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Abstract 
We describe the analysis of whole genome sequencing (WGS) of 150,119 individuals from 
the UK biobank (UKB). This yielded a set of high quality variants, including 585,040,410 
SNPs, representing 7.0% of all possible human SNPs, and 58,707,036 indels. The large set of 
variants allows us to characterize selection based on sequence variation within a population 
through a Depletion Rank (DR) score for windows along the genome. DR analysis shows that 
coding exons represent a small fraction of regions in the genome subject to strong sequence 
conservation. We define three cohorts within the UKB, a large British Irish cohort (XBI) and 
smaller African (XAF) and South Asian (XSA) cohorts. A haplotype reference panel is 
provided that allows reliable imputation of most variants carried by three or more 
sequenced individuals. We identified 895,055 structural variants and 2,536,688 
microsatellites, groups of variants typically excluded from large scale WGS studies. Using 
this formidable new resource, we provide several noteworthy examples of trait associations 
with rare variants with large effects not found previously through studies based on exome 
sequencing and/or imputation. 
 

Introduction 
 
The study of how diversity in the sequence of the human genome affects human diversity 
depends on reliable characterization of human sequence and phenotypic diversity. Over the 
past decade insights into this relationship have been obtained from whole exome (WES) and 
WGS of large cohorts with rich phenotypic data1,2.  
 
The UK biobank (UKB)3 documents phenotypic variation across 500,000 largely healthy 
subjects4 across the United Kingdom. The UKB WGS consortium is sequencing the whole 
genomes of all the participants to an average depth of at least 23.5x. Here, we report on the 
first data release consisting of a vast set of sequence variants, including Single Nucleotide 
Polymorphisms (SNPs), short insertions/deletions (indels), microsatellites and structural 
variants (SVs), based on WGS of 150,119 individuals. All variant calls were performed jointly 
across individuals, allowing for consistent comparison of results. The resulting dataset 
provides an unparalleled opportunity to study sequence diversity in humans and its impact 
on phenotype variation. 
 
Previous studies of the UKB have produced genomewide SNP array data5 and WES data6,7. 
While SNP arrays typically only capture a small fraction of common variants in the genome, 
when combined with a reference panel of WGS individuals8, a much larger set of variants in 
these individuals can be surveyed through imputation. Imputation however misses variants 
private to the individuals typed only on SNP arrays and provides unreliable results for 
variants with insufficient haplotype sharing between carriers in the reference and 
imputation sets. Poorly imputed variants are typically rare, highly mutable or in genomic 
regions with complicated haplotype structure, often due to structural variation. 
 
WES is mainly limited to regions known to be translated and consequently reveals only a 
small proportion (2-3%) of sequence variation in the human genome. It is relatively 
straightforward to assign function to variants inside protein coding regions, but there is 
abundant evidence that variants outside of coding exons are also functionally important9–11, 
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explaining a large fraction of the heritability of traits12,13. In particular, numerous variants 
are known to impact disease and other traits through their effects on non-coding genes or  
RNA14 and protein15,16 expression. 
 
Large scale sequencing efforts have typically focused on identifying SNPs and short indels. 
While these are the most abundant types of variants in the human genome, other types, 
including structural variants (SVs) and microsatellites, affect a greater number of bps and 
consequently are more likely to have a functional impact17,18. Even the SVs that overlap 
exons are difficult to ascertain with WES due to the much greater variability in the depth of 
sequence coverage in WES studies than in WGS due to the capture step of targeted 
sequencing. Microsatellites, polymorphic tandem repeats of 1 to 6 bps, are also commonly 
not examined in large scale sequence analysis studies. These variants have a higher 
mutation rate than SNPs and indels19, can affect gene expression20 and contribute to a range 
of diseases21. 
 
Here, we highlight some of the insights gained from this vast new resource of WGS data that 
would be challenging or impossible to ascertain from WES and SNP array datasets. First, we 
show that exons account for a small fraction of the genomic regions displaying reduced 
diversity indicative of selection due to functional importance. Second, we describe three 
ancestry-based cohorts within the UKB; with 431,805, 9,633 and 9,252 individuals with 
British-Irish, African and South Asian ancestries, respectively.  Third, using the rich UKB 
phenotype collection, we report novel findings from genomewide association (GWAS) – 
shedding light on the impact of very rare SNP, indels, microsatellites and structural variants 
on diseases and other traits. 
 

