
D1

)iFWW+iMWW
(

RD1
1+α (D0+D1)

)j
iFWW! iMWW! (j − iMWW − jF )! (jF − iFWW)! (j − jF ){(D0 − 1)iFWW iMWW

D0
,
iFWW iMWW

D0
, iFWW(j − 2 iMWW − jF ) + iMWW jF

}
=⇒ E[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1]

=

(
1− e−

R (D0+D1)
1+α (D0+D1)

)
RD0

(D0 +D1)(1 + α (D0 +D1))
{D0 − 1, 1, 2D1}

At this stage, the mated females in each patch migrate to the cloud. In order to calculate
the densities {D′0,D′1,D′2} of the newly mated females in the cloud for generation t+ 1,
we average the expected numbers of newly mated females in a patch, calculated above,
over all probability-weighted values {D0, D1} of mated females that arrived in the
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patches from the cloud during generation t (and divide by V ):

{D′0,D
′

0S,D′1}

= 1
V

∞∑
D1=0

∞∑
D0=0

P (D0, D1 | V (D0+(1− δ)D0S), V D1)

× E[{non - sib WW/WW, sib WW/WW, (WW/WD + WD/WW)} | D0, D1]

= 1
V

∞∑
D1=0

∞∑
D0=0

e−V (D0+(1−δ)D0S+D1)V D0+D1 DD1
1 (D0 + (1− δ)D0S)D0

D0!D1!

× (1− e−
R (D0+D1)

1+α (D0+D1) )RD0

(D0 +D1) (1 + α (D0 +D1))
{D0 − 1, 1, 2D1}

========⇒
D0=Dtot−D1

{D′0,D
′

0S,D′1}

= e−V (D0+(1−δ)D0S+D1)(D0 + (1− δ)D0S)R
∞∑

Dtot=1

V Dtot−1 (D0 + (1− δ)D0S +D1)Dtot−2

Dtot! (1 + αDtot)

× (1− e−
RDtot

1+αDtot ){(Dtot − 1) (D0 + (1− δ)D0S), (D0 + (1− δ)D0S +D1), 2 (Dtot − 1)D1}

where the variable change D0 = Dtot −D1 turns one of the infinite summations into a
finite one which is computed analytically, leaving only a single infinite summation in
1 ≤ Dtot <∞.

We now focus on the case of δ = 1, i.e. where none of the offspring from sibling matings
survive. Sibling-mated females can thus be ignored and the equation above simplifies to

{D′0,D′1} = {D0, 2D1} e−V (D0+D1)D0 R
∞∑

Dtot=1

V Dtot−1 (D0 +D1)Dtot−2

Dtot! (1 + αDtot)

× (1− e−
RDtot

1+αDtot )(Dtot − 1) ==⇒ D′1
D′0

= 2 D1

D0

The result above, i.e. the doubling of the ratio D1/D0 with every generation, means
that as t → ∞ the cloud will only contain (WW/WD + WD/WW) mated females
which in turn only produce non-viable DD offspring (given that d = 1). The population
will thus asymptotically go to 0 (Fig. 5b).

5 Discussion
The key role of sex and breeding system in the strength and consequences of gene drive
is well established, having been studied from theoretical, experimental and comparative
perspectives (Burt & Trivers, 2006; Agren & Clark, 2018). It is therefore reasonable to
expect that if a driver suppresses a population and that leads to an increased frequency
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of inbreeding, then there may be a limit to how far the suppression can go, regardless
the strength of the drive (Bull et al., 2019). Here we have presented modelling in
support of this reasoning.

