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Abstract25

Scientists have long conjectured that the neocortex learns the structure of the environment in a predictive,26

hierarchical manner. According to this conjecture, expected, predictable features are differentiated from27

unexpected ones by comparing bottom-up and top-down streams of information. It is theorized that the28

neocortex then changes the representation of incoming stimuli, guided by differences in the responses to29

expected and unexpected events. In line with this conjecture, different responses to expected and unexpected30

sensory features have been observed in spiking and somatic calcium events. However, it remains unknown31

whether these unexpected event signals occur in the distal apical dendrites where many top-down signals32

are received, and whether these signals govern subsequent changes in the brain’s stimulus representations.33

Here, we show that both somata and distal apical dendrites of cortical pyramidal neurons exhibit distinct34

unexpected event signals that systematically change over days. These findings were obtained by tracking35

the responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons36

over multiple days in primary visual cortex of awake, behaving mice using two-photon calcium imaging.37

Many neurons in both layers 2/3 and 5 showed large differences between their responses to expected and38

unexpected events. Interestingly, these responses evolved in opposite directions in the somata and distal39

apical dendrites. These differences between the somata and distal apical dendrites may be important for40

hierarchical computation, given that these two compartments tend to receive bottom-up and top-down41

information, respectively.42

Keywords: Learning; Neocortex; Pyramidal Neurons; Distal Apical Dendrites; Prediction; Credit Assignment; Deep43

Learning; Unsupervised Learning44
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1 Introduction45

A long-standing hypothesis in computational and systems neuroscience is that the neocortex learns a hierarchical46

predictive model of the world [Dayan et al., 1995; Friston and Kiebel, 2009; Hawkins and Blakeslee, 2004;47

Larochelle and Hinton, 2010; Press et al., 2020; Rao and Ballard, 1999; Spratling, 2017; Whittington and Bogacz,48

2017]. This hypothesis postulates that learned top-down predictions (i.e., signals from associative regions to49

sensory regions) are compared to bottom-up signals (i.e., signals from sensory regions to associative regions)50

(Fig. 1A). Unexpected stimulus events should then induce differences between these signals and, in turn, drive51

learning. In these models, learning occurs at all stages of the hierarchy, and not just at the earliest or latest52

stages. Theoretical support for this hypothesis comes from computational studies showing that hierarchical53

models that learn by comparing top-down signals to bottom-up signals enable artificial neural networks (ANNs)54

to learn useful representations that capture the statistical structure of the data on which they are trained [Chen55

et al., 2020; Devlin et al., 2018; Grill et al., 2020; Lotter et al., 2016; van den Oord et al., 2018; Wayne et al.,56

2018]. Moreover, ANNs trained in this manner reproduce the representations observed in the neocortex better57

than ANNs trained purely by supervised learning based on categorical labels [Bakhtiari et al., 2021; Christensen58

and Zylberberg, 2020; Higgins et al., 2017].59

What would be the observable signatures of this type of hierarchical predictive learning, in which learning60

is guided by unexpected sensory events? There are at least three signatures that one might expect: (1) There61

should be distinct responses to expected and unexpected stimuli. If the brain does not distinguish between62

expected and unexpected events, there is no way to specifically learn from the unexpected events. (2) As the63

circuit learns about stimuli, the responses to both expected and unexpected stimuli should change in a long-64

lasting manner. These changes in stimulus responses are a necessary consequence of learning modifying the65

stimulus representations. (3) There should be differences between the manner in which top-down and bottom-66

up driven responses change during learning. This follows from the idea that a hierarchical model is being67

learned, since hierarchy implies a distinct role for top-down and bottom-up information.68

Previous work has provided partial evidence for these observable signatures of hierarchical predictive learning.69

First, there is a very large body of work showing distinct responses to expected and unexpected stimuli in70

multiple species and brain regions [Fiser et al., 2016; Garrido et al., 2009; Keller et al., 2012; Kumaran and71

Maguire, 2006; Orlova et al., 2020; Zmarz and Keller, 2016], thus supporting the first observable signature.72

However, there are still significant unknowns: e.g., do such responses evolve differently in different compartments73

of neurons? Second, there is some research suggesting that responses to unexpected stimuli change with exposure74

[Homann et al., 2017], supporting the second observable signature. Yet, this has only been shown over short time75

scales, such as a single experimental session. Third, there are a few studies showing that top-down projections76

carry distinct information to sensory areas [Fiser et al., 2016; Jordan and Keller, 2020; Orlova et al., 2020],77

partially supporting the third observable signature. Nonetheless, it remains unknown whether changes in neural78

responses driven by top-down versus bottom-up signals show distinct changes over learning. Thus, the goal of79

this paper is to fill these gaps by concretely looking for all three of these signatures together in a systematic80

study.81

Here, we performed chronic two-photon calcium imaging of layer 2/3 and layer 5 pyramidal neurons at82

both the cell bodies and the distal apical dendrites in the primary visual cortex of awake, behaving mice over83

multiple days (Fig. 1B–D; Supp. Videos 1-3). These imaging planes were chosen since top-down signals largely84

impinge on the distal apical dendrites within cortical layer 1, while bottom-up signals largely impinge on the85

perisomatic compartments in deeper layers [Budd, 1998; Larkum, 2013a,b]. During the recordings, the animals86

were exposed to randomly oriented visual stimuli with both expected and unexpected statistical properties87

(Supp. Videos 4–5). Altogether, this approach allowed us to track the responses of both individual cell bodies88

and individual distal apical dendritic branches over multiple days (Fig. 1E), during which the animals were89

provided with more exposure to unexpected events. The resulting data showed evidence corroborating all three90

of the signatures of hierarchical predictive learning above, supporting the hypothesis that the visual cortex learns91

from unexpected events using a hierarchical model. Moreover, we observed interesting differences between the92

distal apical dendrites and somata. Whereas somatic compartments showed a decrease in differential sensitivity93

to expected versus unexpected visual stimuli over days, distal apical dendrites showed an increase in differential94

sensitivity. This suggests that there may be important differences in the functional roles of the somatic and95

distal apical compartments in hierarchical predictive learning in the neocortex.96
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Figure 1: Illustration of experimental methods

(A) Schematic illustration of how a hierarchical predictive model might be implemented through the morphology of
pyramidal neurons. The neuron receives top-down predictions (e.g., corresponding to an “expected” model of an ap-
ple, top) at the distal apical dendrites that are compared to bottom-up stimulus information received perisomatically
(e.g., corresponding to an actual image of an apple, bottom). In this cartoon example, the incoming stimulus contains
an unexpected feature (a leaf) not captured by the top-down predictive model.
(B) Experimental setup schematic. Awake, behaving mice were head-fixed under a two-photon microscope objective
while passively viewing the stimuli. The mice were able to run freely on a rotating disc.
(C) Example maximum-projection images from two-photon recordings for each of the four imaging planes: layer 2/3
distal apical dendrites (L2/3-D), layer 5 distal apical dendrites (L5-D), layer 2/3 somata (L2/3-S), and layer 5 somata
(L5-S) (2–3 mice per plane, n = 11 mice in total; see Materials & Methods). The corresponding recordings are shown in
Supp. Video 1.
(D) Schematic illustration displaying the four imaging planes from (C) within the cortical column. The coloring and
style schemes of the horizontal lines depicting the imaging planes here are used throughout all of the figures.
(E) Tracked region of interest (ROI) examples for both L5-D (top) and L5-S (bottom). Maximum-projection images
for each imaging session (1, 2, or 3, as indicated), each performed on a different day, are overlaid with contours of
the matched segmented ROI masks. Below the images, the matched segmented ROI masks for all three sessions are
superimposed. See also Fig. S1.

2 Results97

2.1 Imaging dendrite segments and cell bodies over multiple days98

To monitor the integration of top-down and bottom-up signals by supra- and sub-granular pyramidal neurons99

over multiple days, we performed two-photon calcium imaging in Cux2-CreERT2 mice or Rbp4-Cre KL100 mice100

that expressed GCaMP6f in layer 2/3 or layer 5 pyramidal neurons, respectively. We performed this imaging101

either at layer 1 of cortex (50–75 µm depth for layer 2/3 and 20 µm depth for layer 5), thereby observing the102

distal apical dendrites, or at the layer in which the cell bodies were located (175 µm depth for layer 2/3 and 375103

µm depth for layer 5) (Fig. 1C–D; Supp. Video 1). This gave us four different imaging conditions: layer 2/3104

distal apical dendrites (L2/3-D), layer 2/3 somata (L2/3-S), layer 5 distal apical dendrites (L5-D), and layer 5105

somata (L5-S). GCaMP6f fluorescence tracks calcium influx into cells, but it should be noted that the cause106

of calcium influx in the somatic and distal apical compartments may be different, with somatic signals largely107

reflecting closely-spaced groups of action potentials [Huang et al., 2021] and dendritic signals largely reflecting108

non-linear dendritic events like plateau potentials [Murayama et al., 2009]. Thus, in both cases we are tracking109

a proxy for neural activity, but it is important to be aware that the underlying physiological cause of the signal110

likely differs between the two compartments.111

Imaging was performed in primary visual cortex (VisP). During the experiments, the animal’s head was112
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fixed in place under the microscope objective, ensuring the stability of our recordings. We extracted regions of113

interest (ROIs) in each imaging plane [de Vries et al., 2020; Inan et al., 2017, 2021], corresponding to individual114

distal apical dendrite segments or to individual cell bodies, depending on the imaging plane. Each animal went115

through three imaging sessions, each performed on a different day, and we used a matching algorithm to identify116

the same ROIs across sessions (Fig. 1E, S1).117

Thanks to a very conservative quality control pipeline (see Materials & Methods), signal-to-noise ratio (SNR),118

∆F/F magnitudes, and number of ROIs were stable over all three sessions in both layer 2/3 and layer 5 cell119

bodies and dendrites (Fig. S2). Importantly, the ROI extraction algorithm for the dendritic recordings enabled120

the identification of spatially discontinuous ROIs [Inan et al., 2017, 2021], reducing the risk that single dendritic121

compartments were split into multiple ROIs. This is supported by the observation that in both the somatic and122

the dendritic compartments, very few pairs of ROIs showed very high correlations in their responses (Fig. S2D).123

Moreover, while differences in background fluorescence levels were observable between imaging planes (Fig. 1C),124

these did not confound our analyses for two reasons. First, we only compared ∆F/F levels over days within125

each imaging plane, not between imaging planes. Second, our analysis pipeline estimated ∆F/F using a rolling126

baseline, so that changes in overall fluorescence would not impact our analyses (see Materials & Methods).127