Results  
 

SNPs and indels  
 
The whole genomes of 150,119 UKB participants were sequenced to an average coverage of 
32.5x (at least 23.5x per individual, Fig. S22) using Illumina NovaSeq sequencing machines at 
deCODE Genetics (90,667 individuals) and the Wellcome Trust Sanger Institute (59,452 
individuals). The 150,119 individuals were used in variant discovery, participants of the UKB 
can withdraw consent at any time, 149,960 out of 150,119 individuals could be used for 
subsequent analysis. 
 
Sequence reads were mapped to human reference genome GRCh3822 using BWA23. SNPs 
and short indels were jointly called over all individuals using both GraphTyper24 and GATK 
HaplotypeCaller25, resulting in 655,928,639 and 710,913,648 variants, respectively.  We used 
several approaches to compare the accuracy of the two variant callers, including 
comparison to curated datasets26 (Table S4,Fig. S15), transmission of alleles in trios (Table 
S8,Table S11), comparison of imputation accuracy (Table S5) and comparison to WES data 
(Table S12).  As GraphTyper provided the more accurate genotype calls the GraphTyper 
genotypes were used for all subsequent analyses of short variants, although further insights 
might be gained from exploring these call sets jointly.  To contain the number of false 
positives, GraphTyper employs a logistic regression model that assigns each variant a score 
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(AAscore) predicting the probability that it is a true positive. We focus on the 643,747,446 
(98.14%) high quality GraphTyper variants, indicated by an AAscore above 0.5, hereafter 
referred to as GraphTyperHQ.  
 
We find that 4.1% of the 149,960 individuals carry an actionable genotype according to 
ACMG27 v3.0 (73 genes).  Using WES28 and ACMG v2.0 (59 genes), 2.0% were reported to 
carry an actionable genotype, when restricting our analysis to ACMG v2.0 and same criteria 
we find 2.5% based on WGS. 
 
The number of variants identified per individual is 40 times larger than the number of 
variants identified through the WES studies of the same UKB individuals (Table 1, Methods). 
Although referred to as “whole exome sequencing” we find that WES primarily captures 
coding exons and misses most variant in exons that are transcribed but not translated, 
missing 72.2% and 89.4%, of the 5’ and 3’  untranslated region (UTR) variants, respectively. 
Even inside of coding exons currently curated by Encode9, we estimate that 10.7% of 
variants are missed by WES (Table 1). Conversely, almost all variants identified by WES are 
captured by WGS (Table 1).  
 

Identification of functionally important regions 
  
The number of SNPs discovered in our study corresponds to an average of one every 4.8 
basepairs (bp), in the regions of the genome that are mappable for short sequence reads.  
This amounts to detection of 7.0% of all theoretically possible SNP variants for these 
regions. We observe 81.5% of all possible autosomal CpG>TpG variants, 11.8% of other 
transitions and only 4.0% of transversions (Table S1). Restricting the analysis to 17,902,255 
autosomal CpG dinucleotides methylated in the germline10, we observe transition variants 
at 89.1% of all methylated CpGs. Due to this saturation of mutations (Fig. 4d), the ratio of 
transitions to transversions (1.66) is lower than found in smaller WGS sets1 and de-novo 
mutation (DNM) studies29.  
 
The vast majority of all variants identified are rare (Table S9), 46.0% and 40.6% of all SNPs 
and short indels, respectively, are singletons (carried by a single sequenced individual), and 
96.6% and 91.7% have frequency below 0.1%.  Due to the scale of the UKB WGS data, an 
observation of the same allele in unrelated individuals does not always imply identity by 
descent. A clear indication of this is that only (14%) of the highly saturated CpG>TpG 
variants are singletons, in contrast to 47% for other SNP variants. These recurrence 
phenomena have been described in other sample sets using sharing of rare variants 
between different subsets2,11.  We used a DNM set from 2,976 trios in Iceland29 to assess 
recurrence directly, variants present in both that set and the UKB must be derived from at 
least two mutational events. Out of the 194,687 Icelandic DNMs we find 53,859 (27.7%) in 
the UKB set providing a direct observation of sequence variants that are derived from 
multiple mutational events. As expected, we find that CpG>TpG mutations are the most 
enriched mutation class in the overlap (Fig. 4d), due to their high mutation rate30.   
 