First, we considered the fate of a Driving Y under different life history scenarios. In a
non-spatial model in which both mating and reproduction occur in a well-mixed cloud
(scenario 1), a Driving Y will gradually replace the Wildtype Y and go to fixation, and,
if drive (m) is high enough (relative to the population growth rate R), the population
will be eliminated. If reproduction occurs in the cloud and mating in patches (scenario
2), or vice versa (scenario 3), or if individuals mate and reproduce in a patch followed
by the offspring dispersing (scenario 4), then there is no qualitative difference in the
dynamics: the Driving Y goes to fixation and, if m is sufficiently high, the population is
eliminated. However, if the order of activities within patches is reversed, so that mated
females settle in patches and reproduce and then the offspring mate before returning
to the cloud (scenario 5), then there is a qualitative difference: the Driving Y will
only fix for m below a threshold value, and otherwise remains polymorphic, and the
population is suppressed but not eliminated regardless of how high m is. Conversely, if
this scenario is modified by interposing another round of dispersal of either males or
females between reproduction and mating (scenarios 6 and 7, see SI), then again the
Driving Y goes to fixation and, if m is sufficiently high, the population is eliminated.
Thus, the only life history scenario in which the probability of inbreeding increases at
low densities is the one at which allows indefinite persistence of both the wild type Y
chromosome and the population. This scenario has the same life cycle as Hamilton’s
(1967) much studied local mate competition model of sex ratio evolution, the difference
being in the ecology, where he considered the population size (number of females per
patch) to be exogenously fixed, we consider it a dynamic variable responding to the
presence of the Driving Y.

These results can be interpreted in terms of altruism: a Wildtype Y is altruistic
(compared to a Driving Y) in the sense of foregoing transmission to allow the production
of more females. That can be a useful thing to do if those extra females mate with
the W-males, but otherwise not. When population sizes are large, with many mated
females settling in a patch, the extra females produced by a W-male’s forbearance are
shared out equally among all the males in the patch, and so the W gains relatively
little, not enough to compensate for the reduced transmission. However, if population
sizes are very low, with at most 1 mated female settling in a patch, then the extra
daughters produced by the W-male all go to his W-bearing sons, and the frequency of
W increases.

Second, we have shown that the same life history scenario leads to the same qualitative
outcome (population persistence regardless of the strength of drive) for a gene drive
construct using the homing reaction to knock out an essential gene, though the precise
details differ. For a Driving Y, increased inbreeding means that the number of sisters a
male has is an important component of his fitness, and, unavoidably, Driving Y males
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will have fewer sisters than wildtype males. For autosomal drivers causing recessive
lethality, increased inbreeding means wildtype (WW) individuals are mating with
wildtypes, and drivers (WD) with drivers. In the absence of inbreeding depression,
mating with a sibling is more productive for wildtypes, producing a full complement of
offspring, than for drivers, who will be at increased risk of mating with another driver,
in which case only a fraction (1− d2) of their progeny will be viable.

Third, we have shown for both types of drive that if inbred progeny are prevented from
contributing to the population (by imposing strong inbreeding depression), then the
previous advantage of the wildtype at low density disappears and the results change
again, with sufficiently strong drive once more able to eliminate the population. For
a Driving Y, population persistence relies on the wildtypes having an advantage at
low densities because they can mate with their sisters, but if those matings do not
produce viable offspring, the advantage disappears. Similarly, for a homing construct,
the wildtype can have an advantage at low densities because mating between relatives
does not carry the risk of producing lethal DD offspring, but they are lethal just by
being inbred then again the advantage disappears.

Thus our modelling suggests that populations can persist in the face of strong gene drive,
even in the absence of resistance, if three requirements are met: the target population
shows spatial structure; reductions in population density lead to an increased probability
of inbreeding; and inbred progeny have sufficiently high fitness. The extent to which the
three criteria exist in a particular target species will need to be assessed on a case-by-case
basis. If the population is not eliminated, then it can still be significantly suppressed,
and this may be sufficient by itself for the purposes, or may be a useful component of a
multi-pronged elimination programme. In principle, populations may also be rescued
by selection for genetic variants that increase the frequency of inbreeding independently
of density, though, again, strong inbreeding depression will militate against such an
effect (Bull, 2016; Bull et al., 2019).