During these imaging sessions, we tracked the mouse’s movements on a running disc (Supp. Video 2) as well128

as its pupil diameter with an infrared camera (Supp. Video 3). We obtained calcium imaging data for 11 mice129

(L2/3-D: n = 2, L2/3-S: n = 3, L5-D: n = 3, L5-S: n = 3). The full dataset is freely available online in the130

DANDI Archive (see Materials & Methods).131

2.2 Cortical neurons respond differently to expected and unexpected stimuli132

To explore the responses of cortical neurons to expected and unexpected sensory events, we designed a sequen-133

tial visual stimulus inspired by previous work [Homann et al., 2017]. This stimulus had a predictable global134

structure, but stochastic local properties. Thanks to the predictable global structure we could randomly insert135

“unexpected” events, i.e., stimulus events that violated the predictable global pattern. Mice were exposed to136

this stimulus over multiple sessions, each occurring on different days, enabling us to observe changes in their137

neurons’ responses to expected and unexpected sensory events.138

To build a predictable global structure with some local stochasticity, we used image frames composed of139

randomly placed Gabor patches, assembled into five-frame sequences (A-B-C-D-G). Other than G, which was140

uniformly gray, each frame was defined by the locations of its Gabor patches: e.g., the locations of the Gabor141

patches were the same for all A frames for a given session, but differed between A and B frames. These Gabor142

patch locations were redrawn for each session, and sampled uniformly over the visual field. As a result, the143

locations were different in each session. Additionally, within each repeat of the sequence (A-B-C-D-G), the144

orientations of each of the Gabor patches were drawn randomly from the same distribution centered around the145

same mean orientation (Fig. 2A, Supp. Video 4), but the mean orientation varied from sequence to sequence.146

This meant that the luminance patterns at each spatial location were different for each repeat of the A-B-C-D-G147

sequence. However, because all sequences shared a global pattern wherein orientations were drawn from the148

same distribution across frames, knowing the orientations of the Gabors from one frame of the sequence would149

enable clear predictions about the orientations of the Gabors in the subsequent frames. Importantly, given these150

stimulus design features, the same set of images was never repeated. This reduced the risk of accommodation151

effects, which could cause changes in neuronal responses via mechanisms other than learning. Nonetheless, the152

sequences had predictable global properties that would allow an observer to form expectations about upcoming153

frames. Thus, the animals could learn the “rules” underlying the stimuli with increasing exposure and thereby154

form expectations for what should happen next. It is important to note that we cannot say with certainty155

whether the animals actually expected the stimulus sequences. We can, however, say that they were provided156

with substantial experience with which to form such expectations. For that reason, we call these A-B-C-D-G157

sequences “expected”. See Materials & Methods for a more detailed description of the stimulus properties.158

To help the animals form such expectations, before the first calcium imaging session, the mice were habit-159

uated to A-B-C-D-G sequences over multiple sessions, each on a different day, without any violations of the160

predictable structure (Fig. 2B). After habituation, and during calcium imaging, the stimuli were broken up into161

approximately 30 blocks of randomly determined durations, each composed of repeated A-B-C-D-G sequences,162

as before. However, instead of comprising only expected sequences, each block ended with “unexpected” A-B-163

C-U-G sequences. In these sequences, the fourth frame, D, was replaced with an unexpected U frame, which164

had different Gabor locations and orientations. Specifically, the newly introduced U frames had unique random165
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Figure 2: ∆F/F responses to unexpected stimuli reflected in the first imaging session

(A) Example Gabor sequences. Each frame lasted 300 ms. The mean orientation θ of the Gabor patches in each
sequence si was randomly chosen from {0◦, 45◦, 90◦, 135◦}. An unexpected U frame, with a mean orientation rotated
by 90◦ with respect to the other frames in the sequence, is highlighted in red. See Sec. 2.2, Materials & Methods and
Supp. Video 4 for more details.
(B) Experimental timeline, showing both habituation and imaging sessions. Note that each session occurred on a
different day. Optical imaging of neuronal activity was not performed during H1–H11.
(C) Example session 1 ∆F/F response traces for individual L2/3-S (left) and L2/3-D (right) ROIs with high (top), null
(middle) or low (bottom) USIs. Mean ± standard error of the mean (SEM) ∆F/F across Gabor sequences is plotted.
Dashed vertical lines mark onset of D/U frames.
(D) Example USI null distribution for one ROI from L2/3-S in session 1, generated by shuffling D-G and U-G labels for
the same ROI and recomputing the shuffled USIs 104 times. Significant regions highlighted in red, and true USI value
labelled in blue.
(E) USI percentile distributions for each plane for all session 1 ROIs. Dashed horizontal lines depict null hypotheses
(i.e., uniform distribution). Significant percentiles are marked with red highlights (p < 0.05, shuffle test as shown in
(D)).
(F) Percentage ± bootstrapped standard deviation (SD) of significant USIs for all segmented ROIs in session 1 for each
plane. All sequences (any mean orientation) are included in the analysis.
(G) Same as (F), but restricted to the Gabor sequences with mean orientations shared between D and U frames
{90◦, 135◦}.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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locations and the orientations of the Gabor patches were resampled and shifted by 90◦ on average with respect166

to the preceding A-B-C frames. As such, the U frames strongly violated potential expectations about both167

Gabor patch locations and orientations. These “unexpected” sequences comprised approximately 7% of the168

sequences presented to the mice during the imaging sessions.169

ROIs in VisP exhibited clear responses to both the onset of the sequences and the final Gabor frames170

(Fig. S3), so we compared the responses of the ROIs to the unexpected U frames and the expected D frames.171

First, we examined the average ∆F/F signals in each of the four imaging conditions: L2/3-D, L2/3-S, L5-D, L5-172

S. We observed that some ROIs had clearly different responses to the expected and unexpected frames (Fig. 2C,173

top and bottom traces). To quantify the difference in responses to the expected versus the unexpected frames,174

we calculated an “unexpected event selectivity index” (USI) by subtracting the mean responses to the expected175

from the unexpected stimulus events, and scaling this value by a factor of their variances (Equation 1). We then176

examined the USIs to see whether they indicated that the circuit treated the expected and unexpected frames177

differently. We found that many more ROIs than would arise by chance had negative or strongly positive USIs, as178

has been previously observed [Keller et al., 2012]. To determine chance levels, we constructed null distributions179

non-parametrically for each ROI by shuffling the “expected” and “unexpected” labels for the stimulus frames180

104 times, each time recomputing the USI on the shuffled data (Fig. 2D; see Materials & Methods). These181

shuffles yielded a null distribution over USI values for each ROI that reflected the null hypothesis, according to182

which there was no difference in an ROI’s responses to expected and unexpected events. We then identified the183

percentile of each ROI’s real USI within its own null distribution: ROI USIs below the 2.5th percentile or above184

the 97.5th percentile were labelled as statistically significant (Fig. 2D). Across the population of ROIs, in both185

L2/3 and L5 somata and dendrites, there were far more significant USIs than would be predicted by chance186

(Fig. 2E–F). This effect was consistent across individual mice, with 10 of the 11 animals showing a statistically187

significant effect (Fig. S4A). Notably, when we restricted this analysis to sequences whose mean Gabor patch188

orientations occurred for both D and U frames, namely 90◦ and 135◦, the USI percentages remained largely189

the same, meaning that USI patterns did not reflect ROI preferences for specific orientations of the Gabor190

patches (Fig. 2G). Thus, the response differences we observed were unlikely to be a result of the differences in191

the orientations of the Gabor patches in the D and U frames. Together, these data indicate that the neurons192

and dendrites in primary visual cortex respond systematically differently to expected and unexpected frames,193

in line with the first observable signature of predictive learning discussed above.194

We next wondered whether the differences in the responses to expected and unexpected frames could have195

been driven by differences in the animals’ behavior. There is a growing body of evidence showing that responses196

in mouse visual cortex are affected by behaviors like running and pupil dilation [Niell and Stryker, 2010; Salkoff197

et al., 2020; Stringer et al., 2019]. Therefore, it was important to ask whether the mice altered their behavior in198

response to the unexpected stimulus frames. If so, these behavioral differences could be reflected in the neuronal199

responses in visual cortex, confounding our interpretation that the differences in neuronal response were due200

to the expected versus unexpected nature of the stimulus. To test this possibility, we compared the animals’201

running velocities and pupil dilation during the expected D frames and the unexpected U frames (Fig. 3A). We202

found no difference in either running velocity or pupil dilation for D versus U frames (Fig. 3B), suggesting that203

behavioral changes are not a major confound in our analyses. Altogether, these data confirm the first observable204

signature of hierarchical predictive learning introduced above, i.e., that expected and unexpected stimuli are205

represented differently within the neocortical microcircuit.206

2.3 Responses to expected and unexpected stimuli evolve over days and differ207

between the somata and distal apical dendrites208

To probe learning, we compared the neural responses to expected and unexpected stimuli over three sessions209

spread across multiple days. Importantly, unsupervised learning—wherein a system learns about stimuli merely210

through exposure to them [Beaulieu and Cynader, 1990; Lotter et al., 2016; van den Oord et al., 2018; Woloszyn211

and Sheinberg, 2012; Zylberberg et al., 2011]—is not necessarily associated with any behavioral changes. As212

such, experimentally observing unsupervised learning requires observing changes in neural representations as213

animals gain experience with sensory stimuli. Therefore, we examined the evolution of the neuronal responses214

to expected and unexpected stimuli over the three different days of calcium imaging. This analysis made use of215

our ability to track the same ROIs over each of the three imaging sessions (Fig. 1E, S1).216

First, we examined how population-wide responses to the stimuli changed over days. In the distal apical217

dendritic ROIs, the difference in responses to unexpected (A-B-C-U-G) and expected (A-B-C-D-G) sequences218
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Figure 3: Absence of behavioral responses to unexpected stimuli

(A) (Left) Example frames of a mouse running (top), and of a mouse pupil with tracking markers (bottom). (Right) Run-
ning velocity and pupil diameter traces aggregated across mice (mean ± SEM across Gabor sequences) for expected
(gray) and unexpected (red) sequences. Note that the smaller SEM is due to the greater number of expected sequences,
compared to unexpected ones. Dashed vertical lines mark onset of D/U frames.
(B) Block-by-block running velocity (left) and pupil diameter (right) differences between unexpected (U-G) and
expected (D-G) frames. Raw two-tailed p-values (not corrected for multiple comparisons) are shown.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

increased across days, reaching statistical significance in both L2/3 and L5 by session 3 (Fig. 4A–B, top).219

In contrast, by session 3, the response differences in the somatic ROIs, which were statistically significant in220

session 1 for L5-S, converged towards zero (Fig. 4A–B, bottom). Indeed, specifically comparing the responses221

to the regular sequence frames (A-B-C ) and the unexpected frames (U-G), we found that the average somatic222

