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 17 

Abstract 18 

Escherichia coli uses the ability of  factors to recognize specific DNA sequences in 19 

order to quickly control large gene cohorts. While most genes respond to only one  20 
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factor, approximately 5% have dual  factor preference. The ones in significant 21 

numbers are ‘σ70+38 genes’, responsive to 70, which controls housekeeping genes, as 22 

well as to 38, which activates genes during stationary growth and stresses. We show 23 

that σ70+38 genes are almost as upregulated in stationary growth as genes responsive 24 

to 38 alone. Also, their response strengths to 38 are predictable from their promoter 25 

sequences. Next, we propose a sequence- and 38 level-dependent, analytical model 26 

of σ70+38 genes applicable in the exponential, stationary, and in the transition period 27 

between the two growth phases. Finally, we propose a general model, applicable to 28 

other σ factors as well. This model can guide the design of synthetic circuits with 29 

sequence-dependent sensitivity and plasticity to transitions between the exponential 30 

and stationary growth phases.  31 

 32 

Author Summary 33 

Present challenges in Synthetic Biology include the design of genetic circuits that are 34 

robust to growth phase transitions and whose responsiveness is sequence-35 

dependent, and, thus predictable prior to design. We present and validate an 36 

empirical-based, sequence-dependent analytical model of E. coli genes with dual 37 

responsiveness to the regulators 70 and 38. These genes, supported by our 38 

sequence-dependent model, could become building blocks for synthetic genetic 39 

circuits functional in both the exponential and the stationary growth phases. 40 

 41 

1. Introduction 42 
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In Escherichia coli (E. coli), genes are expressed by RNA polymerase (RNAP), which 43 

has 5 subunits (α2ββ′ω) and can synthesize RNA by starting and ending at sequence-44 

specific DNA locations, with the former being known as ‘promoter’ regions [1]. 45 

Transcription is constantly regulated, mostly at the promoter regions, which typically 46 

harbor transcription factor (TF) binding sites (TFBS) and other regulatory sequence 47 

motifs [2–7]. Such regulation is an essential survival skill of adaptability to transitions 48 

in both internal as well as external conditions [8,9] 49 

One mechanism of large-scale, relatively synchronous gene expression regulation is 50 

executed by σ factors [4,10–13]. E. coli has seven different σ factors [14]. During 51 

exponential growth in optimal conditions, RNAP mostly transcribes genes with 52 

preference for σ70, responsible for basic cell functions [15]. Other σ factors are 53 

expressed under specific stresses [16], and activate a specific gene cohort. For 54 

example, after growing exponentially at the cost of environment components, E. coli 55 

usually switches to stationary growth. This is triggered, among other, by RpoS (σ38), 56 

whose appearance activates ~10% of the genome [17,18], which leads to key 57 

phenotypic modifications [18–24].  58 

During this adaptation, the concentration of RNAP remains relatively constant [25] 59 

and, since the number of RNAP core enzymes is limited, σ factors compete for them 60 

[10,12,14,20,26,27]. Thus, when σ38 numbers increase, not only are the genes 61 

responsive to σ38 activated, but also other genes, previously active, are indirectly 62 

negatively regulated, due to the reduction in RNAPs carrying σ70 [10,26,28]. 63 

For this regulatory system to be efficient, promoters need to have high specificity to 64 

one and only one σ factor. Nevertheless, there is a small fraction of promoters that 65 

can recognize more than one σ factor [6,29,30]. The most common (84%) are the 66 
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promoters responsive to both σ70 and σ38 [31]. Other cases are too rare to obtain 67 

sufficient statistics on their kinetics (Table S3 in S3 Appendix). 68 

Here we investigate how the sequences of promoters recognized by both σ70 and σ38 69 

relate to the dynamics of genes that they control (here named ‘σ70+38 genes’). From 70 

flow cytometry and RNA-seq measurements, along with sequence analysis, we 71 

establish a relationship between RNA and protein levels in each growth phase with 72 

the promoter sequence (logos of positions -41 to -1 shown in Fig S1 in S2 Appendix).  73 