Inbreeding depression in our model reduces the population growth rate at low densities,
and therefore acts as an Allee effect (Luque et al., 2016). Even in our baseline model,
without inbreeding depression, there is a small region of low population growth rates
where the wildtype population shows a strong Allee effect, requiring a threshold density
to establish. This effect arises because at low densities, and low values of R, a single
female may not produce any sons to mate her daughters. Within this region of parameter
space it is possible for a Driving Y to suppress the population below the threshold density
and thereby eliminate it. The effect of including inbreeding depression is to increase
the region of parameter space in which a wildtype invasion threshold density exists
and elimination is possible. Most or all species show inbreeding depression, primarily
due to the unmasking of deleterious recessive mutations, and, all else being equal, the
magnitude of the effect is expected to be greater in populations that previously were
large and outcrossed (Tanaka, 2000; Frankham, 2005; Charlesworth & Willis, 2009).
Inbreeding depression is not the only possible source of an Allee effect: for example, low
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densities can also lead to difficulties in finding a mate (Courchamp et al., 2008). In our
model we have assumed that if there is a single male in the patch, then all females will
get mated, but for many species this assumption may not be valid. We would expect
that Allee effects due to difficulties in finding a mate (or any other source) could also
tip the balance from population persistence to elimination (see also Dhole et al. (2020)).
Interestingly, there will often be synergistic interactions between genetic and ecological
Allee effects (Wittmann et al., 2018). The possibility of exploiting Allee effects for pest
control more generally has been previously discussed (Liebhold & Bascompte, 2003;
Blackwood et al., 2018).

The interaction of gene drive and spatial processes have been modelled in many ways,
revealing a diverse array of effects (Dhole et al., 2020). In deterministic partial differential
equation models with local diffusion, sufficiently strong drive leads to population
elimination, though it takes longer than in a panmictic population (Beaghton et al.,
2016). On the other hand, stochastic spatial models have shown that populations can
persist even with arbitrarily strong drive, and identified three types of effect protecting
the population from elimination. First, in some cases it may be that the connectedness
of populations across the landscape is such that a drive, released in one part of the
landscape, does not reach some specific refugia populations before it itself goes extinct
(North et al., 2013; Eckhoff et al., 2017). This effect can be particularly acute in highly
seasonal environments, where a prolonged and severe dry season can lead to (transient)
population isolation, and a driver might reach a locale during the wet season, but not
attain a sufficiently high frequency to survive through a dramatic dry season bottleneck
(Eckhoff et al., 2017; North et al., 2019, 2020). In principle, the issue of refugia can be
addressed by more widespread releases, appropriately timed for the beginning of the
wet season (Lambert et al., 2018), ensuring the drive is introduced into all parts of the
landscape. Second, even if populations are sufficiently connected that the gene drive
eventually gets to all parts of the landscape, the population may nonetheless persist
because the wildtype is able to colonize previously cleared areas, and grow in abundance,
it taking some time for the driver to get there and suppress the population, by which
time the wild type has spread to another previously cleared location, resulting in a
phenomenon which has variously been referred to as “dynamic metapopulations” (North
et al., 2019), “colonization-extinction” dynamics (North et al., 2020), and “chasing”
dynamics (Godfray et al., 2017; Champer et al., 2021). Finally, in the model presented
in this paper we have seen that even with 100% global dispersal every generation, spatial
processes can protect a population from elimination if low densities lead to increased
inbreeding and inbred progeny are sufficiently fit, because it leads to selection against
the driver.

In each of these three cases there is something that keeps the wildtype and driver
alleles from direct maximal competition, be it refugia on an insufficiently connected
landscape, or a small spatial separation between colonizing wildtypes and chasing
drivers, or the random assortment of females into patches at low densities. We have
demonstrated that the last mechanism relies on inbreeding – the ability of brothers
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and sisters to successfully mate and reproduce – and suspect the same is true of the
second mechanism – that it depends on (or is greatly augmented by) the ability of a
single mated wildtype female to give rise to brothers and sisters that can mate and
establish a new population. This issue could be investigated by modifying our model
to have local (as opposed to global) dispersal. In the continuous-space local-dispersal
models of Champer et al. (2021), incorporating inbreeding depression appears to have
the expected effect of increasing the likelihood of elimination.