ROI responses tended to decrease for both expected and unexpected frames over time, though the effect was223

only statistically significant in L2/3 (Fig. 4A–C, bottom). In contrast, in the distal apical dendritic ROIs, we224

observed an increase in the average responses to the unexpected frames, but not to the regular sequence frames225

(Fig. 4A–C, top). These results indicate that the responses to the unexpected stimuli evolved differently from226

the responses to the regular sequence frames in these different compartments.227

Importantly, there is evidence that representations in the brain can drift naturally over time, even in the228

absence of learning [Deitch et al., 2021; Rule et al., 2019]. As such, our above analyses left open the possibility229

that the changes we observed in the neural responses were not a result of unexpected event-driven learning,230

but were simply a result of non-specific representational drift. We think this is unlikely because we saw strong231

directionality to the changes in responses over days that would not be expected from random representational232

drift: somatic responses to unexpected events decreased towards zero, while distal apical dendritic responses233

increased across days (Fig. 4A–C).234

Nonetheless, to further test for non-specific drift, we also examined the evolution of the responses of the same235

ROIs to a different, visual flow stimulus (Fig. S5A), which, based on prior work, was unlikely to drive strong236

expectation violations due to the fact that the visual flow was not coupled to the animals’ movements [Zmarz237

and Keller, 2016]. In line with this previous work, we observed that although this stimulus drove changes in238

L2/3-S and L2/3-D, responses in L5-S and L5-D were fairly stable over sessions (Fig. S5B–C) [Jordan and Keller,239

2020]. Moreover, in all compartments, the changes in responses to unexpected stimuli and USIs were smaller for240

the visual flow simuli than the Gabor stimuli (S6A–E). This indicates that our observations of relatively large241

changes in the responses to the Gabor sequences were stimulus–specific, and hence unlikely to be caused by242

non-specific representational drift. Altogether, these data support the idea that VisP engages in unsupervised243

learning in response to unexpected events.244

Given our observations of changes in the responses to the Gabor sequences at the population level, we245

wondered whether the same effects would be observable for the tracked ROIs. This is important because246

changes observed in the population-wide responses could, in principle, be driven by only a few ROIs. To test247

this possibility, we examined the changes over days in the responses of individual ROIs. First, we observed the248

same patterns as described above when we focused only on the tracked ROIs: i.e., the somatic responses tended249
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to decrease for both regular sequence frames and unexpected frames, whereas the responses to the unexpected250

frames increased in the distal apical dendrites (Fig. S4B).251

Figure 4: Unexpected Gabor sequences result in different ∆F/F and USI changes in different imaging planes.

(A) Mean (± SEM) across ROI mean ∆F/F responses to expected (gray, A-B-C-D-G) and unexpected (green or blue,
A-B-C-U-G) Gabor sequences. Dashed vertical lines mark onset of D/U frames.
(B) Mean (± SEM) differences across ROIs in the mean integrated responses to expected vs. unexpected Gabor
sequences, as defined in (A). Gray bars show median (dark) and adjusted 95% CIs (light) over randomly expected
differences.
(C) Mean (± SEM) across ROIs of the mean ∆F/F responses across sequences for regular sequence frames (gray
diamonds: A-B-C ) and unexpected frames (green or blue circles: U-G). Responses are calculated relative to session 1
regular responses, marked by dashed horizontal lines.
(D) Gabor sequence stimulus USIs for all tracked ROIs. Each line represents a single ROI’s USIs over all three sessions.
(E) Mean (± SEM) across the absolute values of the Gabor sequence stimulus USIs for tracked ROIs, as shown in (D).
(F) Variance (± bootstrapped SD) across the Gabor sequence stimulus USIs for tracked ROIs, as shown in (D).

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
+: p < 0.05, ++: p < 0.01, +++: p < 0.001 (two-tailed, corrected), for regular stimulus comparisons (gray) in (C).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

Next, in order to understand how the responses to the expected D frames versus unexpected U frames252

evolved, we examined the USIs for the tracked ROIs over days. We found that in the somatic compartments,253

the USIs had converged towards zero over the three sessions (Fig. 4D–F, bottom). In contrast, in the distal apical254

dendritic compartments, the USIs had increased significantly over the three days. This effect was most prominent255
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in L2/3-D (Fig. 4D–E, top). These effects were generally consistent across mice (Fig. S4C). Together, these256

results indicate that individual ROIs altered their responses to the expected and unexpected Gabor sequence257

stimulus frames over multiple days, in a manner that differed between compartments receiving largely bottom-up258

inputs (somata) and compartments receiving largely top-down inputs (distal apical dendrites). It is important to259

note that if these changes were entirely random, then we would not expect to see systematic differences between260

the somatic and distal apical compartments, as we did here. Instead, this discovery is consistent with the second261

and third observable signatures of the hierarchical learning hypothesis articulated in the Introduction, since we262

see changes over days and these differ between the distal apical dendrites and the somata.263

2.4 Responses to expected and unexpected stimuli change systematically over264

days265

Our preceding analyses showed that neurons in mouse VisP respond differently to expected and unexpected266

stimuli (Fig. 2), that these responses evolve over days (Fig. 4), and that there is a difference in this evolution267

between compartments receiving primarily bottom-up or top-down information (Fig. 4). These findings provide268

evidence for the three observable signatures of hierarchical predictive learning. We next sought to look for269

evidence that neural circuits use cell-by-cell or distal apical dendritic segment-by-segment differences in responses270

to expected and unexpected stimuli to guide learning.271

A necessary condition for these signals to guide learning is that they contain detailed information about what272

was unexpected about the stimuli, i.e., information about the orientations of the Gabors. If the neural signals273

were to contain this information, we should be able to decode the unexpected Gabor patch orientations from274

the responses to the expected D or the unexpected U frames. To address this question, we trained linear logistic275

regression classifiers to identify the mean Gabor patch orientation from the recorded neural responses. Using a276

cross-validation approach with 300 random splits, we trained the classifiers for each animal and session on 75%277

of the data, testing them on the remaining (held-out) 25%. We found that in the somatic compartments the278

classifiers performed significantly above chance for session 1. This performance tended to decrease over sessions279

until it was at or near chance level by session 3 (Fig. 5A–B, bottom). In contrast, in the dendritic compartments,280

the performance of the decoders started above, or nearly above, chance on session 1 and then improved over281

sessions for the unexpected U frames, but not the expected D frames (Fig. 5A–B, top). Interestingly, the282

decoding results for U frames paralleled the evolution of the USIs in these compartments. Hence, the signals283

contain information about the nature of the unexpected orientations in a manner that reflects the extent of284

differences between expected and unexpected event-driven responses.285

We next sought to determine whether the difference in responses to expected and unexpected stimuli was286

systematic across days at the level of individual ROIs. Specifically, we examined the correlation between ROI287

USIs in one session and the next. If the USIs do not change systematically over days, the second day’s USI should288

resemble the first day’s, plus some noise, and hence we should find positive correlations between USIs across289

days. Conversely, negative correlations between days are evidence of systematic changes, wherein ROIs with290

the largest USIs on the first day tend to have the smallest USIs on the second day, suggesting a USI-dependent291

learning mechanism.292

To determine whether correlations were significantly different from what would be expected if there was no293

relationship between an ROI’s USI in one session and the next, we computed null distributions for each imaging294

plane and session pair by shuffling 105 times the ROI labels within each session. Correlation values below these295

null distributions were interpreted as reflecting a statistically significant negative correlation between USI values296

across sessions for individual ROIs.297

In the somatic compartments, we found no statistically significant correlations between ROI USIs in one298

session and the next (Fig. 5C, bottom). This suggests that since the overall population tendency is for somatic299

ROI USIs to converge towards zero over days (Fig. 4D-F, bottom), individual ROI USIs on one day are not300

linearly predictive of their values on a subsequent day. In contrast, ROI USIs in both distal apical dendritic301

compartments were negatively correlated from session 1 to 2 (Fig. 5C, top). As Fig. S7A–B shows, this reflects302

a tendency for the higher distal apical dendritic ROI USIs to decrease from day 1 to day 2 (bottom right303

quadrants), and for the lower ones to increase even more strongly (top left quadrants). 1
304

1 The previous version of this paper on bioRxiv showed different correlation results, which we have revised here in three ways.
1) Generally, we added more imaging sessions to our analyses to improve robustness. 2) For Fig. 5C and S6F, in order to specifically
assess learning at the individual ROI level, we replaced session permutations with ROI permutations. 3) In light of these new results,
we updated our interpretations of changes at the level of individual ROIs.
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Figure 5: Unexpected Gabor sequences result in predictable ∆F/F changes in individual ROIs.

(A) Balanced accuracy (mean ± SEM over mice) for classifiers decoding mean Gabor patch orientations from ROI
activity during D-G frames (2–3 mice per imaging plane, 300 random cross-validation splits per mouse, per session).
Gray bars show median (dark) and adjusted 95% CIs (light), computed by shuffling orientation labels.
(B) Same as (A) but with ROI activity during U-G frames.
(C) USI correlations (± bootstrapped SD) between sessions for each plane and session comparison. Gray bars show
median (dark) and adjusted 95% CIs (light), computed by shuffling ROI labels.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected, except for (C) where one-tailed (lower), cor-
rected significance is reported).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

In contrast, we ran this same analysis on the visual flow stimulus, where changes in representations over305

sessions were smaller and were only observed in L2/3-D and L2/3-S. Although none of the distal apical dendritic306

compartments showed USI correlations across days, ROI USIs in somatic compartments were positively corre-307

lated across days (Fig. S6F, S7C–D). Given the weak changes in mean ROI USIs across days, these correlations308

likely reflect a tendency for visual flow USIs to remain constant across days in the somatic compartments.309