The rate and pattern of variants in the genome is informative about the mutation and 
selection processes that have shaped the genome31. The number of sequence variants in the 
exome has been used to rank genes according to their intolerance to loss-of-function (LoF) 
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and missense variation11,32. The focus has been on the exome due to the availability of WES 
datasets and the relatively straightforward functional interpretation of coding variants. Inter 
species conservation33 have been used to characterize selection beyond the exome, using 
the extensive accumulation of mutations over millions of years, but these methods fail to 
identify sequence conservation specific to humans. Sequence variation within human 
populations34,35 has been used to characterize human specific conservation, however, this 
requires many human genomes to make accurate inference as a much smaller number of 
mutations separate two humans than two species. 
 
In large cohorts most theoretically possible CpG>TpG variants at methylated CpGs have 
been observed to occur in coding exons and their absence has been used as a sign of 
negative selection11,36. In line with previous reports11 we see less saturation of stop-gain 
CpG>TpG variants than those that are synonymous (Fig. 4a). Synonymous mutations are 
often assumed to be unaffected by selection (neutral)36 however we find that synonymous 
CpG>TpG mutations are less saturated (85.7%) than those that are intergenic (89.9%). 
 
We used sequence variant counts in the UKB to seek conserved regions in 500bp windows 
across the genome. More specifically, we tabulated the number of variants in each window 
and compared this number to an expected number given the nucleotide composition of the 
window. We then assigned a rank (Depletion Rank, DR) from 0 (most depletion) to 100 (least 
depletion) for each 500bp window. As expected, coding exons have low DR (mean DR = 
28.3), however, a large number of non-coding regions show lower DR, including non-coding 
regulatory elements Among the 1% of regions with lowest DR, 14.1% are coding and 85.9% 
are non-coding, with an overrepresentation of splice, UTR, gene upstream and downstream 
regions (Fig. 4e). After removing coding exons, among the 1% of regions with lowest and 
highest DR score we see a 3.4 and 0.4-fold overrepresentation of GWAS variants, 
respectively (Table 2). Regions under strong negative selection are also expected to have a 
greater fraction of rare variants (FRV) than the rest of the genome35. As most variants are 
carried only by a few individuals, we define FRV as the fraction of variants carried by at most 
4 WGS individuals and find FRV of 74.7% in windows with DR less than 5 compared to FRV of 
69.6% in regions with DR above 95 (Fig. 4f). In particular, this also holds true when we limit 
to only non-coding regions (74.4% vs 69.7%). 
 
We find that there is a correlation between DR and interspecies scores as measured by 
GERP33 (r2 = 0.0049, p = 0.00052, Fig. 1d).  Interestingly, in the windows with 1% lowest DR, 
48.4% of windows do not show sequence conservation between species (GERP < 0), 
indicating that DR is informative about human specific selection. Overall, our results indicate 
that DR can be used to measure negative selection across the entire genome and as such 
provides a valuable resource for identifying non-coding sequence of functional importance. 
 

Multiple cohorts within UKB 
 
Most GWAS37–39 on the UKB set have been based on a prescribed5 Caucasian subset of 
409,559 participants who self-identify as White British. To better leverage the value of 
genotypes of UKB participants for GWAS, we defined three cohorts encompassing 450,690 
individuals (Table S2), based on genetic clustering of microarray genotypes informed by self-
described ethnicity and supervised ancestry inference (Methods). The largest cohort, XBI, 
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contains 431,805 individuals who, include 99.6% of the aforementioned 409,559 prescribed 
Caucasian set, along with around 23,900 additional individuals previously excluded because 
they did not identify as "White British" (thereof 13,000 who identified as "White Irish"). A 
principal component analysis (PCA) of the 132,000 XBI individuals with WGS data (Methods), 
based on 4.6 million loci, reveals an extraordinarily fine-scaled differentiation by geography 
in the British–Irish Isles gene pool (Fig. S3). 
 
We defined two other cohorts based on our inference of ancestry derived from Africa (XAF, 
N=9,633) and South Asia (XSA, N=9,252) (Fig. 1). The 37,598 UKB individuals who do not 
belong to XBI, XAF or XSA were assigned to the cohort OTH (others). The WGS data of the 
XAF cohort represents one of the most comprehensive surveys of African sequence 
variation to date, with reported birthplaces of its members covering 31 of the 44 countries 
on mainland sub-Saharan Africa (Fig. S7). Due to the greater genetic diversity of African 
populations, and resultant differences in patterns of linkage disequilibrium, the XAF cohort 
may prove valuable for fine-mapping of association signals that are linked to multiple 
strongly correlated variants in XBI or other non-African GWA studies.  
 