The models presented here incorporate the stochastic effects that necessarily arise
in dealing with discrete individuals, particularly at low densities, but nevertheless
are explicitly solvable, requiring no stochastic simulations or generation of random
numbers. They are also relatively simple, with only three parameters (R, α, m or d),
and are not intended to give precise quantitative predictions about the consequences
of a specific release in a specific species. Some of the previous simulation models that
have shown population persistence have been substantially more complex, aiming to
capture more faithfully the biology of one potential target species, Anopheles gambiae,
the main vector of malaria in Africa (North et al., 2013, 2019, 2020; Eckhoff et al., 2017).
Whether population persistence in these models is due solely to refugia and low density
inbreeding, or whether some other features of the models (e.g., spatial and temporal
heterogeneity, overlapping generations, etc) also promote population persistence remains
to be determined. It would be interesting to include inbreeding depression or other
strong Allee effects in these models to see how they affect the dynamics. There is good
evidence of inbreeding depression in mosquitoes including An. gambiae (Armbruster
et al., 2000; Baeshen et al., 2014; Turissini et al., 2014; Ross et al., 2019). We have
also modelled inbreeding depression in a simple way, with only a single fixed fitness
cost for females that have mated to a sibling, whereas it would be more realistic to
have the costs increase with successive generations of inbreeding, or to explicitly model
the deleterious recessive mutations that underlie inbreeding depression (Tanaka, 2000;
Wittmann et al., 2018). Over longer time periods these deleterious recessive mutations
might get purged (Bundgaard et al., 2021; Perez-Pereira et al., 2021), though only if
the population is not eliminated first.
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7 Supplementary Information

7.1 Scenario 6: Local reproduction followed by male dispersal
and local mating

This scenario (and the one that follows) are hybrids of previous scenaria. Here, mated
females settle randomly in patches, reproduce in a (locally) density dependent manner
(as in Scenario 5) but instead of allowing local male and female progeny to mate, the
male progeny from each patch migrate to the cloud and are then randomly re-assorted
back to patches (whereas the female progeny remain in the patches they were born in).
Mating then occurs locally (as in Scenario 5) and the resulting mated females rise back
to the cloud to be re-assorted back to patches.

Similarly to previous scenaria, the cloud densities of W- and D-mated females in gener-
ation t are {FW,FD}, so any volume V in the cloud contains on average {V FW, V FD}
numbers of individuals, We again let the mated females in the cloud settle into patches
with average numbers of individuals equal to {V FW, V FD}. A random sample of
{FW,FD} W- and D-mated females, different for each patch and Poisson-distributed
with means {V FW, V FD}, is drawn from the cloud and inserted in each patch.

As this scenario shares the same (local) density dependent reproduction mechanism
with Scenaria 3 and 5, we can use (12) and (13) for the densities M′

W and M′
D of

the male offspring that migrate to the cloud. A random sample of {MW,MD} W- and
D-males, different for each patch and Poisson-distributed with means {V M′

W, V M′
D},

is then drawn from the cloud and inserted in each patch.

We use (9) for the probability P (iF, iW, j − iF − iW | j,FW,FD) of having had {iF, iW, j−
iF−iW} female, W-male and D-male offspring in the patch (conditional onj total offspring
from {FW,FD} mated females). However, the male offspring in the patch have now
been replaced by {MW,MD} males that have settled in from the cloud.