From this, we propose a model of the dynamics σ70+38 genes that fits their behavior 74 

prior, during, and following the transition to stationary growth. The model is dependent 75 

on both the promoter-sequence as well as the levels of  factors in the cell. 76 

 77 

2. Results 78 

2.1. RNA fold changes when shifting to stationary growth 79 

To study how σ70+38 genes respond to stationary growth, we first identified when are 80 

cells in exponential and stationary growth. We used both wild type (WT, control) cells 81 

and a MGmCherry strain [19] carrying fluorescently tagged 38 to measure its levels 82 

prior to, during, and after shifting from exponential to stationary growth (Section 4.2). 83 

Cells at 150 min after being placed in fresh medium are used as representatives of 84 

cells in mid-exponential growth (Fig 1A). Meanwhile, at 500 min and onwards, cells 85 

exhibit stationary growth (Fig 1A).  86 

From the measurements, 38 levels are small at 150 min, while from 500 min onwards 87 

they are stably high (Fig 1B). Considering that the cell areas are ~15% smaller in the 88 
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stationary phase (Figs S3A and S3B in S2 Appendix), at 700 min the absolute 89 

concentration of 38 is ~32 times higher than at 150 min (Fig 1C and Fig S3C in S2 90 

Appendix). Meanwhile, RNAP concentration is largely stable (only ~7% higher during 91 

stationary growth) (Fig 1C and Fig S3D in S2 Appendix).  92 

Next, we measured changes in RNA levels, by RNA-seq, between moments 150 min 93 

and 500 minutes by calculating the log2 fold changes in RNA levels (LFCRNA) (Sections 94 

4.2 and 4.4). Gaussian fits to the LFCRNA distributions (Fig 1D) of σ70+38 genes, σ70 95 

genes, and σ38 genes, as well as all other genes, have high coefficient of determination 96 

(R2) values of the fits suggesting that they capture well the shapes of the empirical 97 

distributions.  98 

In general, σ70+38 genes are nearly as upregulated as σ38 genes (Fig 1D). On the other 99 

hand, 70 genes are weakly downregulated, likely due to indirect negative regulation 100 

caused by the increase in σ38 levels combined with the limited pool of RNAP core 101 

enzymes [10,12,14,20,26,27]. Finally, most other genes (~2737 out of the 4308 genes) 102 

are relatively unresponsive. 103 

 104 
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Fig 1. Cell growth, RNAP, RpoS and genome-wide RNA levels when changing from 105 

exponential to stationary growth. (A) Optical densities ‘O.D.600’ of wild-type MG1655 106 

(control) and MGmCherry (rpoS::mcherry) strains (Section 4.1). (B) Mean population 107 

fluorescence of WT and MGmCherry strains. Black vertical bars show the timing of 108 

measurements in exponential (150) and stationary (500 minutes onwards) growth. At 0 109 

minutes, cells were moved to fresh medium (Section 4.2). (C) Fold-change between the 110 

exponential and stationary growth phases of mean cellular fluorescence relative to cell area 111 

(FC(µ/Cell Area)) due to changes in RNAP-GFP and in RpoS-mCherry, respectively. Error 112 

bars are the standard error of the mean (SEM). (D) Gaussian fits to the distributions of LFCRNA 113 

of gene cohorts. Vertical lines mark the mean. 114 

2.2. Propagation of shifts in RNA numbers to protein numbers 115 

We used a YFP strain library to measure single-cell protein levels (Section 4.5) of 9 116 

out of the 64 σ70+38 genes (only 15 of the 64 are represented in this library and some 117 

exhibited too weak signals to be detected by the flow cytometer). These 9 genes, 118 

according to their LFCRNA, cover well the state space of response strengths of σ70+38 119 

genes (Section S1.2 in S1 Appendix). 120 

From the single-cell distributions of protein levels in exponential and stationary growth, 121 

we extracted means, μP, and squared coefficient of variations, CV2
P. We also 122 

calculated the log2 fold changes in μP, LFCP. Since LFCP and the corresponding 123 

LFCRNA are linearly positively correlated, with a high R2 (Fig 2A), we conclude that 124 

changes in RNA levels of σ70+38 genes during the growth phase transition propagate 125 

to their protein levels. 126 

We then analyzed the noise in the dynamics of these genes, prior and after the growth 127 

phase transition. In Figs 2B1 and 2B2, CV2
P decreases quickly with μP for small μP, 128 
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but only weakly for high μP. This is well described by a function of the form: 129 