We crossed GraphTyperHQ variants with exon annotations and found that on average 
around one in thirty is homozygous for rare (minor allele frequency, MAF < 1%) LoF 
mutations in the homozygous state and the median number of heterozygous rare LoF is 24 
per individual. We detect rare LoF in 19,105 genes and a total of 2,017 genes were found to 
harbor rare LoFs in the homozygote state (n individuals = 5,102). A marked difference in the 
number of homozygous LoFs carriers was found between the cohorts, with XSA having the 
largest fraction of homozygous LoF carriers (Fig. S9b). A notable feature of the XSA cohort is 
elevated genomic inbreeding due to endogamy40, particularly among self-identified 
Pakistanis41 (Fig. S9a).  
 
On average, each individual carried alternative alleles for 3,410,510 SNPs and indels (Fig. 
1d), per haploid genome. XAF individuals carry more alternative alleles (Fig. 1d), primarily 
due to ancestry-based differences from human reference genome22. Indeed, a greater 
number of variants are generally found in individuals born outside of Europe (Fig. S10). The 
average number of singletons per individual varies considerably by ancestry (Fig. 1d). Thus, 
individuals from the XBI, XAF and XSA cohorts have an average of 1,330, 9623 and 8340 
singleton variants, respectively. In XBI, singleton counts (Fig. 3a) indicate that expected 
variants discovered per marginal British–Irish genome is still substantial, but varies 
geographically, averaging around 1,000 in Northern England and 2,000 South-Eastern 
England. This pattern is largely explained by denser sampling of some regions (Fig. 3b, c) 
rather than regional ancestry differences. 
 

Imputation  
 
We were able to reliably impute variants into the entire UKB sample set down to very low 
frequency (Fig. 1e, Methods). We imputed phased genotypes which permit analysis that 
depend on phase such as identification of compound LoF heterozygotes. A single reference 
panel was used to impute all individuals in UKB, but results are presented separately for the 
three cohorts (Table S14). This reference panel can be used for accurate imputation in 
individuals from the UK and many other populations. In the XBI cohort, 98.5% of variants 
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with frequency above 0.1% and 65.8% of variants in the frequency category of 0.001-0.002% 
(representing 3-5 WGS carriers) could be reliably imputed (Fig. 1e). Variants were also 
imputed with high accuracy in XAF and XSA (Fig. 1e), where 97.5% and 94.9% of variants in 
frequencies 1-5% and 56.6% and 48.9% of variants carried by 3-5 sequenced individuals 
could be imputed, respectively. It is thus likely that the UKB reference panel provides the 
best available option for imputing genotypes into population samples from Africa and South 
Asia. 
  
We found a number of clinically important variants that can now be imputed from the 
dataset. These include rs63750205 (NM_000518.5(HBB):c.*110_*111del) in the 3‘ UTR of 
HBB, a variant that has been annotated in ClinVar42 as likely pathogenic for beta 
Thalassemia.  rs63750205-TTA has 0.005% frequency (freq) in the imputed XBI cohort 
(imputation information (imp info) 0.98) and is associated with lower mean corpuscular 
volume by 2.88 s.d. (95% CI 2.43-3.33, p = 1.5∙10-36).  
 
In the XSA cohort we found rs563555492-G, a previously reported43 missense variant in 
PIEZO1 (freq = 3.65% XSA, 0.046% XAF, 0.0022% XBI) that associates with higher 
haemoglobin concentration, effect 0.36 s.d. (95% CI 0.28-0.44, p = 8.1∙10-19). The variant can 
be imputed into the XSA population with imp info of 0.99. 
 
In the XAF cohort we found the stop gain variant rs28362286-C (p.Cys679Ter) in PCSK9 (freq 
= 0.93% XAF, 0.00016% XBI, 0.0070% XSA) which is imputed in the XAF cohort with imp info 
0.93. The variant lowers non-HDL cholesterol by 0.92 s.d. (95% CI 0.75-1.09, p = 2.3∙10-26). 
We found  a single homozygous carrier of this variant, which has 2.5 s.d. lower non-HDL 
cholesterol than the population mean, is 61 years old and appears to be healthy. 
 