The probability of k females, out of the iF females in a patch, becoming W-mated
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females is
(

MW
MW+MD

)k( MD
MW+MD

)iF−k iF!
k!(iF−k)! since every female undergoes a Bernoulli

trial in picking a male out of the MW W-males and MD D-males in her patch. The
expected number of W-mated females in the patch, conditional on {iF,MW,MD} , is
thus

iF∑
k=0

k

(
MW

MW + MD

)k( MD

MW + MD

)iF−k iF!
k! (iF − k)! = iF

MW

MW + MD

and, correspondingly, the expected number of D-mated females in the patch, conditional
on {iF,MW,MD} , is iF MD

MW+MD
.

We now derive the expected number of W- mated females in the patch, conditional on
iF local female offspring, by averaging over all possible Poisson-distributed MW W- and
MD D-males in the patch (with means {V M′

W, V M′
D}) and using (12) and (13) for

the densitiesM′
W andM′

D:

E[W-mated females | iF, j,FW,FD]

=
∞∑

MW=1

∞∑
MD=0

iF MW

MW + MD
P (MW | VM′

W)P (MD | VM′
D)

=
∞∑

MW=1

∞∑
MD=0

iF MW

MW + MD

e−V M
′
W(V M′

W)MW

MW!
e−V M

′
D(V M′

D)MD

MD!

= iF

(
1− e−V (M′W+M′D)

)
M′

W

M′
W +M′

D

= iF

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−FW−FD]
α (FW+FD)

FW

FW + 2mFD

Similarly, the expected number of D-mated females in the patch, conditional on iF local
female offspring, is given by

E[D - mated females | iF, j,FW,FD]

= 2miF

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−FW−FD]
α (FW+FD)

FD

FW + 2mFD
.

To obtain the expected number of W-mated females in the patch, conditional on
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{j,FW,FD}, we now sum over all possible iF and iW:

E[W - mated females | j,FW,FD] =
j∑

iF=1

j−iF∑
iW=0

E[W-mated females | iF, j,FW,FD]P (iF, iW, j − iF − iW | j,FW,FD) E[W-mated females | iF, j,FW,FD]× P (iF, iW, j − iF − iW | j,FW,FD)

=
j∑

iF=1

j−iF∑
iW=0

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

 iFFW

FW + 2mFD

× 2−iWFW
iW (mFD)−iF−iW

(
FW

2 + FD (1−m)
)iF j!

iF!iW! (j − iF − iW)!

=

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

FW j (FW + 2 (1−m) FD)

2 (FW + 2mFD) (FW + FD) .

Similar analysis gives the expected number of D-mated females in each patch, conditional
on {j,FW,FD}:

E[D - mated females | j,FW,FD] =1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

FD j m (FW + 2 (1−m) FD)

(FW + 2mFD) (FW + FD) .

To calculate F ′W, the density of W-mated females in the cloud in generation t + 1,
we average the expected number of W-mated females in the patches conditional on
{j,FW,FD} over all possible values of FW,FD and j and divide by V to convert the
mean number across all patches to a density in the cloud:

F ′W =1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

 FW

2 (FW + 2mFD)V

×
∞∑

FW=0

∞∑
FD=0

∞∑
j=1

j (FW + 2 (1−m) FD)
FW + FD

P (j | FW,FD)P (FW | V FW)P (FD | V FD)

=
R

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

FWe
−V (FW+FD) (−V (FW + FD))−

1+α
α (FW + 2 (1−m)FD) γ[1 + 1

α
,−V (FW + FD)]

(FW + 2mFD)α

Similarly, F ′D, the density of D-mated females in the cloud in generation t+ 1 is given
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by

F ′D

=

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α (FW+FD)

FW

2 (FW + 2mFD)V

×
∞∑

FW=0

∞∑
FD=0

∞∑
j=0

j (FW + 2 (1−m) FD)
FW + FD

P (j | FW,FD)P (FW | V FW)P (FD | V FD)

=
2mR

1− e−
e−V (FW+FD)(−V (FW+FD))−

1
α (FW+2FD m)Rγ[1+ 1

α ,−V (FW+FD)]
α(FW+FD)

FDe
−V (FW+FD) (−V (FW + FD))−

1+α
α (FW + 2 (1−m)FD) γ[1 + 1

α
,−V (FW + FD)]

(FW + 2mFD)α .