2 1

P PCV C N−=  +  [32] (where N is the noise floor, a lower bound on the cell-to-cell 130 

variability of protein levels in clonal populations due to extrinsic factors [33]), in 131 

agreement with past reports [32,34,35]. 132 

 133 

Fig 2. Single-cell protein levels of σ70+38 genes in the exponential and stationary growth 134 

phases. (A) Log2 fold-change of protein levels, LFCP, plotted against the corresponding 135 

LFCRNA, during the shifting from exponential to stationary growth. (B1) and (B2) CV2
P plotted 136 

against μP of σ70+38 genes in the exponential and stationary growth phases, respectively. Error 137 

bars (small) are the standard error of mean. All figures show the best fitting curves and their 138 

95% prediction bounds (shadow areas). Horizontal dashed lines are the noise floors. 139 

2.3. Full sequence-dependent model of the shift in the 140 

transcription dynamics of σ70+38 genes 141 

Here, we present a sequence-dependent model of transcription of σ70+38 genes. Based 142 

on past works, we assume that only σ70 is present in high numbers (in holoenzyme 143 

form) in the exponential phase and that only σ38 increases significantly in numbers 144 

when shifting to stationary growth [10,14,20,26,36–38]. 145 

The model therefore accounts for the competition between σ70 and σ38 for binding to 146 

RNAP core enzymes, since these exist in limited numbers in E. coli 147 
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[10,12,14,20,26,27] and since σ factor numbers differ between the two growth phases. 148 

For this, we set reactions for binding and unbinding of σ70 and σ38 to free floating RNAP 149 

core enzymes, (R1a) and (R1b), where Kσ70 and Kσ38 are the ratios between the 150 

association and dissociation rate constants: 151 

70 7070RNAP RNAP+ .σσ K

⎯⎯→     (R1a) 152 

38 3838RNAP RNAP+ .σσ K

⎯⎯→     (R1b) 153 

Given (R1a) and (R1b), RNA production dynamics depends on the ratio between σ70 154 

and σ38 numbers if, and only if, Kσ70 and Kσ38 differ. Meanwhile, the limited pool of 155 

RNAPs is accounted for by setting:  156 

  70 38 .  + .totalRNAP RNAP RNAP    =     .   (1) 157 

Next, to introduce the dual responsiveness to σ70 and σ38, we define two competing, 158 

sequence-dependent reactions of transcription, (R2a) and (R2b), differing in which 159 

holoenzyme binds to the promoter. Further, to also introduce sequence dependence, 160 

we define two sequence-based distances: Dσ38 and Dσ70. Dσ38 is the distance, in 161 

number of nucleotides, of a promoter sequence differing from the consensus (average) 162 

sequence of promoters with σ38 dependency. Dσ70 is the distance in number of 163 

nucleotides differing from the consensus sequence of promoters with σ70 dependency 164 

(Section 4.8.3):  165 

70
707 ( )0 70P rRNAP.σ Pro + P o + R σNA RNA  + + tk D

⎯⎯⎯⎯→   (R2a) 166 

38 38
3 ( )8 38P rRNAP.σ Pro + P o + R σNA RNA  + + tk D 

⎯⎯⎯⎯→   (R2b) 167 
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The rate constants of these reactions, which control the affinities to the holoenzymes, 168 

are expected to differ between genes, as they depend on the promoter sequences 169 

(and potentially which transcription factors are acting on the promoters, here not 170 

represented for simplicity). Nevertheless, here, also for simplicity, kt
σ70 and kt

σ38 are 171 

assumed to be a function of only Dσ70 and Dσ38 respectively. 172 

Together, the set of reactions (R1a), (R1b), (R2a) and (R2b), model the transcription 173 

kinetics of σ70+38 genes before, during and, after shifting from exponential to stationary 174 

growth. The rates kt
σ70(Dσ70) and kt

σ38(Dσ38) are dissected below. 175 

2.4. Reduced model of the shift in transcription kinetics 176 

To reduce the model, we assume that the numbers of RNAP.σ70 and RNAP.σ38 in the 177 

cells are significantly larger than 1, which is expected. Also, we assume that the rate-178 

limiting steps in transcription initiation (during which a promoter is occupied and thus 179 

new events cannot start [39,40]) are shorter in time-length than the intervals between 180 

transcription events. If so, for any σ70+38 gene: 181 

70 70
70( ). 70Pro  RNAP +  Pro + σRNA + 

tRNAP k D
 

 