Altogether, these results demonstrate that at a dendritic segment-by-segment level, the differences between310

responses to expected and unexpected stimuli change systematically between days. This implicates the distinct311

responses to expected versus unexpected stimuli in the learning process, as anticipated under a predictive312

learning hypothesis.313

3 Discussion314

In this study, we explored the question of whether the neocortex learns from unexpected stimuli. This is a central315

component of a broad class of theories in neuroscience and machine learning that postulate that the brain learns316

a hierarchical model of the world by comparing predictions about sensory stimuli to the actual stimuli received317

from the world. This class of theories has several observable signatures in terms of neural responses and how318

they should evolve over time in response to expected versus unexpected stimuli. We searched for three such319

observable signatures here, using chronic recordings in mouse VisP, and found evidence in support of each320

one. First, we observed that neurons responded differently to expected versus unexpected stimuli, which is a321

precondition for learning from unexpected stimuli. Second, we found that neural responses to the unexpected322

stimuli changed over days. In contrast, the responses to other stimuli were more stable, suggesting that the323

unexpected events specifically drove unsupervised learning. Third, the evolution of these responses over days324

differed between the distal apical dendrites (which are likely driven in large part by top-down feedback from325

higher-order areas [Budd, 1998; Larkum, 2013a,b]) versus the cell bodies (which are likely driven more by326

bottom-up sensory input [Budd, 1998; Larkum, 2013a,b]). This indicates that top-down and bottom-up signals327
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are shaped differently by the unsupervised learning process, which is a feature of learning in a hierarchical328

model. Finally, and going beyond the three main observable signatures, we found that the sensitivity of distal329

apical dendrites to unexpected events on one day changed systematically by the next day. This final observation330

shows that changes in activity across days are specific to individual dendritic segments.331

Many different forms of hierarchical unsupervised learning have been proposed. The most well-known in332

neuroscience is probably the predictive coding model of [Rao and Ballard, 1999], along with its variations333

[Friston and Kiebel, 2009; Spratling, 2017; Whittington and Bogacz, 2017]. But several other models in this334

vein exist. Examples include Helmholtz machine [Dayan et al., 1995], deep belief net [Hinton and Salakhutdinov,335

2006], Bayesian inference [Lee and Mumford, 2003], contrastive learning [Hyvärinen et al., 2019], and contrastive336

predictive coding [van den Oord et al., 2018] models. What all of these models share is the idea that higher-337

order association areas make predictions about incoming sensory stimuli, which then get compared to the338

actual incoming stimuli in order to learn a model of the external world. Hence, all of these models imply the339

experimental signatures we tested here.340

Why do all of these models imply these same observable signatures? First, in order to learn from unexpected341

events, there must be some available signal that distinguishes unexpected events from expected ones. Thus,342

a key observable signature is that expected and unexpected events drive distinct responses. Second, all of343

these models postulate that unexpected events are used to guide unsupervised learning. Thus, stimuli with344

unexpected components should induce changes in cortical representations. Third, these models all propose that345

higher-order areas form more abstract representations of the world, and hence the top-down signals communicate346

something different from the bottom-up signals, which reflect incoming sensory data. Thus, learning should347

shape these two signals differently, as they encode different aspects of the world. Finally, all of these models348

propose that the learning algorithm utilizes the difference between expected and unexpected stimuli to shape349

neural representations. Therefore, our data ultimately provide support for this broad class of models. Future350

work will attempt to distinguish between the specific models within this broader class.351

Figure 6: Learning in distal apical dendrites and somata.

Illustration of a conceptual model based on our data of how un-
expected events drive changes in the neural circuit. With experi-
ence, unexpected event selectivity in the somata converges toward
0, whereas it increases overall in the distal apical dendrites, partic-
ularly in dendritic segments that initially showed low selectivity.

Based on our data and previous results in352

the field, we propose a broad conceptual model353

illustrated in Fig. 6. According to this model,354

the brain learns an internal representation of the355

world in associative regions, based on which top-356

down predictions are provided via the distal api-357

cal dendrites to pyramidal neurons in areas like358

VisP. If incoming stimuli contain unexpected359

features, i.e., features not predicted at the dis-360

tal apical dendrites (e.g., unexpected frames in361

Gabor sequences or an unexpected leaf on an362

apple, as in Fig. 6, left), pyramidal cell somatic363

and distal apical dendritic activity will reflect364

the unexpected feature or event. However, with365

experience, this activity triggers changes to the366

internal model of the world, such that it better367

captures the new information provided by the368

unexpected stimuli (e.g., by accounting for the369

possibility of different Gabor frames, or of ap-370

ples with leaves, as in Fig. 6, right). As a result,371

the distal apical dendritic activity becomes more372

attuned to these novel forms of stimuli.373

Notably, our results do not support a sim-374

ple version of predictive coding wherein excita-375

tory neurons only encode prediction errors. Al-376

though the unexpected event responses in the377

somata did decrease over time, in-line with en-378

coding of errors, the responses in the dendrites379

increased. This suggests that different compu-380

tations were reflected in the different compartments of the neurons. Moreover, the finding that the distal apical381

dendritic signals grow at a population level with exposure to the unexpected stimuli goes counter to proposals382
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implementing predictive coding by using the distal apical dendrite as a site for prediction error calculations383

[Sacramento et al., 2018; Whittington and Bogacz, 2019]. More experiments with simultaneous imaging of den-384

drites and cell bodies in different brain regions could help to clarify the distinct computational roles of these385

neuronal compartments.386

There are a number of limitations to this work that must be recognized. First, we were not recording387

somata and distal apical dendrites in the same neurons. Thus, even though we saw very different evolutions388

in the responses of the distal apical dendrites and somata to the Gabor sequence stimulus, we cannot say with389

certainty that these differences hold within individual cells. Indeed, there is data to suggest that coupling390

between the distal apical dendrites and the somata can sometimes be strong, particularly in vivo [Beaulieu-391

Laroche et al., 2019; Francioni et al., 2019; Larkum et al., 2007]. Nonetheless, other previous work has reported392

weak coupling between somata and distal apical dendrites [Kerlin et al., 2019; Larkum et al., 2007; Smith et al.,393

2013], suggesting that this coupling could be context-dependent. Consistent with potential context dependence,394

we saw clear differences in the evolution of selectivity for unexpected Gabor sequences over time between the395

somatic and distal apical dendritic compartments, but we did not see these differences in response to the visual396

flow stimuli (Fig. S6). Since these observations were consistent across mice (Fig. S4C), it seems likely that these397

results would hold within individual neurons. At the same time, future work using simultaneous multi-plane398

imaging will be critical to confirm this finding.399

Second, though we examined the distal apical dendrites separately from the somata specifically in order to400

identify potential differences in the processing of top-down and bottom-up inputs, an ideal experiment would401

record simultaneously from other higher-order brain regions and their projections into visual cortex [Leinweber402

et al., 2017; Marques et al., 2018]. This would help determine whether the signals we saw in the distal apical403

dendrites were being calculated locally or in other regions. These experiments would be technically challenging,404

but they are potentially feasible given recent technical advances in multi-plane mesoscope imaging.405

Third, given the nature of our visual stimuli we were unable to measure either the classical receptive fields or406

the orientation tuning of the neurons. As such, we cannot state with certainty whether these factors could explain407

the differences in how individual cells responded to expected and unexpected stimuli. However, we observed408

our results in aggregate across large populations of recorded neurons, presumably with diverse orientation409

tuning properties and receptive fields. Thus, it is unlikely that idiosyncracies of individual neurons’ orientation410

selectivities could account for the unexpected event responses. This assertion is supported by our finding that411

even when we only compared responses for expected and unexpected frames with the same mean orientation we412

still observed significant differences in the responses. Moreover, we observed significant changes in unexpected413

event selectivity over days, whereas classic receptive fields and orientation tuning of neurons in mouse VisP are414

known to be relatively stable over these timescales [Montijn et al., 2016].415

Fourth, these experiments were open-loop, and thus did not incorporate any sensorimotor coupling to help416

shape expectations. On one hand, this is a limitation given that there are a number of reports of apparent417

sensorimotor predictions and prediction error signals in visual cortex [Keller et al., 2012; Leinweber et al., 2017;418

Zmarz and Keller, 2016]. On the other hand, the fact that we saw evidence for learning in the open-loop419

setting suggests that the brain is learning from sensory data alone, in addition to learning from sensorimotor420

contingencies.421

Fifth, and relatedly, our experiments did not incorporate any behavioral training or rewards. It could be the422

case that the way in which the brain learns from unexpected events is different when those events are relevant423

to motivated behaviors [Poort et al., 2015]. As such, we cannot say whether the patterns we observed would424

carry over to task-based learning scenarios.425

Finally, it must be recognized that different sensory stimuli, which can present different forms of unexpected426

events, and recordings in different brain regions may produce different results. To more fully assess the hierar-427

chical predictive learning hypothesis, future work should thoroughly explore the space of possible expected and428

unexpected sensory stimuli and other regions of the neocortex.429

A long-standing goal of neuroscience is to understand how our brains learn from the sensory data that430

we receive from the world around us. Answers to this question are critical to our understanding of how we431

build our internal models of the world, and how these govern how we interact with our surroundings. In432

this work, we monitored changes in the responses of visual cortical neurons in mice while they learned about433

new external stimuli, and found that these changes were consistent with a broad class of computational models,434

namely, hierarchical predictive models. Looking forward, we anticipate that these findings could drive substantial435

progress towards uncovering more specific models describing the brain’s hierarchical predictive learning. To436

facilitate that progress, our data and analysis software are freely available to other researchers.437
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4 Materials & Methods438

4.1 Experimental animals and calcium imaging439

The dataset used in this paper was collected as part of the Allen Institute for Brain Science’s OpenScope ini-440

tiative. All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC)441

at the Allen Institute for Brain Science. Two transgenic mouse lines (Cux2-CreERT2;Camk2a-tTA;Ai93 and442

Rbp4-Cre KL100;Camk2a-tTA;Ai93) were used to drive expression of GCaMP6f in layer 2/3 and layer 5 pyra-443

midal neurons, respectively. Mice first underwent cranial window surgery, following which they were housed in444

cages individually and maintained on a reverse dark-light cycle with experiments conducted during the dark445

phase. Mice were then habituated over two weeks to head fixation on a running disc, with the visual stimu-446

lus presentation being added the second week. Following habituation, they underwent three 70-minute optical447

imaging sessions within a span of three to six days, with no more than one session occurring per day. Two-448

photon calcium imaging was performed in the retinotopic center of VisP. Specifically, for each mouse, imaging449

was performed in either the cell body layer for somatic recordings (175 µm depth for layer 2/3 and 375 µm450

depth for layer 5) or in cortical layer 1 for distal apical dendritic recordings (50–75 µm depth for layer 2/3 and451

20 µm depth for layer 5) across all optical imaging sessions. Sessions that did not meet quality control were452

excluded from analyses, resulting in 11 mice total (L2/3-D: n = 2, L2/3-S: n = 3, L5-D: n = 3, L5-S: n = 3)453

with three optical imaging sessions each. Full details on the Cre lines, surgery, habituation, and quality control454

are provided in [de Vries et al., 2020].455

Data were collected and processed using the Allen Brain Observatory data collection and processing pipelines456

[de Vries et al., 2020]. Briefly, imaging was performed with Nikon A1R MP+ two-photon microscopes, and457

laser excitation was provided at a wavelength of 910 nm by a Ti:Sapphire laser (Chameleon Vision-Coherent).458