The change of variables S = V (FW + FD) and z = FD/FW gives

S ′ =
Re−S

−1 + e
e−SR(−S)−

1
α (1+2mz)γ[1+ 1

α ,−S]
α(1+z)

 (−S)−
1
α (1 + 2 (1−m) z) γ

[
1 + 1

α
,−S

]
α(1 + z)

(30a)

z′ = 2mz (30b)

As in earlier scenaria, given that 2m > 1, (30b) implies that z → ∞ as t → ∞ and
the Driving Y asymptotically fixes in the population and, for sufficiently large m, the
population will be eliminated.

7.2 Scenario 7: Local reproduction followed by female disper-
sal and local mating

In this scenario, mated females settle randomly in patches, reproduce in a (locally)
density dependent manner (as in Scenario 5 and 6) but instead of allowing local male
and female progeny to mate, the female progeny from each patch migrate to the cloud
and are then randomly re-assorted back to patches (whereas the male progeny remain
in the patches they were born in). Mating then occurs locally (as in Scenario 5 and
6) and the resulting mated females rise back to the cloud to be re-assorted back to
patches.

Similarly to previous scenaria, the cloud densities of W- and D-mated females in gener-
ation t are {FW,FD}, so any volume V in the cloud contains on average {V FW, V FD}
numbers of individuals, We again let the mated females in the cloud settle into patches
with average numbers of individuals equal to {V FW, V FD}. A random sample of
{FW,FD} W- and D-mated females, different for each patch and Poisson-distributed
with means {V FW, V FD}, is drawn from the cloud and inserted in each patch.
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As this scenario shares the same (local) density dependent reproduction mechanism with
Scenaria 3, 5 and 6, we can use (11) for the densities F ′U of the female offspring in the
cloud. A random sample of FU females, different for each patch and Poisson-distributed
with mean V F ′U, is drawn from the cloud and inserted in each patch.

We use (9) for the probability P (iF, iW, j − iF − iW | j,FW,FD) of having had {iF, iW, j−
iF − iW} female, W-male and D-male offspring in the patch (conditional on j total
offspring from {FW,FD} mated females). However, the iF female offspring in the patch
have now been replaced by FU females that have settled in from the cloud.

The probability of k females, out of the FU females that settle in a patch, becoming
W-mated females is

(
iW
j−iF

)k ( j−iF−iW
j−iF

)FU−k FU!
k!(FU−k)! since every female undergoes a

Bernoulli trial in picking a male out of the iW W-males and iD D-males in her patch. The
expected number of W-mated females in the patch, conditional on {FU, iW, j − iF − iW} ,
is thus

iF∑
k=0

k

(
iW

j − iF

)k (
j − iF − iW
j − iF

)FU−k FU!
k! (FU − k)! = FU

iW
j − iF

and, correspondingly, the expected number of D-mated females in the patch, conditional
on {FU, iW, j − iF − iW} , is FU

j−iF−iW
j−iF

.

To obtain the expected number of W-mated females in the patch, conditional on
{j,FW,FD}, we now sum over all possible iF and iW (note that iF = j is excluded from
the iF-summation as it would imply no male offspring for the females to mate with),
noting that the W-male fraction is iW

j−iF
:

E[W - mated females | FU, j,FW,FD]

=
j−1∑
iF=0

j−iF∑
iW=0

FU
iW

j − iF
P (iF, iW, j − iF − iW | j,FW,FD)

=
j−1∑
iF=0

j−iF∑
iW=1

FU
iW

j − iF
2−iWFW

iW(mFD)−iF−iW
(

FW

2 + FD(1−m)
)iF j!

iF!iW! (j − iF − iW)!