⎯⎯⎯⎯⎯⎯⎯→    (R3a) 182 

38 38
38( ). 38Pro  RNAP +  Pro + σRNA + 

tRNAP k D
 

 


⎯⎯⎯⎯⎯⎯⎯→    (R3b) 183 

We then merge (R3a) and (R3b) into a single transcription process: 184 

70 38
70 38

70 38.( ) ( ).
Pro Pro + RNA

t tRNAP RNA Dk kPD 
    + 







 ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→    (R4) 185 

Finally, to complete the model, we included a reaction for translation of RNAs into 186 

proteins (R5), as well as events of RNA (R6) and protein (R7) decay due to 187 

degradation and dilution by cell division: 188 
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RNA+ Rib RNA + Rib + Ptrk
⎯⎯→     (R5) 189 

RNA RNA
⎯⎯⎯→      (R6) 190 

P P⎯⎯→       (R7)  191 

2.5. Analytical solution of the reduced model 192 

Based on the reduced model, we obtained an analytical solution for the expected fold 193 

change in RNA numbers of a gene whose promoter has preference for both σ70 as 194 

well as σ38. From (R4), (R5), (R6), and (R7) we derived the expected RNA numbers 195 

produced by a σ70+38 gene: 196 

7

70 870 3

0 38

3 8( )
 = 

. . ( )t t

RNA

k D k D
R A

RNAP RNAP
N

 

  



    +    
  (2) 197 

For simplicity, the rate constants are not expected to differ between the growth phases 198 

(as they depend on biophysical parameters that should not change significantly, such 199 

as binding affinities, etc.). Consequently, the fold-change in RNA numbers between 200 

the two growth phases should equal: 201 

70 38

70 38

70 38

70 38sta sta sta

70 38
exp 70 38exp exp

(. ) ( )
=

.
  

( ) ( ). .

t t

RNA

t t

k D k DRNA
F

RNAP RNAP

RNAP RNAP
C

RNA k D k D

 

 

 

 

 

 

    +    
= 

    +    

 (3) 202 

where γ is the ratio between the RNA decay rates in the two growth phases: 203 

exp

sta

RNA

RNA




 =       (4) 204 

Since [RNAPtotal] is similar in the two growth phases (Fig 1C): 205 
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   

   

70 38sta sta
70 3

0

7

8

exp exp7 38

70 38

0 38

70 38

. .

.

( ) ( )

 

( ) ( )
.

total total

t l

t t

o

R A

ta

N

t t

l tota

k D k D

F

RNAP RNAP

RNAP RNAP

RNAP R

N

C

k D k
NAP

RNAP R AP
D

 

 

 

 

 

 

      
 + 

= 
      

 + 

 (5) 206 

Also, considering equation (1), then: 207 

   

70 38. .
1

total total

RNAP RNAP

RNAP RNAP

      + 
    (6) 208 

For simplicity, let ρexp and ρsta be:  209 

 

 

  ( )8

exp exp

exp

e

38 38 38

70 70 38

xp exp

3

. total

total
total

RN KAP RNAP

RNAP RNAP K K



 


 

 

       
= =

     +    

 (7a) 210 

 

 

  ( )8

sta st

38 38 38

70 7

a

st

0 38

a sta

3

. total

tota

t

l total

s a

RN KAP RNAP

RNAP RNAP K K



 


 

 

       
= =

     +    

 (7b) 211 

From (5): 212 

70 38

sta 70 sta 38

70 38

exp 70 exp 38

(1 ) ( ) ( )
 
(1 ) ( ) ( )

t t
RNA

t t

k D k D
FC

k D k D

 

 

 

 

 

 

−  + 
= 

−  + 
   (8) 213 

Finally, since, in the exponential growth phase, 70 38. .RNAP RNAP        , then 214 

exp 0  . Thus, (8) can be simplified:   215 

38

38
sta sta 70

70

( )
(1 )