SNP and indel associations not present in WES data 
 
We highlight three examples of associations of SNP and indel variants associated with traits 
in the XBI cohort that could not be easily identified in WES or SNP array data. 
 
The first example is an association in the XBI cohort between a rare variant rs117919628-A 
(freq = 0.32%; imp info = 0.90) in the promoter region of GHRH, encoding the growth 
hormone releasing hormone close to one of its TSS (Transcription start site) and less height 
(effect = -0.32 s.d. (95% CI 0.27-0.36),  p = 1.6∙10-39). GHRH is a neuropeptide secreted by 
the hypothalamus to stimulate the synthesis of the growth hormone (GH). We note that the 
effect (-0.32 s.d. or -3cm) of rs117919628 is greater than any variants reported in large 
height GWAS (~1200 associated variants)44,45. In addition to reducing height, rs117919628-A 
is associated with lower IGF-1 serum levels (Insulin-growth factor 1, effect = -0.36 s.d. (95% 
CI 0.32-0.40), p = 3.2∙10-58), a hormone which production is stimulated by GH and mediates 
the effect of GH on childhood growth, a further support for GHRH as the gene mediating the 
effects of rs117919628-A. Due to its location around 50 bp upstream of the GHRH 5‘UTR, 
this variant is not targeted by the UKB WES, and neither is the only strongly correlated 
variant rs372043631 (intronic). The height associations of these two variants have not been 
reported, presumably because they are absent from all versions of the 1,000 genomes46 and 
in imputations based on the haplotype reference consortium/UK 10K47 (HRC/UK10K) these 
two variants have low imp info (0.54) and would thus fail quality checks. In GHRH, we also 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2021. ; https://doi.org/10.1101/2021.11.16.468246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.16.468246
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

observe a very rare frameshift deletion rs763014119-C (Phe7Leufster2; freq = 0.0092%) 
associated with reduced height and IGF-1 levels (height effect = -0.63 s.d (95% CI 0.36-0.89), 
p = 4.6∙10-6; IGF-1 effect = -0.74 s.d. (95% CI 0.49-0.99), p = 4.9∙10-9). This variant is not 
correlated with the promoter variant rs117919628 (no individuals carry the minor allele of 
both variants). 
 
Our second example is rs939016030-A a rare 3‘ UTR essential splice acceptor variant in the 
gene encoding tachykinin 3 (TAC3; freq = 0.033%; c.*2-1G>T in NM_001178054.1 and 
NM_013251.3). The XBI cohort has 89 WGS carriers and 281 in the imputation set. This 
variant is not found in WES of the UKB47 and highly correlated with two other variants, one 
intronic and one intergenic (rs34711498, rs368268673) also not found by WES. These 3 
variants were absent from the HRC/UK10K48 imputation, and are only present in Europeans, 
with highest frequency in the UK according to Gnomad11. The minor allele of this 3‘UTR 
essential splice variant rs939016030-A is associated with later age of menarche, with an 
effect of 0.57 s.d. (95% CI 0.41-0.74) or 11 months (p = 1.0∙10-11). Rare coding variants in 
TAC3 and its receptor TACR3 are reported to cause hypogonadotropic hypogonadism49 
under an autosomal recessive inheritance. However, in the UKB, the association of the 
3´UTR splice acceptor variant, is only driven by heterozygotes (~ 1 in 1500 individuals) since 
no homozygotes were detected in the cohort.  
 
The third example is a rare variant (rs1383914144-A; freq = 0.40%) near the centromere of 
chromosome 1 (start of 1q) that is associated with lower uric acid levels (effect = -0.43 s.d. 
(95% CI 0.40-0.46) or -0.58 mg/dL (95% CI 0.54-0.62), p = 8.1∙10-170) and protection against 
gout (OR = 0.36 (95% CI 0.28-0.46), p = 4.2∙10-15). A second variant rs1189542743, 4Mb 
downstream at the end of 1p is strongly correlated (r2 = 0.68) and yields a similar association 
to uric acid. Neither variant is targeted by UKB WES nor imputed by the HRC/UK10K and no 
association was reported in this region in the uric acid GWAS50. The effect of rs1383914144-
A on uric acid is larger than for any variant reported in the latest GWAS meta-analysis of this 
trait. 
 