Calcium fluorescence movies were recorded at 30 Hz with resonant scanners over a 400 µm field of view with a459

resolution of 512 x 512 pixels (Supp. Video 1). Temporal synchronization of calcium imaging, visual stimulation,460

running disc movement, and infrared pupil recordings was achieved by recording all experimental clocks on a461

single NI PCI-6612 digital IO board at 100 kHz. Neuronal recordings were then motion corrected, and ROI462

masks of neuronal somata were segmented as described in [de Vries et al., 2020]. For recordings in layer 1,463

ROI masks of neuronal dendrites were segmented using the robust estimation algorithm developed by [Inan464

et al., 2017, 2021], which allows non-somatic shaped ROIs to be identified. This segmentation was run on the465

motion-corrected recordings, high-pass filtered spatially at 10 Hz and downsampled temporally to 15 Hz. The466

algorithm parameters were tuned to reject potential ROIs with a peak spatial SNR below 2.5, a temporal SNR467

below 5, or a spatial corruption index above 1.5, while enabling spatially discontinuous dendritic segments to be468

identified as part of single ROIs (Fig. S2D). Fluorescence traces for both somatic and dendritic ROIs were then469

extracted, neuropil-subtracted, demixed, and converted to ∆F/F traces, as described in [de Vries et al., 2020;470

Millman et al., 2020]. Together, neuropil subtraction and the use of a 180-second (5401 sample) sliding window471

to calculate rolling baseline fluorescence levels F for the ∆F/F computation ensured that the ∆F/F traces472

obtained were robust to potential differences in background fluorescence between mice and imaging planes.473

Finally, any remaining ROIs identified as being duplicates or unions, overlapping the motion border or being474

too noisy (defined as having a mean ∆F/F below 0 or a median ∆F/F above the midrange ∆F/F , i.e., the475

midpoint between the minimum and maximum) were rejected. In the somatic layers, 15–224 ROIs per mouse476

per session were identified and retained for analysis, compared to 159–1636 ROIs in the dendritic layers. Lastly,477

maximum-projection images were obtained for each recording, examples of which are shown in Fig. 1C and E.478

Briefly, the motion corrected recordings were downsampled to ∼4 Hz by averaging every 8 consecutive frames,479

following which the maximum value across downsampled frames was retained for each pixel. The resulting480

images were then rescaled to span the full 8-bit pixel value range (0–255). Metadata for the dataset is available481

on GitHub,2 and the full dataset is publicly available in Neurodata Without Borders (NWB) format [Ruebel482

et al., 2019] in the DANDI Archive.3483

4.2 Visual stimulation484

During each habituation and imaging session, mice viewed the Gabor sequence stimulus, as well as a visual485

flow stimulus. The stimuli were presented consecutively for an equal amount of time and in random order.486

2 https://github.com/jeromelecoq/allen_openscope_metadata/tree/master/projects/credit_assignement
3 https://gui.dandiarchive.org/#/dandiset/000037
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They appeared on a grayscreen background and were projected on a flat 24-inch monitor positioned 10 cm487

from the right eye. The monitor was rotated and tilted to appear perpendicular to the optic axis of the eye,488

and the stimuli were warped spatially to mimic a spherical projection screen. Whereas habituation sessions489

increased in duration over days from 10 to 60 minutes, optical imaging sessions always lasted 70 minutes,490

comprising 34 minutes of Gabor sequence stimulus and 17 minutes of visual flow stimulus in each direction.491

Each stimulus period was flanked by one or 30 seconds of grayscreen for the habituation and optical imaging492

sessions, respectively.493

The Gabor sequence stimulus was adapted from the stimulus used in [Homann et al., 2017]. Specifically, it494

consisted of repeating 1.5-second sequences, each comprising five consecutive frames (A-B-C-D-G) presented for495

300 ms each. Whereas G frames were uniformly gray, frames A, B, C, and D were defined by the locations and496

sizes of the 30 Gabor patches they each comprised. In other words, throughout a session, the locations and sizes497

of the Gabor patches were the same for all A frames, but differed between A and B frames. Furthermore, these498

locations and sizes were always resampled between mice, as well as between days, such that no two sessions499

comprised the same Gabor sequences, even for the same mouse. The location of each Gabor patch was sampled500

uniformly over the visual field, while its size was sampled uniformly from 10 to 20 visual degrees. Within each501

repeat of the sequence (A-B-C-D-G), the orientations of each of the Gabor patches were sampled randomly502

from a von Mises distribution with a shared mean and a kappa (dispersion parameter) of 16. This shared mean503

orientation was randomly selected for each sequence and counterbalanced for all four orientations {0◦, 45◦, 90◦,504

135◦}. As such, although a large range of Gabor patch orientations were viewed during a session, orientations505

were very similar within a single sequence. “Unexpected” sequences were created by replacing D frames with506

U frames in the sequence (A-B-C-U-G). U frames differed from D frames not only because they were defined507

by a distinct set of Gabor patch sizes and locations, but also because the orientations of their Gabor patches508

were sampled from a von Mises distribution with a mean shifted by 90◦ with respected to the preceding regular509

frames (A-B-C ), namely from {90◦, 135◦, 180◦, 225◦} (Fig. 2A, Supp. Video 4).510

The visual flow stimulus consisted of 105 white squares moving uniformly across the screen at a velocity of511

50 visual degrees per second, with each square being 8 by 8 visual degrees in size. The stimulus was split into512

two consecutive periods ordered randomly, and each defined by the main direction in which the squares were513

moving (rightward or leftward, i.e., in the nasal-to-temporal direction or vice versa, respectively). Unexpected514

sequences, or flow violations, were created by reversing the direction of flow of a randomly selected 25% of the515

squares for 2–4 seconds at a time, following which they resumed their motion in the main direction of flow516

(Fig. S5A, Supp. Video 5).517

Unexpected sequences, accounting for approximately 7% of the Gabor sequences and 5% of visual flow518

stimulus time, only occurred on optical imaging days, and not on habituation days. In particular, each 70-519

minute imaging session was broken up into approximately 30 blocks, each comprising 30–90 seconds of expected520

sequences followed by several seconds of unexpected sequences (3–6 seconds for Gabor sequence stimulus and521

2–4 seconds for the visual flow stimulus). All durations were sampled randomly and uniformly for each block,522

across multiples of 1.5 seconds for the Gabor sequence stimulus and of 1 second for the visual flow stimulus.523

The stimuli were generated using Python 2.7 [Van Rossum and Drake, 1995] custom scripts based on Psy-524

choPy 1.82.01 [Peirce, 2009] and CamStim 0.2.4, which was developed and shared by the Allen Institute for525

Brain Science. Code, instructions to reproduce the stimuli, and example videos are available on Github.4526

4.3 Statistical analyses527

For most analyses, mean ± standard error of the mean (SEM) is reported. In cases where the error could528

not be directly measured over the sample, e.g., the percentage of significant ROI USIs reported in Fig. 2F, a529

bootstrapped estimate of the error was obtained by resampling the data with replacement 104 times. In these530

cases, the standard deviation (SD) over the bootstrapped sample is plotted instead, and this is visually signaled531

by the use of broader error caps (Fig. 2F–G, 4F, 5C, S6B, E–F).532

Significance tests, unless otherwise indicated, were computed non-parametrically using permutation tests533

with 105 shuffles to construct null distributions, based on which confidence intervals (CIs) could be estimated.534

Where p-values are reported, they are two-tailed (except for Fig. 5C, S6F and S7; see Sec. 4.6 Fluorescence535

trace analysis, below), and Bonferroni-corrected for multiple comparisons to reduce the risk of Type I errors536

(false positives). Where 95% CIs are plotted, they are equivalently adjusted using a Bonferroni correction.537

An exception was made for Fig. 3B, which reports the relationship between the stimuli and behavioral data.538

4 https://github.com/colleenjg/cred_assign_stimuli
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Here, Type II errors (false negatives) were considered of greater concern, and thus we reported raw two-tailed539

p-values in the panel itself. Details of the statistical analyses for all figures, including number of comparisons540

and corrected p-values, are presented in Table S1.541

4.4 Running and pupil analysis542

Mice were allowed to run freely on a disc while head-fixed during habituation and optical imaging sessions543

(Fig. 3A, Supp. Video 2). Running information was converted from disc rotations per running frame to cm/s.544

The resulting velocities were median-filtered with a five-frame kernel size, and any remaining outliers, defined545

as resulting from a single frame velocity change of at least ±50 cm/s, were omitted from analyses.546

To track pupil diameter during imaging sessions, an infrared LED illuminated the eye ipsilateral to the547

monitor (right eye), allowing infrared videos to be recorded (Fig. 3A, Supp. Video 3) [Allen Institute for Brain548

Science, 2017]. We trained a DeepLabCut model from ∼200 manually labeled examples to automatically label549

points around the eye, from which we estimated the pupil diameter (∼0.01 mm per pixel conversion) [Mathis550

et al., 2018].5 We omitted from analyses outlier frames, defined as resulting from a single-frame diameter change551

of at least 0.05 mm, which usually resulted from blinking.552

Each datapoint in Fig. 3B corresponds to the difference in the mean running velocity or pupil diameter for553

one block between the unexpected and preceding expected Gabor sequences during session 1, with all blocks554

being pooled across mice. We computed p-values by comparing the mean difference over all blocks for each555

plane to a distribution of mean differences, obtained by shuffling the expected and unexpected labels 104 times556

and calculating the mean difference over all blocks for each shuffle.557

4.5 ROI tracking across sessions558

To track ROIs across days, we employed a custom-modified version of the ROI-matching package developed559

to track cell bodies across multiple recording days by the Allen Institute for Brain Science [de Vries et al.,560

2020]. This pipeline implements the enhanced correlation coefficient image registration algorithm to align561

ROI masks and the graph-theoretic blossom algorithm to optimize the separation and degree of overlap between562

pairwise matches, as well as the number of matches across all provided sessions [Evangelidis and Psarakis, 2008].563

This process produced highly plausible matches for the somatic ROIs; however, it provided some implausible564

matches for the smaller and more irregularly shaped dendritic ROIs. For the dendritic ROIs, we therefore further565

constrained the putative matches to those that overlapped by at least 10–20%. Finally, we merged results across566

all session orderings (e.g., 1-2-3, 1-3-2, 3-1-2), eliminating any conflicting matches, i.e., non-identical matchings567

that shared ROIs. In total, the modified matching algorithm produced ∼100–500 highly plausible matched568

ROIs per plane, i.e., ∼32–75% of the theoretical maximum number of trackable ROIs (L2/3-D: n = 254, L2/3-569