( )

t
RNA

t

k D
FC

k D









  =  − +      (9) 216 
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All parameters in (9) can be measured directly, except kt
σ70(Dσ70) and kt

σ38(Dσ38). 217 

Meanwhile, in the stationary phase: 
sta

38 700.3    =      [20,26,37]. Also, 70 385K K =  218 

[41]. Thus: 219 

 

70
7038

70
70 70 70

stasta

sta sta

0.3
5 0.056

.
6

0.3
5

to

sta

tal

RNAP

P

K

K
RNA K








 


      

= =

    +  



  

 (10) 220 

2.6. Promoter sequence affects the expression of σ70+38 genes 221 

To model the influence of the promoter sequence (i.e., Dσ70 and Dσ38) on the response 222 

strength of σ70+38 genes to 38, we studied three models. In all, we assumed the basal 223 

levels of transcription rates, ‘kt0
σ70’ and ‘kt0

σ38’. The overall transcription rates are tuned 224 

by a function f (Table 1) of the influence of Dσ70 and Dσ38 on the basal transcription 225 

rate: 226 

( )70 70

70 0 70( )t tk D k f D 

 =      (11a) 227 

( )38 38

38 0 38( )t tk D k f D 

 =       (11b) 228 

Consider that, in general, as Dσi of a promoter increases, the promoter should become 229 

more distinct from the ‘average’ promoter with preference for σi. Consequently, its 230 

affinity to σi is expected to decrease. If this holds true, then the promoter consensus 231 

sequence of genes with preference for a given σ factor should have strong affinity to 232 

that σ factor. We hypothesize, for simplicity, it has the strongest affinity. If true, it 233 

follows that as Dσ38 increases, the transcription rate by RNAP.σ38 should decrease.  234 

Having this in account, to model how a promoter sequence controls the transcription 235 

kinetics of promoters recognized by σ70 and by σ38, we considered a linear model 236 
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(model I in Table 1), a rational model (model II), where the transcription rate is 237 

inversely proportional to Dσi, and an exponential model (model II), similar to the one in 238 

[6,29,30] for σ70 genes. 239 

 240 

Table 1. Models of how a sequence’s p-distance, D, affects a promoter’s response to 241 

changes in the concentration of its preferred σ factor. Here, m is an empirical-based constant. 242 

 243 

We fitted the models (Fig 3) to the empirical fold changes (FC) of σ70+38 genes (FCRNA) 244 

with known input TFs (Table S4 and Table S6) (FC rather than LFC were used, 245 

because this allowed for simpler equations for the fitting surfaces). From the R2 values 246 

of the best fitting models (Table 2), we find that the model III best describes how Dσ70 247 

and Dσ38 affect kt
σ70 and kt

σ38. 248 

Next, we validated the fitted models by quantifying how well they predict the dynamics 249 

(Fig 3) of σ70+38 genes without input TFs (Table S4 and Table S6). Given the R2 values, 250 

we conclude that the tuned model III predicts well their dynamics. Further, the fact that 251 

the model obtained from genes with TF regulation fits well (with a higher R2) the genes 252 

without TF regulation is suggestive that, in our measurement conditions, such TF 253 

regulation is not exerting a significant role. 254 

I. Linear model ( ) 1i i if D m D = −  , im > 0 & 1i im D  , i = 38 or 70 

II. Rational model 
1

( )
1

i

i i

f D
m D





=
+ 

, 0im  , i = 38 or 70 

III. Exponential model ( ) i im D

if D e 



− 
= , 0im  , i = 38 or 70 
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 255 

Table 2. Goodness of fit, measured by the R2 of the surface fitting of FCRNA as a function of 256 

Dσ38 and Dσ70. Shown are the models and best fitting parameter values, where 
38

0
0 70

0

t

t

k
K

k




= . The 257 

surfaces were fitted to σ70+38 genes without input TFs and validated on genes σ70+38 genes with 258 

input TFs. 259 

I. Linear 

model 

Surface 

Equation 

38 38
sta sta 0

70 70

1
 (1 )

1
RNA

m D
FC K

m D





   
 − 

=  − +    
−  

(12a) 