= FU

2−j FW

(
2j −

(
FW+2 FD−2mFD

FW+FD

)j)
FW + 2mFD

We now sum over all possible values of FU females:

E[W - mated females | j,FW,FD]

=
∞∑

FU=0
FU

2−j FW

(
2j −

(
FW+2 (1−m) FD

FW+FD

)j)
FW + 2mFD

e−V F
′
U(V F ′U)FU

FU!

= F ′U
2−j FW

(
2j −

(
FW+2 (1−m) FD

FW+FD

)j)
FW + 2mFD
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To calculate F ′W, the density of W-mated females in the cloud in generation t+ 1, we
sum over all possible values of FW,FD and j and divide by V ; we use (11) for the cloud
density F ′U of unmated females that settle in the patches before mating:

F ′W =
∞∑

FW=0

∞∑
FD=0

∞∑
j=1

F ′U
V

2−j FW

(
2j −

(
FW+2 (1−m) FD

FW+FD

)j)
FW + 2mFD

× P (j | FW,FD)P (FW | V FW)P (FD | V FD)

=
e−2V (FW+FD) (−V (FW + FD))−

1+α
α R (FW + 2 (1−m)FD) γ

[
1 + 1

α
,−V (FW + FD)

]
αV

×
∞∑

FW=0

∞∑
FD=0

e
− 2(FW+FD)R

1+α (FW+FD)

(FW + 2mFD) FW! FD! (V FW)FW (V FD)FD FW

×
∞∑
j=1

1
j!

2j −
(

FW + 2 (1−m) FD

FW + FD

)j( (FW + FD)R
1 + α (FW + FD)

)j

=
Re−2V (FW+FD) (−V (FW + FD))−

1+α
α (FW + 2 (1−m)FD) γ

[
1 + 1

α
,−V (FW + FD)

]
α

×
∞∑

FW=0

∞∑
FD=0

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FW (V FW)FW (V FD)FD

(FW + 2mFD) FW! FD! .

Similarly, we obtain F ′D, the density of D-mated females in the cloud in generation t+ 1:

F ′D =
2Rme−2V (FW+FD) (−V (FW + FD))−

1+α
α (FW + 2 (1−m)FD) γ

[
1 + 1

α
,−V (FW + FD)

]
α

×
∞∑

FW=0

∞∑
FD=0

(
1− e−

(FW+2mFD)R
1+α (FW+FD)

)
FD (V FW)FW (V FD)FD

(FW + 2mFD) FW!FD!

The change of variables S = V (FW + FD), z = FD/FW, and F = FW + FD gives

S ′ = −
e−2SR (−S)

−1
α (1 + 2 (1−m) z) γ

[
1 + 1

α
,−S

]
α (1 + z)

×
∞∑

F=1

SF
(
−1 +

(
e
− R

1+Fα+e−
2mR
1+Fα z

1+z

)F)
F! (31a)
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z′ = 2m


∑∞

FW=0
∑∞

FD=0

(
1−e

−
(FW+2mFD)R
1+α (FW+FD)

)
( S

1+z )
FW( S z

1+z )
FD

(FW+2mFD) FW! FD! FD

∑∞
FW=0

∑∞
FD=0

(
1−e

−
(FW+2mFD)R
1+α (FW+FD)

)
( S

1+z )
FW( S z

1+z )
FD

(FW+2mFD)FW! FD! FW



= 2m


∑∞

F=1

(
S z
1+z

)F
F∑F

FW=0

(
1−e−

(2m(F−FW)+FW)R
1+αF

)
z−FW

(2m(F−FW)+FW)(F−FW)! FW!

∑∞
F=1

(
S z
1+z

)F∑F
FW=1

(
1−e−

(2m(F−FW)+FW)R
1+αF

)
z−FW

(2m(F−FW)+FW)(F−FW)! (FW−1)!