S: n = 261, L5-D: n = 516, L5-S: n = 129) (Fig. 1E, S1, S8).570

4.6 Fluorescence trace analysis571

For all results except those presented in Fig. 5A–B, S2C, and S4A, C, ROIs were pooled across all mice within an572

imaging plane for analyses. To enable ROI pooling across mice within imaging planes, each ROI’s ∆F/F trace573

was scaled using robust standardization, i.e., by subtracting the median and then dividing by the interpercentile574

range spanning the 5th to 95th percentile. The only additional exceptions to this are Fig. 4C, S2A-B, S4B, S6A,575

where unscaled ∆F/F traces were used to ascertain how the ∆F/F signal itself changed across sessions.576

Unexpected event selectivity indices (USIs) were calculated for each ROI separately using Equation 1:577

USI =
µunexpected − µexpected√
1
2

(
σ2

expected
+ σ2

unexpected

) , (1)

where the means (µexpected and µunexpected) and variances (σ2
expected and σ2

unexpected) were calculated578

across integrated ∆F/F responses to the expected and unexpected events, respectively. For the Gabor sequences,579

expected events responses were defined as those spanning D-G frames, and unexpected events were defined as580

those spanning U-G frames, with each event therefore spanning 600 ms. Indeed, G frames were included in these581

5 https://allensdk.readthedocs.io/en/latest/allensdk.internal.brain_observatory.eye_calibration.html
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events, as they did not introduce any new stimuli, but did consistently show persisting ROI responses to D or582

U frames (Fig. 2C). For the visual flow stimulus, expected events were defined as the last 2 seconds of expected583

flow before unexpected flow onset (at which point 25% of the squares reversed direction), while unexpected584

events were defined as the first 2 seconds of unexpected flow (Fig. S5B). For each ROI, in addition to the true585

USI, a null distribution over USIs was obtained by randomly reassigning the expected and unexpected event586

labels to each response 104 times. USIs were deemed significantly low if they lay below the 2.5th percentile, and587

significantly high if they lay above the 97.5th percentile of their null distribution (Fig. 2D).588

Note that for Fig. 2G, USIs were calculated using only D-G and U-G stimuli for which the mean orientations589

were in {90◦, 135◦}, i.e., the orientations shared by D and U frames. For each imaging plane, the percentage590

of significant ROI USIs was then plotted with bootstrapped SDs. Adjusted 95% CIs over chance levels were591

estimated using the usual approximation method of the binomial CI, with the sample size corresponding to the592

number of ROIs in the plane (Fig. 2F–G).593

For Fig. 4A–B, ROI responses and differences in responses to full expected (A-B-C-D-G) and unexpected594

(A-B-C-U-G) sequences were obtained by first taking the mean ∆F/F for each ROI across Gabor sequences.595

Mean ∆F/F ± SEM traces were then computed across ROIs and plotted for each session and imaging plane596

(Fig. 4A). For Fig. 4B, the differences in the traces plotted in (Fig. 4A) were quantified by integrating the mean597

∆F/F responses over time for each ROI. Mean differences ± SEM between expected and unexpected sequence598

responses were then calculated across ROIs and plotted for each session and imaging plane. To further compare599

ROI responses to regular (A-B-C ) and unexpected (U-G) stimuli, for each ROI, a mean ∆F/F was calculated600

for each set of Gabor frames, and then across sequences (Fig. 4C). The mean ∆F/F values thus obtained for601

each ROI over a given session were then normalized by dividing by the mean ∆F/F for regular stimuli across602

all ROIs from the same mouse in session 1. These normalized means ± SEM over ROIs were then plotted for603

each session and plane. Absolute fractional differences between sessions in the responses to unexpected stimuli604

(Fig. S6B) or in USIs (Fig. S6E) were defined as605 ∣∣∣∣µ3 − µ1

µ1

∣∣∣∣ , (2)

where the subscripts indicate the session over which the mean µ is computed. For Fig. S6B, µ is the mean of the606

∆F/F values over all ROIs for the given plane or pooled over all planes, as indicated, for unexpected sequences.607

As in Fig. 4C, the ∆F/F values were calculated relative to the mean expected ∆F/F values on session 1 for608

each mouse. For Fig. S6E, µ is the mean of the absolute values of the USIs for the given plane or pooled over609

all planes for unexpected sequences. Significance tests comparing session results (Fig. 4B–C, E–F, S4B, S5C,610

S6A, D) and those comparing Gabor sequence and visual flow stimulus results (Fig. S6B, E) were assessed by611

permuting the session or stimulus labels, respectively, to compute adjusted 95% CIs over results expected by612

chance.613

For the orientation decoding analyses, linear logistic regressions were trained with an L2 penalty on the614

multinomial task of classifying the mean Gabor patch orientation for D-G frames {0◦, 45◦, 90◦, 135◦} or U-G615

frames {90◦, 135◦, 180◦, 225◦}. Balanced classifier accuracy was evaluated on the test sets of 300 random616

cross-validation 75:25 train:test splits of the dataset for each mouse. Importantly, since the D-G frame datasets617

necessarily comprised many more examples than the U-G frame datasets (∼13x), they were first downsampled618

for each split to match the number of examples in the corresponding U-G frame datasets, thus enabling fairer619

comparisons between D-G and U-G classification results. Input data consisted of the ∆F/F responses for all620

ROIs together across D-G or U-G frames (600 ms). The traces were standardized as described above, but using621

statistics drawn from the training data only. Mean balanced accuracy across dataset splits was calculated for622

each mouse, and the mean (± SEM) balanced accuracy across mice was plotted for each session and plane. To623

estimate chance accuracy, shuffled classifier performances were evaluated on 105 random cross-validation dataset624

splits for each mouse. These classifiers were trained as above, but for each split, the training set orientation625

targets were shuffled randomly. Null distributions over mean performance were obtained by averaging classifier626

accuracy for each split across mice, from which adjusted 95% CIs over accuracy levels expected by chance were627

calculated for each session and plane (Fig. 5A–B).628

Pearson correlation coefficients (Fig. 5C, S6F), and the corresponding regression slopes (Fig. S7) were calcu-629

lated to compare ROI USIs in each imaging plane between sessions. Bootstrapped SDs over these correlations630

for each plane were then estimated, and adjusted 95% CIs were computed by permuting the ROI labels, such631

that tracked ROIs were no longer matched together. Here, one-tailed (lower tail) CIs were calculated to identify632

correlations that were more negative than expected by chance.633
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5 Analysis software634

Analyses were performed in Python 3.6 [Van Rossum and Drake, 2009] with custom scripts that are freely635

available on GitHub,6 and were developed using the following packages: NumPy [Harris et al., 2020], SciPy636

[Jones et al., 2001], Pandas [McKinney et al., 2010], Matplotlib [Hunter, 2007], Scikit-learn 0.21.1 [Pedregosa637

et al., 2011], and the AllenSDK 1.6.0.7 Dendritic segmentation was run in Matlab 2019a [MATLAB, 2019]638

using the robust estimation algorithm developed by [Inan et al., 2017, 2021]. Pupil tracking was performed639

using DeepLabCut 2.0.5 [Mathis et al., 2018]. ROIs were matched across sessions using a custom-modified640

version of the n-way cell matching package developed by the Allen Institute.8641
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10 Supplemental Info814

10.1 Supplemental videos815

Supp. Video 1: Sample two-photon recordings for each imaging plane816

This video shows sample two-photon calcium imaging recordings for each of the four imaging planes (L2/3-D,817

L2/3-S, L5-D, L5-S), which match the maximum-projection images in Fig. 1C. Each recording is from a different818

mouse and played at 8x the original recording speed.819

820

Supp. Video 2: Sample of a running recording821

This video shows a sample recording of a mouse running on a disc, during stimulus presentation, on an optical822

imaging day.823

824

Supp. Video 3: Sample of an annotated pupil recording825

This video shows a sample recording of a mouse pupil, during stimulus presentation, on an optical imaging day.826

The right pupil, ipsilateral to the stimulus presentation screen, is shown. It is annotated with tracking markers827

which are inferred by the DeepLabCut model and used to measure pupil diameter. Specifically, the small, filled828

blue dots mark the 8 tracked pupil poles, and the yellow ellipse marks the elliptical pupil shape inferred from829

the tracked poles.830

831

Supp. Video 4: Gabor sequence stimulus example832

This video shows example expected and unexpected sequences for the Gabor sequence stimulus. As described833

in the Materials & Methods, each frame lasts 300 ms, resulting in 1.5-second sequences. Within each expected834

sequence (A-B-C-D-G), all Gabor patches share a mean orientation, sampled from {0◦, 45◦, 90◦, 135◦}. Within835

each unexpected sequence (A-B-C-U-G), U frame Gabor patches are shifted by 90◦ with respect to the rest836

of the sequence’s mean Gabor patch orientation. In this example video, each frame is labelled at the bottom837

right. Additionally, expected sequences are signalled with a green circle, and unexpected sequences, with a red838

circle. None of these annotations appeared during the actual experiments, when the animals viewed the stimulus.839

840

Supp. Video 5: Visual flow stimulus example841

This video shows example expected and unexpected sequences for the visual flow stimulus. Example sequences842

are shown for temporal to nasal (leftward), followed by nasal to temporal (rightward) main flow. As described in843

the Materials & Methods, during unexpected flow, 25% of the squares temporarily reverse their direction of flow.844

845
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10.2 Supplemental figures846

Figure S1: ROIs are successfully tracked in each plane

(A) Full field of view mask overlays for ROIs tracked across all three sessions for an example mouse in each plane.
(B) Enlarged views from (A) showing individual tracked ROI overlays for each plane.
The tracking pipeline reliably produced highly plausible ROI matches across all three sessions in each imaging plane.
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Figure S2: ROI SNR, signal and numbers are consistent across sessions

(A) ∆F/F trace SNRs for each ROI. For each session and plane, boxplots show the medians of the ROI SNR distributions,
as well as the 25th to 75th percentiles, with the whiskers extending from the 5th to 95th percentiles. SNR was calculated
for each ROI as follows. First, parameters (mean, SD) of a normal distribution over noisy activity were estimated based
on the lower tail of the ROI’s full activity distribution. The 95th percentile of the parameterized noise distribution was
then defined as that ROI’s noise threshold. ROI SNRs were then calculated as the ratio between their mean activity
above the noise threshold (signal), and the SD of their parameterized noise distribution. Dashed horizontal lines mark
1, i.e., noise level.
SNR levels were consistent across sessions within imaging planes.
(B) Mean ∆F/F trace signal, where each datapoint corresponds to an ROI. Boxplots drawn as in (A), and signal is
defined as described in (A).
Signal levels were consistent across sessions within imaging planes.
(C) The number of ROIs was generally stable across sessions for each mouse, except one in L5-D.
(D) Distributions of pairwise ROI correlations, plotted on a log scale. The log scale is linearized near 0, as signalled by
the axis break. Pairwise correlations were computed over full session fluorescence traces, which were smoothed using a
four-point moving average.
In all sessions, lines and planes, the vast majority of the correlation mass was concentrated near 0. The log scale reveals
that the small amount of mass remaining is distributed similarly between lines and planes, largely below 0.5.
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Figure S3: ROIs are responsive to stimulus onset, and to Gabor sequences