Structural variants play an important role in human genetics   
 
We identified structural variants (SVs) in each individual using Manta51 and combined these 
with variants from a long read study52 and the assemblies of seven individuals53. We 
genotyped the resulting 895,055 SVs (Fig. 2) with GraphTyper53, of which we considered 
637,321 reliable.   
 
On average we identified 7,963 reliable SVs per individual, 4,185 deletions and 3,778 
insertion (Fig. 1d). These numbers are comparable to the 7,439 SVs per individual found by 
Gnomad-SV54, another short read study, but considerably smaller than the 22,636 high 
quality SVs found in a long read sequencing study52, particularly due to an 
underrepresentation of insertions and SVs in repetitive regions. SVs show a similar 
frequency distribution (Fig. 2) as SNPs and indels and a similar distribution of variants across 
cohorts (Fig. 1d). 
 
We present four examples of structural variants, not easily found in WES data, associated 
with human traits. First, a 14,154 bp deletion that deletes the first exon in PCSK9, previously 
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discovered using long read sequencing in the Icelandic population, shown to be rare 
(0.037%) and to associate with lowere non-HDL levels52. We found thirty two WGS carriers 
in the XBI cohort (freq 0.012%) and 72 carriers in the XBI imputed set (freq 0.0087%) who 
had 1.22 s.d. (95% CI 0.90-1.55) lower non-HDL cholesterol levels than non-carriers (p = 
1.2∙10-13). 
 
Our second examples is a 4,160 bp deletion, (freq = 0.037% in XBI), that removes the 
promoter region from 4,300 to 140 bp upstream of the ALB gene that encodes Albumin. Not 
surprisingly, carriers of this deletion have markedly lower serum albumin levels (effect 1.50 
s.d. (95% CI 1.35-1.62)  p = 9.5∙10-118). The variant is also associated with traits correlated 
with albumin levels; carriers had lower calcium and cholesterol levels: 0.62 s.d. (95% CI 0.50-
0.75, p = 2.9∙10-22) and 0.45 s.d. (95% CI 0.30-0.59, p = 1.1∙10-9), respectively. 
 
Our third example is a 16,411 bp deletion (freq = 0.0090% in XBI) that removes the last two 
exons (4 and 5) of GCSH, that encodes Glycine cleavage system H protein. Carriers of this 
deletion have markedly higher Glycine levels in the UKB metabolomics dataset (effect 1.45 
s.d. (95% CI 1.01-1.86), p = 1.2∙10-10). 
 
The final example is a rare (freq 0.892% in XBI) 754bp deletion overlapping exon 6 of 
NMRK2, encoding nicotinamide riboside kinase 2 that removes 72 bp from the transcribed 
RNA that corresponds to a 24 amino acid inframe deletion in the translated protein. Carriers 
of this deletion have a 0.22 s.d. (95% CI 0.18-0.27) earlier age at menopause (p = 1.1∙10-26). 
Nearby is the variant rs147068659, reported to associate with this trait55, with an effect 0.20 
s.d. (95% CI 0.16-0.24) earlier age at menopause (p = 2.0∙10-20) in the XBI cohort.  The 
deletion and rs147068659 are correlated  (r2 = 0.67), after conditional analysis the deletion 
remains significant (p = 6.4∙10-8) whereas rs147068659 does not (p = 0.39), indicating the 
deletion is causal. NMRK2 is primarily expressed in heart and muscle tissue56; in our dataset 
of right atrium heart tissue, one individual out of a set of 169 RNA sequenced individuals is a 
carrier of this deletion. As expected we observe decreased expression of exon 6 in this 
individual (Fig. S4) and an increase in the fraction of transcript fragments skipping exon 6 
(Fig. S5). 
 

Microsatellites are commonly overlooked 
 
We identified 14,321,152 alleles at 2,536,688 microsatellite loci using popSTR57 in the 
150,119 WGS individuals, who carry on average of 810,606 non-reference microsatellite 
alleles. The number of non-reference alleles carried per individual shows a similar 
distribution across the UKB cohorts as other variant types characterized in this study (Fig. 
1d). Microsatellites are among the most rapidly mutating variants in the human genome and 
a source of genetic variation that is usually overlooked in GWAS. Repeat expansions are 
known to associate with a number of phenotypes, including Fragile X syndrome58. We are 
able to impute microsatellites down to a very low frequency (Fig. S2) in all three cohorts, 
providing one of the first large scale datasets of imputed microsatellites. 
 