− 1

 (31b)

Numerical solution of (31a)-(31b) for a wide range of parameters and initial conditions
indicates that z →∞ as t→∞ and the Driving Y asymptotically fixes in the population
and, for sufficiently large m, the population will be eliminated.

7.3 Proof used in Section 4.1
In order to remove, on average, a fraction 0 ≤ δ ≤ 1 of sibling-mated females from
the total number of new mated females in the patch, we first prove that the expected
number of new sibling-mated W-mated females in the patch, conditional on {iFW , j −
iFW − iM, i2, iM − i2} offspring from {FW,FD} mated females, is iFW i2

iM FW
. A similar proof,

not shown here, gives the expected number of new sibling-mated D-mated females in
a patch, conditional on {iFW , j − iFW − iM, i2, iM − i2} offspring from {FW,FD} mated
females, as (j−iM−iFW ) (iM−i2)

iM FD
.

Proof. We assume that there are FW and FD W- and D-mated females, respectively, in
a patch. The W-mated females produce iFW female and i2 W-male offspring. We will
prove by mathematical induction that the expected number of female offspring that
will mate with sibling W-males in the patch is iFW i2

iM FW
, where iM is the total number of

male offspring in the patch (i.e. the sum of W- and D-males):

Step 1 – prove it is valid for FW = 2:

We set FW = 2 and FD arbitrary. Let W-mated female #1 produce x1 females and y1 W-
males and W-mated female #2 produce x2 = iFW−x1 females and y2 = i2−y1 W-males.
The expected number of newW-mated females that have mated with siblings (conditional
on {x1, y1}) is x1 y1

iM
+ (iFW−x1) (i2−y1)

iM
= iFW i2−i2 x1−iFW y1+2x1 y1

iM
. The probability of female

#1 having x1 female and y1 W-male offspring is 2−iFW−i2 iFW ! i2!
(iFW−x1)!x1! (i2−y1)! y1! , so the expected

number of W-mated females from sibling pairings is:
i2∑

y1=0

iFW∑
x1=0

iFW i2 − i2 x1 − iFW y1 + 2x1 y1

iM

2−iFW−i2 iFW ! i2!
(iFW − x1)!x1! (i2 − y1)! y1!

= iFW i2
2 iM

.
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Step 2 – assume it is valid for arbitrary FW > 2:

It is assumed that the expected number of W-mated females from sibling pairings
between offspring of the FW W-mated mothers in the patch is iFW i2

iM FW
.

Step 3 – prove it is valid for FW + 1:

We divide the offspring of FW + 1 W-mated females in one cohort from FW mothers
and another one from the (FW + 1)-th mother. The first cohort contains iFW − x1 and
i2− y1 offspring and the 2nd cohort contains x1 and y1 offspring. The probability of the

2nd cohort containing x1 and y1 offspring is
FW
−(x1+y1)( FW

1+FW
)iFW +i2 iFW ! i2!

(iFW−x1)!x1! (i2−y1)! y1! . The expected
number of new W-mated females that have mated with siblings (conditional on {x1, y1})
is x1y1

iM
+ (iFW−x1)(i2−y1)

iMFW
(the division by FW in the 2nd fraction is a direct consequence

of our assumption in Step 2, i.e. that, on average, a fraction 1/FW of the total new
W-mated females in the patch are sibling-mated). The expected number of W-mated
females from sibling pairings is thus:

i2∑
y1=0

iFW∑
x1=0

(
x1 y1

iM
+ (iFW − x1) (i2 − y1)

iM FW

)FW
−(x1+y1)( FW

1+FW
)iFW +i2 iFW ! i2!

(iFW − x1)!x1! (i2 − y1)! y1!
= iFW i2
iM (FW + 1)

This completes the mathematical induction proof that the expected number of new
W-mated females from sibling pairings, conditional on {iFW , j − iFW − iM, i2, iM − i2}
offspring from {FW,FD} mated females in a patch, is iFW i2

iM FW
.
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