(A) Mean (± SEM) ∆F/F response traces across ROI mean responses to stimulus onset (Gabor sequence or visual
flow) from grayscreen. Dashed vertical line at time 0 marks stimulus onset, also signalled by the gray bar becoming red
(bottom of right column).
In all planes and sessions, ROI populations show clear responses to stimulus onset.
(B) ∆F/F response traces to each expected Gabor sequence (gray) for example ROIs. Mean (± SEM) ∆F/F responses
across sequences are plotted in blue or green. Dashed vertical lines mark onset of D frames. Plotted ROIs were randomly
selected from session 1 ROIs deemed consistently responsive to Gabor sequences, based on the following criteria: (1) their
SNR was above the median for the session, (2) the median pairwise correlation between their individual sequence
responses, as well as the SD and skew of their mean response, were each above the 75thpercentile for the session. As in
Fig. S2D, responses to individual sequences were smoothed using a four-point moving average, for correlation calculation
and plotting, only.
In each imaging plane, numerous ROIs were found which were responsive to various components of the Gabor sequences.
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Figure S4: ROI responses to unexpected Gabor sequences are consistent in tracked ROIs and across mice

(A) Percentage of significant USIs in session 1 for each plane, where each dot corresponds to a separate mouse.
Significance for each datapoint was evaluated against its own adjusted binomial CI (not shown). Lines show the pooled
percentage for each plane, as plotted in Fig. 2F. Dashed horizontal lines mark the theoretical chance level (2.5%).
Results are consistent with those pooled across mice, with 10 out of the 11 animals showing a higher percentage of
significant ROI USIs than expected by chance in at least one tail (2F).
(B) Mean (± SEM) across tracked ROIs of the mean ∆F/F responses across sequences for regular sequence frames
(gray diamonds: A-B-C ) and unexpected frames (green or blue circles, U-G), as in Fig. 4C. Responses are calculated
relative to session 1 regular responses, marked by dashed horizontal lines.
Results are consistent with the full ROI population results (Fig. 4C).
(C) Mean (± SEM) across the absolute values of the Gabor sequence stimulus USIs for tracked ROIs, as in Fig. 4E, but
split by mouse.
Results are consistent with those pooled across mice (Fig. 4E).

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
+: p < 0.05, ++: p < 0.01, +++: p < 0.001 (two-tailed, corrected), for regular stimulus comparisons (gray) in (B).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S5: L2/3 ROIs respond to the onset of unexpected visual flow

(A) Visual flow stimulus. Squares moved together at the same velocity across the screen during expected flow (top). At
random times (unexpected flow, bottom), 25% of the squares, highlighted here in red for illustrative purposes, reversed
direction for 2–4 seconds (see Materials & Methods, and Supp. Video 5).
(B) Mean (± SEM) across ROI mean ∆F/F responses to visual flow sequences. Expected and unexpected visual flow
sequences were defined as for the USI calculation, namely over the 2 seconds preceding unexpected visual flow onset and
following its onset, respectively. Dashed vertical line at time 0 marks the onset of unexpected visual flow, also signalled
by the gray bar becoming red (bottom of right column).
(C) Mean (± SEM) differences across ROIs in the mean integrated responses to expected vs. unexpected visual flow,
as defined in (B). Gray bars show median (dark) and adjusted 95% CIs (light) over randomly expected differences.
Whereas the L5 somatic and distal apical dendritic populations did not respond significantly differently to expected vs.
unexpected flow, both L2/3 somatic and distal apical dendritic populations showed a significant difference in responses,
which increased over days in the dendrites. These findings are consistent with recent work by [Jordan and Keller,
2020] showing that L2/3 neurons integrate visual flow mismatch information, whereas L5 neurons do not appear to do so.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S6: Unexpected visual flow sequences do not result in the same ∆F/F changes across sessions as
unexpected Gabor sequences do

(A) Mean (± SEM) across ROIs of the mean ∆F/F responses across sequences for expected flow (gray diamonds) and
unexpected flow (green or blue circles), as defined in Fig. S5B. Responses are calculated relative to session 1 expected
responses, marked by dashed horizontal lines. Corresponds to Fig. 4C for Gabor sequences.
(B) Absolute fractional change (± bootstrapped SD) in mean unexpected responses from session 1 to 3 for Gabor
sequence vs. visual flow stimulus for each plane (left and middle columns), and pooled across all planes (right column)
(see Equation 2).
In all imaging planes except L5-S, changes in ROI responses to unexpected stimulus from session 1 to 3 were significantly
greater for the Gabor stimulus than for the visual flow stimulus.
(C) Visual flow stimulus USIs for all tracked ROIs. Each line represents a single ROI’s USIs over all three sessions.
Corresponds to Fig. 4D for Gabor sequences.
(D) Mean (± SEM) across the absolute values of the visual flow stimulus USIs for tracked ROIs, as shown in (C).
Corresponds to Fig. 4E for Gabor sequences.
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(Fig. S6 caption, cont’d)
(E) Similar to (B), but here mean (± bootstrapped SD) absolute fractional changes in USIs from session 1 to 3 across
tracked ROIs are plotted (see Equation 2).
In L5-D and all compartments combined, changes in USIs for tracked ROIs from session 1 to 3 were significantly greater
for the Gabor stimulus than for the visual flow stimulus.
(F) Correlations (± bootstrapped SD) for each plane and session comparison. Gray bars show median (dark) and
adjusted 95% CIs (light), computed by shuffling ROI labels. Corresponds to Fig. 5C for Gabor sequences.
Unlike the Gabor sequence stimulus, only positive correlations are observed for the visual flow stimulus, and they are in
the somatic compartments instead of the dendritic ones.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected, except for (F) where one-tailed (lower), cor-
rected significance is reported).
+: p < 0.05, ++: p < 0.01, +++: p < 0.001 (two-tailed, corrected), for expected stimulus comparisons (gray) in (A).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S7: Gabor sequence USIs are negatively correlated between sessions 1 and 2 in the distal apical dendrites

(A) Gabor USI scatterplots showing correlations between sessions 1 and 2. Each point reflects a single tracked ROI’s
USIs on two sessions. Gray contour lines show null distributions, computed by shuffling ROI labels, as in Fig. 5C. The
estimated regression slopes for each plane (blue or green, dashed) are plotted against the identity line (gray, dashed).
Opposite quadrants are shaded in gray. Significance markers next to reported slope values correspond to the correlation
significance testing results reported in Fig. 5C, and S6F.
(B) Same as in (A), but for Gabor sequence USIs in sessions 2 and 3.
(C) Same as in (A), but for visual flow USIs in sessions 1 and 2.
(D) Same as in (A), but for visual flow USIs in sessions 2 and 3.
Only L2/3-D and L5-D ROI Gabor sequence USIs show significant negative correlations. These correlations are between
the USIs of sessions 1 and 2, and have slopes of -0.24 and -0.28, respectively.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (one-tailed (lower), corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons. Specifically, for (A–B), see the
entries for Fig. 5C , and for (C–D), see the entries for Fig. S6F.
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Figure S8: Dendritic ROI matches vary more with session ordering than somatic ROI matches do

(A) Example L2/3-D mouse with ROIs matched across sessions. The order in which the session images are aligned slightly
affects which ROIs are matched. (Left) Permutation with the smallest number of matched ROIs. (Middle) Permutation
with the largest number of matched ROIs. (Right) Taking the union of matches across all session permutations while
removing conflicting matches (matches comprising at least one ROI that also appears in a different match) enables the
quantity and quality of matched ROIs to be optimized. In this example, four pairwise matches were identified as conflicts
and removed, yielding 136 final matches.
(B) Same as (A), but for a L5-S mouse. The variation in number of matched ROIs across session orderings for somata
was generally far less than that for dendrites due to their larger sizes and more regular shapes. Combining matched ROIs
across all permutations did nonetheless, in this example mouse, enable two of the pairwise matches to be identified as
conflicts and removed, yielding 47 final matches.
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10.3 Supplemental table847

Table S1: Summary of statistical tests and results for all figures.

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

2 F L2/3-D to null binomial 8 < 0.001 p < 0.001

left L2/3-S to null null CI comparisons < 0.001 p < 0.001

L5-D to null < 0.001 p < 0.001

L5-S to null 0.004 p < 0.01

F L2/3-D to null < 0.001 p < 0.001

right L2/3-S to null < 0.001 p < 0.001

L5-D to null < 0.001 p < 0.001

L5-S to null < 0.001 p < 0.001

G L2/3-D to null binomial 8 < 0.001 p < 0.001

left L2/3-S to null null CI comparisons < 0.001 p < 0.001

L5-D to null < 0.001 p < 0.001

L5-S to null < 0.001 p < 0.001

G L2/3-D to null < 0.001 p < 0.001

right L2/3-S to null < 0.001 p < 0.001

L5-D to null < 0.001 p < 0.001

L5-S to null < 0.001 p < 0.001

310 B L2/3-D to null 104 4 1.000 n.s.11

left L2/3-S to null permutations comparisons 1.000 n.s.

L5-D to null 1.000 n.s.

L5-S to null 1.000 n.s.

B L2/3-D to null 104 4 1.000 n.s.

right L2/3-S to null permutations comparisons 0.782 n.s.

L5-D to null 1.000 n.s.

L5-S to null 1.000 n.s.

4 B L2/3-D sess. 1 to null 105 24 1.000 n.s.

sess. 2 to null permutations comparisons 1.000 n.s.

sess. 3 to null < 0.001 p < 0.001

sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L2/3-S sess. 1 to null 1.000 n.s.

sess. 2 to null 0.252 n.s.

sess. 3 to null 1.000 n.s.

sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 1.000 n.s.

sess. 2 vs. 3 0.182 n.s.

L5-D sess. 1 to null 1.000 n.s.

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 0.020 p < 0.05

10 In contrast to the p-values reported directly in Fig. 3, the p-values reported here are corrected for multiple comparisons.
11 n.s.: not significant
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

(4) (B) L5-S sess. 1 to null (105 (24 < 0.001 p < 0.001

sess. 2 to null permutations) comparisons) 1.000 n.s.

sess. 3 to null 1.000 n.s.

sess. 1 vs. 2 0.755 n.s.

sess. 1 vs. 3 0.011 p < 0.05

sess. 2 vs. 3 1.000 n.s.