We genotyped a microsatellite within the CACNA1A gene that encodes voltage-gated 
calcium channel subunit alpha 1A. Individuals who have twenty or more repeats of this 
microsatellite generally suffer from lifelong conditions that affect the brain, including 
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Familial hemiplegic migraine (FHM1), Epilepsy, Episodic Ataxia Type 2 (EA2) and 
Spinocerebellar ataxia type 6 (SCA6)59–62. Carriers in the XBI cohort of 22 copies of the 
microsattelite repeat were at greater risk for hereditary ataxia (freq = 0.0071%, OR = 304, p 
= 1.1∙10-31).  
 
In the XBI cohort we also confirm an association between a microsatellite within the 3‘ UTR 
of DMPK, encoding DM1 protein kinase, and myotonic dystrophy. Expression of DMPK is 
negatively correlated with the number of repeats of the microsatellite63. The risk of  
myotonic dystrophy increases with copy number of the repeats, rising rapidly with the 
number of repeats carried by an individual up to an odds ratio of 161 for individuals carrying 
39 or more repeats (Table S17, Fig. S14).  
 

Variants that are not imputed 
 
Although the vast majority of WGS variants can be imputed to the larger set of SNP array 
genotyped individuals it is interesting to examine the variants that are not imputed. A 
subset of these variants are in regions where there are no nearby variants present in the 
SNP array data and regions where there is disagreement between the GRCh3822 and 
CHM1364 assemblies. Lifting variants over to the CHM13 assembly may allow us to impute a 
subset of these variants. The failure of those variants to impute on GRCh38 can presumably 
be attributed to a misassembly on GRCh38. In addition, we identify a number of variants 
that are most likely recurrently somatic, such as the gain of function mutations in JAK265–67 
and CALR67 know to be associated with myeloproliferative disorders, including 
polycythaemia vera and essential thrombocythemia. 

Discussion 
 
The dataset provided by sequencing the whole genomes of 150 thousand UKB participants 
is unparalleled in its size and provides the most extensive characterization of the sequence 
diversity in the germline genomes of a single population to date. The UK population is 
diverse in its genetic ancestry and includes individuals born in countries all over the globe. 
Our African and South Asian ancestry cohorts each nuber over 9,000 individuals, 
representing some of the largest available WGS sets of these ancestries and which are likely 
to have an impact both clinically and in further characterizing the relationship between 
sequence and traits.  
 
We have characterized an extensive set of sequence variants in the WGS individuals, 
providing two sets of SNP and indel data, as well as microsatellite and SV data, variant 
classes that are frequently not interrogated in GWAS. We give examples of how these 
variants play a role in the relationship between sequence and phenotypic variation. The 
number of SNPs and indels are 40-fold greater than from WES of the same individuals. Even 
within annotated coding exons WES misses 10.7% of variants. WES misses most of the 
remainder of the genome, including functionally important UTR, promoter regions and 
exons yet to be annotated.  The importance of these regions is exemplified by the discovery 
of rare non-coding sequence variants with larger effects on height and menarche than any 
variants described in GWAS to date.   
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The DR score presented here is an important resource in identifying which regions are 
functionally important. Although coding exons are clearly under strong purifying selection, 
as represented by a low DR score, they represent only a small fraction of the regions with 
low DR score. Clinical geneticists, typically focusing on protein exons, have only been able to 
identify the genetic cause in fewer than half of clinical cases studied. Currently, 98.4% of 
variants annotated as pathogenic in the ClinVar42 database are within coding exons. Greater 
attention needs to be given to other regions of the genome, particularly those with low DR 
score, where non-coding exons (UTRs), enhancer and promoter regions are 
overrepresented.  
 
There are still some sequence variants that are not found with short read WGS, in particular 
regions more easily reached by long read sequencing52, including VNTRs, repetitive regions 
and regions that have only recently been captured by human genome assemblies64. 
Improved assembly64,68, sequencing and representation of the genome and its variation will 
have important implications for advancing our understanding of the relationship between 
sequence variation and human diseases and other traits. 
 