Coefficients  

m38 -834.80 

m70 -1.01×104 

Г 85.60 

K0 2.39×10-4 

ρsta 0.06 (Equation (10)) 

R2 

σ70+38 genes with input TFs  <0 

σ70+38 genes without input TFs <0 

II. Rational 

model 

Surface 

Equation 

70 70
sta sta 0

38 38

1
(1 )  

1
RNA

m D
FC K

m D





   
 + 

=  − +    
+  

(12b) 

Coefficients  

m38 -0.38 

m70 26.51 

Г 0.21 

K0 241.70 

ρsta 0.06 (Equation (10)) 

R2 σ70+38 genes with input TFs  0.04 
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 260 

 261 

Fig 3. Fold changes in RNA levels of σ70+38 genes plotted against their promoter 262 

sequence p-distances to the consensus sequence of σ70 dependent promoters (Dσ70) 263 

and of σ38 dependent promoters (Dσ38). (A1-A3) show the best fitting surfaces to FC(µRNA) 264 

σ70+38 genes without input TFs 0.00 

III. 

Exponential 

model 

Surface 

Equation 

( )38 38 70 70

sta sta 0(1 )
m D m D

RNAFC K e     
−  − 

=  − +     (12c) 

Coefficients  

m38 30.78 

m70 56.90 

Г 28.20 

K0 3.841×10-9 

ρsta 0.06 (Equation (10)) 

R2 

σ70+38 genes with input TFs  0.55 

σ70+38 genes without input TFs 0.98 
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assuming (A1) a linear function, (A2) a rational function, and (A3) an exponentially decreasing 265 

function. Only σ70+38 genes with input TFs and FDR < 0.05 are included. Light red points are 266 

above the surface, while dark ones are below. (B1-B3) Same plots but the surfaces are those 267 

obtained from (A1-A3) and applied to σ70+38 genes without input TFs and FDR < 0.05. The 268 

dashed black lines depict the vertical distances between the estimated and measured 269 

FC(µRNA). 270 

Finally, from Fig 2A, the LFC of protein numbers (LFCP) correlates linearly with 271 

LFCRNA. The same is predictable from the model (reactions R5 to R7) (Section S1.3 272 

in S1 Appendix). Here, to obtain the best fitting model for protein log2 fold changes, 273 

we fitted a line to the data in Fig 2A, and extracted from it a scaling factor, α, between 274 

LFCRNA and LFCP. From this: 275 

( )38 38 70 70

2 sta sta 0log (1 )
m D m D

PLFC K e     
−  −  =  − +    +

 
  (13) 276 

where β equals -0.67 and is the intercept between the y axis and the best fitting line, 277 

while α is the scaling factor between RNA and protein log2 fold changes and equals 278 

0.1 (Fig 2A). 279 

2.7. σ70+38 genes without known input transcription factors 280 

Next, we fitted the exponential model III directly to σ70+38 genes without input TFs (not 281 

to mistake with when they were used to validate the surface created from σ70+38 genes 282 

with TF inputs). The best fitting model (R2 of 1) has similar m38 and m70 (49.04 and 283 

52.48, respectively). Thus, for this restricted set of genes, since Δ = Dσ38 - Dσ70 284 

(Section 4.8.3), the surface equation (12c) in Table 2 can be approximated to: 285 

sta sta 0(1 ) r D

RNAFC K e  −  − +    , where 38 70

2

m m
r

+
=   286 
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Applying the log2 to both sides, one has: 287 

( ) ( ) ( ) ( )2 sta sta 0 1 2 sta 0 2 1 2 2log (1 ) log log logr D r D r D

RNALFC K e C K e C C e  −  −  −   − +   = +   + = + +  288 

If (C1+C2) is much smaller than ( )2log r De−  , we expect that 289 

( )
( )

2log
ln 2

r D

RNA

r
LFC e D−   −      (14) 290 

Therefore, and even though Dσ38 and Dσ70 are not significantly correlated (Fig 4A), one 291 

finds a linear correlation between LFCRNA and Δ (Fig 4B).  292 

 293 

Fig 4. Log2 fold changes in RNA levels of σ70+38 genes and their promoter p-distances 294 

to the consensus sequence of σ70 dependent promoters (Dσ70) and of σ38 dependent 295 

promoters (Dσ38). (A) Scatter plot of Dσ38 plotted against Dσ70. (B) Scatter plot of Δ = Dσ38 - 296 