C L2/3-D sess. 1 vs. 2 reg. 105 24 1.000 n.s.

unexp. permutations comparisons < 0.001 p < 0.001

sess. 1 vs. 3 reg. 1.000 n.s.

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. 1.000 n.s.

unexp. 1.000 n.s.

L2/3-S sess. 1 vs. 2 reg. 1.000 n.s.

unexp. 1.000 n.s.

sess. 1 vs. 3 reg. 1.000 n.s.

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. 0.018 p < 0.05

unexp. < 0.001 p < 0.001

L5-D sess. 1 vs. 2 reg. 1.000 n.s.

unexp. < 0.001 p < 0.001

sess. 1 vs. 3 reg. < 0.001 p < 0.001

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. < 0.001 p < 0.001

unexp. 1.000 n.s.

L5-S sess. 1 vs. 2 reg. 1.000 n.s.

unexp. 0.814 n.s.

sess. 1 vs. 3 reg. 0.118 n.s.

unexp. 1.000 n.s.

sess. 2 vs. 3 reg. 1.000 n.s.

unexp. 1.000 n.s.

E L2/3-D sess. 1 vs. 2 105 12 1.000 n.s.

sess. 1 vs. 3 permutations comparisons < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L2/3-S sess. 1 vs. 2 0.374 n.s.

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L5-D sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 1.000 n.s.

L5-S sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 0.004 p < 0.01

sess. 2 vs. 3 0.683 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

(4) F L2/3-D sess. 1 vs. 2 105 12 1.000 n.s.

sess. 1 vs. 3 permutations comparisons 1.000 n.s.

sess. 2 vs. 3 0.647 n.s.

L2/3-S sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L5-D sess. 1 vs. 2 0.077 n.s.

sess. 1 vs. 3 0.008 p < 0.01

sess. 2 vs. 3 1.000 n.s.

L5-S sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 0.002 p < 0.01

sess. 2 vs. 3 0.944 n.s.

5 A L2/3-D sess. 1 to null 105 24 < 0.001 p < 0.001

sess. 2 to null permutations comparisons < 0.001 p < 0.001

sess. 3 to null 0.086 n.s.

L2/3-S sess. 1 to null < 0.001 p < 0.001

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

L5-D sess. 1 to null 0.002 p < 0.01

sess. 2 to null 0.006 p < 0.01

sess. 3 to null 0.008 p < 0.01

L5-S sess. 1 to null < 0.001 p < 0.001

sess. 2 to null 1.000 n.s.

sess. 3 to null < 0.001 p < 0.001

B L2/3-D sess. 1 to null 0.525 n.s.

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

L2/3-S sess. 1 to null < 0.001 p < 0.001

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

L5-D sess. 1 to null 0.003 p < 0.01

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

L5-S sess. 1 to null < 0.001 p < 0.001

sess. 2 to null 0.097 n.s.

sess. 3 to null 0.080 n.s.

C12 L2/3-D sess. 1 v 2 to null 105 8 < 0.001 p < 0.001

sess. 2 v 3 to null permutations comparison 1.000 n.s.

L2/3-S sess. 1 v 2 to null 0.843 n.s.

sess. 2 v 3 to null 1.000 n.s.

L5-D sess. 1 v 2 to null < 0.001 p < 0.001

sess. 2 v 3 to null 1.000 n.s.

12 One-tailed t-tests were used here (lower tail).
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

(5) (C) L5-S sess. 1 v 2 to null (105 (8 1.000 n.s.

sess. 2 v 3 to null permutations) comparisons) 1.000 n.s.

S4 A L2/3-D ∼6% binomial 22 < 0.001 p < 0.001

left ∼24% null CI comparisons < 0.001 p < 0.001

L2/3-S ∼5% 0.201 n.s.

∼6% 0.463 n.s.

∼46% < 0.001 p < 0.001

L5-D ∼1% < 0.001 p < 0.001

∼6% 0.095 n.s.

∼24% < 0.001 p < 0.001

L5-S ∼6% 0.542 n.s.

∼7% 0.330 n.s.

∼13% 0.250 n.s.

A L2/3-D ∼2% 1.000 n.s.

right ∼10% < 0.001 p < 0.001

L2/3-S ∼3% 1.000 n.s.

∼9% < 0.001 p < 0.001

∼51% < 0.001 p < 0.001

L5-D ∼1% 0.767 n.s.

∼6% 0.010 p < 0.05

∼10% < 0.001 p < 0.001

L5-S ∼7% 1.000 n.s.

∼32% < 0.001 p < 0.001

∼34% < 0.001 p < 0.001

B L2/3-D sess. 1 vs. 2 reg. 105 24 1.000 n.s.

unexp. permutations comparisons 0.003 p < 0.01

sess. 1 vs. 3 reg. 0.215 n.s.

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. 1.000 n.s.

unexp. 1.000 n.s.

L2/3-S sess. 1 vs. 2 reg. 1.000 n.s.

unexp. 1.000 n.s.

sess. 1 vs. 3 reg. 0.302 n.s.

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. < 0.001 p < 0.001

unexp. < 0.001 p < 0.001

L5-D sess. 1 vs. 2 reg. 1.000 n.s.

unexp. < 0.001 p < 0.001

sess. 1 vs. 3 reg. 0.050 n.s.

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. 0.006 p < 0.01

unexp. 1.000 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

(S4) (B) L5-S sess. 1 vs. 2 reg. (105 (24 1.000 n.s.

unexp. permutations) comparisons) 0.136 n.s.

sess. 1 vs. 3 reg. < 0.001 p < 0.001

unexp. < 0.001 p < 0.001

sess. 2 vs. 3 reg. 1.000 n.s.

unexp. 1.000 n.s.

S5 C L2/3-D sess. 1 to null 105 24 < 0.001 p < 0.001

sess. 2 to null permutations comparisons < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L2/3-S sess. 1 to null 0.002 p < 0.01

sess. 2 to null < 0.001 p < 0.001

sess. 3 to null < 0.001 p < 0.001

sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 0.132 n.s.

sess. 2 vs. 3 1.000 n.s.

L5-D sess. 1 to null 1.000 n.s.

sess. 2 to null 1.000 n.s.

sess. 3 to null 1.000 n.s.

sess. 1 vs. 2 < 0.001 p < 0.001

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 < 0.001 p < 0.001

L5-S sess. 1 to null 1.000 n.s.

sess. 2 to null 1.000 n.s.

sess. 3 to null 1.000 n.s.

sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 1.000 n.s.

sess. 2 vs. 3 1.000 n.s.

S6 A L2/3-D sess. 1 vs. 2 exp. 105 24 0.152 n.s.

unexp. permutations comparisons 1.000 n.s.

sess. 1 vs. 3 exp. 0.095 n.s.

unexp. 0.185 n.s.

sess. 2 vs. 3 exp. 1.000 n.s.

unexp. 0.003 p < 0.01

L2/3-S sess. 1 vs. 2 exp. 1.000 n.s.

unexp. 1.000 n.s.

sess. 1 vs. 3 exp. 1.000 n.s.

unexp. 1.000 n.s.

sess. 2 vs. 3 exp. 1.000 n.s.

unexp. 1.000 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni

correction

Corrected

p-value

Signif.

(S6) (A) L5-D sess. 1 vs. 2 exp. (105 (24 < 0.001 p < 0.001

unexp. permutations) comparisons) < 0.001 p < 0.001

sess. 1 vs. 3 exp. < 0.001 p < 0.001

unexp. 0.057 n.s.

sess. 2 vs. 3 exp. 1.000 n.s.

unexp. 0.344 n.s.

L5-S sess. 1 vs. 2 exp. 0.072 n.s.

unexp. 0.067 n.s.

sess. 1 vs. 3 exp. 1.000 n.s.

unexp. 1.000 n.s.

sess. 2 vs. 3 exp. 1.000 n.s.

unexp. 0.621 n.s.

B L2/3-D gabors vs. vis. flow 105 5 < 0.001 p < 0.001

L2/3-S gabors vs. vis. flow permutations comparisons < 0.001 p < 0.001

L5-D gabors vs. vis. flow < 0.001 p < 0.001

L5-S gabors vs. vis. flow 1.000 n.s.

all gabors vs. vis. flow < 0.001 p < 0.001

D L2/3-D sess. 1 vs. 2 105 12 1.000 n.s.

sess. 1 vs. 3 permutations comparisons 0.034 p < 0.05

sess. 2 vs. 3 0.147 n.s.

L2/3-S sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 < 0.001 p < 0.001

sess. 2 vs. 3 0.026 p < 0.05

L5-D sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 1.000 n.s.

sess. 2 vs. 3 0.588 n.s.

L5-S sess. 1 vs. 2 1.000 n.s.

sess. 1 vs. 3 1.000 n.s.

sess. 2 vs. 3 1.000 n.s.

E L2/3-D gabors vs. vis. flow 105 5 0.650 n.s.

L2/3-S gabors vs. vis. flow permutations comparisons 1.000 n.s.

L5-D gabors vs. vis. flow 0.005 p < 0.01

L5-S gabors vs. vis. flow 0.243 n.s.

all gabors vs. vis. flow < 0.001 p < 0.001

F13 L2/3-D sess. 1 v 2 to null 105 8 1.000 n.s.

sess. 2 v 3 to null permutations comparisons 1.000 n.s.

L2/3-S sess. 1 v 2 to null 1.000 n.s.

sess. 2 v 3 to null 1.000 n.s.

L5-D sess. 1 v 2 to null 1.000 n.s.

sess. 2 v 3 to null 1.000 n.s.

L5-S sess. 1 v 2 to null 1.000 n.s.

sess. 2 v 3 to null 1.000 n.s.

13 One-tailed t-tests were used here (lower tail).

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 18, 2021. ; https://doi.org/10.1101/2021.01.15.426915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426915
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Imaging dendrite segments and cell bodies over multiple days
	Cortical neurons respond differently to expected and unexpected stimuli
	Responses to expected and unexpected stimuli evolve over days and differ between the somata and distal apical dendrites
	Responses to expected and unexpected stimuli change systematically over days

	Discussion
	Materials & Methods
	Experimental animals and calcium imaging
	Visual stimulation
	Statistical analyses
	Running and pupil analysis
	ROI tracking across sessions
	Fluorescence trace analysis

	Analysis software
	Acknowledgements
	Author Contributions
	Competing Interests
	Funding
	Supplemental Info
	Supplemental videos
	Supplemental figures
	Supplemental table