A study of WES from 455K individuals in UK biobank recently reported several examples of 
associations, including those from gene burden analysis69. According to the authors, a 
majority were either in part previously reported, or could not be replicated. It is noteworthy 
that none of the associations reported here were found in that comprehensive survey of 
UKB exome variation. Near complete sequence of the human genome has been known for 
over twenty years. Genome scientists have yet to assign function to a large fraction of this 
sequence and geneticists have had only partial success in understanding the relationship 
between diversity in the sequence of the human genome and phenotypic diversity. The 
large scale sequencing described here, as well as the continued effort in sequencing the 
entire UKB, promises to vastly increase our understanding of the function and impact of the 
non-coding genome. When combined with the extensive characterization of phenotypic 
diversity in the UKB, these data should greatly improve our understanding of the 
relationship between human genome variation and phenotype diversity. 
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Fig. 1 SNP indel and cohort characteristics a) The number of WGS samples analyzed for phenotypes in our study.  b) UMAP 
plot generated from the first 40 principal components of all UKB participants. c) Joint frequency spectrum of variants on 
chr20 between all pairs of populations. d) Number of SNPs, Indels, microsatellites, SV insertions, SV deletions and singleton 
SNPs carried per individual in the overall set and partitioned by population. e) Imputation accuracy in the three populations, 
XBI, XAF and XSA. A variant was consider imputed if Leave one out r2 of phasing was greater than 0.5 and imputation info 
was greater than 0.8. x-axis splits variants into frequency classes based on the number of carriers in the sequence dataset, 
with the number representing the minimum number of carriers in the frequency class. Variants are split by variant type.. 
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Fig. 2 Structural variants. a) Number of SVs discovered in the dataset by variant type. b) Length distribution of SVs, from 50-
1,000 bp, 1,000-10,000bp and 10,000-100,000bp. 
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Fig. 3 Characteristic of XBI cohort across Great Britain and Ireland a) Number of singletons carried by individuals in the XBI 
cohort as a function of place of birth. b) Mean number of 3rd degree relatives by administrative division c) Location of UKB 
assessment centers and estimated fraction of surrounding population recruited to the UKB. 
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Fig. 4 Functionally important regions a) Saturation levels of transitions at methylated CpG sites across genomic annotations 
and predicted consequence categories. The horizontal line is the average across all methylated CpG-sites. b) Saturation 
levels of mutations in each class, split into singleton variants (blue) and more common variants (red). c) Fraction of SNP's in 
each mutation class, for all SNP's in our dataset, singletons in our dataset, and in an Icelandic set of de novo mutations 
(DNMs) respectively. d) Average GERP score in 500bp windows as a function of Depletion Rank, blue line represents average 
GERP score, red and green line 95%-th percentile e) Fraction of regions falling into functional annotation classes, as defined 
by Ensembl gene map, as a function of Depletion Rank. f) Fraction of rare (with 4 or fewer carriers) variants (FRV) as a 
function of Depletion Rank. 
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Tables 
 

Table 1 Overlap of WES and WGS data. Results are computed for the 109,618 samples present in both datasets and is 
limited to those variants that are present in at least one individual in either dataset. Numbers refer to number of variants 
found in dataset.  WGS refers to the GraphTyperHQ dataset and WES refers to a set of 200k WES sequenced indivdiduals70. 
Missing and present percentages are computed from the number of variants in the union of the two datasets. 

  

  WGS WES 

WGS ∩ 

WES 

WES \ 

WGS 

Present 

WES 

Missing 

WES 

Present 

WGS 

Missing 

WGS 

coding 6,380,795 5,781,829 5,686,934 94,895 89.29% 10.71% 98.53% 1.47% 

splice 445,499 397,226 388,961 8,265 87.54% 12.46% 98.18% 1.82% 

5utr 2,125,413 590,484 572,996 17,488 27.56% 72.44% 99.18% 0.82% 

3utr 7,214,427 764,864 743,790 21,074 10.57% 89.43% 99.71% 0.29% 

proximal 249,702,570 6,189,465 5,952,145 237,320 2.48% 97.52% 99.91% 0.09% 

intergenic 292,259,782 91,836 83,360 8,476 0.03% 99.97% 100.00% 0.00% 
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DR of non-coding regions Enrichment 95%CI P-value 

a)     

DR 1%  3.44  1.96-5.18 0.0004 

DR 99%  0.36  0.16-0.61 <0.0002 

b)     

DR 5%  2.29  1.72-2.93 <0.0002 

DR 95%  0.46  0.32-0.62 <0.0002 

Table 2 : Over- and underrepresentation of GWAS variants in low and high DR regions.  Windows overlapping coding exons 
were removed. Lower DR scores indicate greater sequence conservation. 
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