Dσ70 plotted against LFCRNA. The shadows of the best fitting lines are the 95% prediction 297 

bounds. 298 

For comparison, we produced similar figures in search for linear correlations between 299 

Δ and LFCRNA in the cohorts of genes whose promoters have preference for σ70, σ38, 300 

σ24, σ28, σ32, and σ54 (Figs 5A-5F). No significant correlation with a high value of R2 301 

was found. We further studied the two small cohorts of genes whose promoters have 302 

preference for two σ factors other than σ70+38. Here, correlations are found, but they 303 
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are not statistically significant, likely due to the small numbers of genes (Figs 5G and 304 

5H). 305 

 306 

Fig 5. Fold changes in RNA levels and Δ. Genes whose promoters have preference for (A) 307 

σ70 (B) σ38 (C) σ24 (D) σ28 (E) σ32 (F) σ54 (G) σ70+24 and (H) σ70+32 are plotted against Δ = Dσ38 - 308 

Dσ70. The shadows of the best fitting lines are the 95% prediction bounds. 309 

2.8. Expanding the model to the growth phase transition period  310 

We expanded the model to include the transition period between the growth phases. 311 

For this, we collected temporal data on the protein numbers of three σ70+38 genes, 312 

specifically pstS, aidB and asr. These genes are used as representative of σ70+38 313 
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genes with, strong, mild, and weak response strengths to the phase transition, 314 

respectively (Fig 6A). All data was well fitted by Hill functions (Fig 1B and Fig 6A). 315 

Moreover, in all three genes, there is a linear relationship between the fold changes in 316 

protein levels and in σ38 levels over time (Fig 6B).  317 

 318 

 319 

Fig 6. Temporal changes in the fold-change of protein levels as σ38 changes. (a) Protein 320 

levels of three σ70+38 genes prior to, during, and after the transition from exponential to 321 

stationary growth phases. The balls are the empirical mean fold changes (FCP) in protein 322 

expression levels relative to the first moment. The lines are the corresponding best fitting Hill 323 

functions (parameter values in Table S5 in S3 Appendix). (b) Scatter plot of FCP against the 324 

corresponding σ38 levels (data from Fig 1B) over time. The shadows are the 95% prediction 325 

bounds. 326 

The dependency on σ38 levels is accounted for in model (ρsta is a function of σ38 levels 327 

in equation (7b), which are time dependent). Consequently, given the goodness of fit 328 

of the Hill functions, we propose the following time-dependent model: 329 

( )
( )max 1 s

P

P s s

FC t
FC t b

h t

− 
= +

+
,     (15a) 330 
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where:  331 

 
( )( )38 38 70 70max max max

2 0log (1 )
m D m D

P sta staLFC K e     
−  −  =   − +      −

   (15b) 332 

( )38 38 70 70max max

0max
(1 )

2

m D m D

sta sta

P

K e
FC

 




 
−  −    − +    

 =   (15c) 333 

Here, 
max

sta  is the final (thus, maximum) concentration of RNAP.σ38 relative to the total 334 

concentration of bound RNAPs. Meanwhile, 
max

PFC  is the expected fold change in 335 

protein numbers of a σ70+38 gene, which is reached after the transition to stationary 336 

growth is complete. Finally, b (the intercept) is the expression level controlled by the 337 

promoter of interest, when in exponential growth phase. Meanwhile, s (the slope) is 338 

the corresponding response strength, and h (the half-activation coefficient) is a 339 

measure of response time to changes in σ38 levels. 340 

2.9. Model generalization 341 

While here we only found a correlation between the promoter sequence and the gene’s 342 

response in σ70+38 genes, it may be that genes whose promoters have different σ 343 

preferences exhibit similar sequence-dependent behaviors during the stresses that 344 

they are responsive to. Thus, we generalized the model to be applicable to any stress 345 

and responsive gene cohort. As an example, we set a model for genes responsive to 346 

all seven  factors of E. coli. For this, first, we expand reactions (R1a) and (R1b), to 347 

include all  factors as follows: 348 

RNAP + σ RNAP.σ
iKi i

⎯⎯→ , where i = 70, 54, 38, 32, 28, 24 or 19  (R8a-R8g) 349 

Next, we generalize eq. (1) to account for the  factors in holoenzyme form: 350 
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   .tota

i

i

lRNAP RNAP =   , where i = 70, 54, 38, 32, 28, 24 or 19 (16) 351 

Given this, we generalize (R4) as follows: 352 

. ( )

Pro Pro + RNA
t i

i

i iRNAP k D
  

 

⎯⎯


⎯⎯⎯⎯⎯→ , where i = 70, 54, 38, 32, 28, 24 or 19 (R9) 353 

This general model can be tuned based on the numbers of each  factor present in 354 

the conditions considered, and the consensus sequences to each  factor (Table S5). 355 

In addition, following the findings in Section 2.8, it should be feasible to introduce 356 

factors to account for the timing of the changes in the transition period. 357 

 358 

3. Discussion 359 

From information on the promoters’ sequence and dynamics, we proposed and 360 

validated a sequence-dependent, kinetic model of genes controlled by promoters that 361 

are responsive to both σ70 and σ38. This model of σ70+38 genes, which accurately 362 

predicts how their dynamics change for exponential and stationary growth, is an 363 

expansion of a past model of promoters with preference for 70 alone [26], but has two 364 

competing reactions for transcription by RNAP when bound to 70 and when bound to 365 

38. In addition, these reactions’ rate constants are sequence-dependent, in line with 366 

the hypothesis that the consensus sequence of promoters with preference for a given 367 

σ factor should provide the strongest affinity to that σ factor. The model also accounts 368 

for the period of the growth phase transition of the cell, which is linked to 38 levels 369 

(from lowest to highest). Finally, we proposed (yet to validate) a general model, 370 

applicable to promoters with any given σ factor(s) preference. 371 
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Relevantly, we identified a simple correlation between the promoter sequence of σ70+38 372 

genes and their response strength to the growth phase transition, making it 373 

predictable. So far, this predictability has not been reported for any cohort of natural 374 

promoters of E. coli, even in stable growth conditions. Similar relationships have only 375 

been reported for synthetic libraries of promoter variants under stable growth 376 

[5,6,30,42]. 377 

Since it remains challenging to predict if a sequence can act as a promoter and, if so, 378 

with which strength and under what regulatory mechanisms [5], this predictability of 379 

the dynamics from the sequence for the natural cohort of σ70+38 genes is of interest for 380 

three main reasons. First, these promoters and their variants (with varying p-distances 381 

from the consensus sequences of σ70 and σ38 genes) could become key components 382 

of a toolbox for engineering circuits whose response kinetics is predictable from the 383 

promoter sequences. Further, such circuits should be functional in both exponential 384 

and stationary growth phases, with tunable responsiveness to the phase transition. 385 

Finally, their model could be a starting point for broader models of sequence-386 

predictable adaptability of natural promoters to various stresses. 387 

It may prove difficult to find similar relationships between the sequences of other 388 

natural promoters and their responsiveness to other σ factors (or global regulators). 389 

E.g., we failed to find a relationship between the sequences of promoters responsive 390 

to 38 alone and their response strength to 38 (even for genes without TF inputs (Fig 391 

5b)). Also, it remains to be proved whether promoters responsive to 70, 54, 32, 28, 392 

24, or dual combinations, have similar behaviors when those  factors change.  393 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.468920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.468920
http://creativecommons.org/licenses/by/4.0/


23 

 

It also remains to be studied whether the sequence-dynamics relationship in 70+38 394 

genes is causal or coincidental. While the large numbers of promoters studied here 395 

support the causality, a definitive proof likely requires producing synthetic promoters 396 

similar to the natural ones but differing in p-distances to the consensus sequences of 397 

promoters with preference for 38 and for 70, respectively. 398 

Also, in the future, it should be investigated if the sequence-dependent 399 

responsiveness of σ70+38 genes to σ38 levels contributes to why their promoters (from 400 

positions -41 to -1) are highly conserved (Fig S1 in S2 Appendix) and/or why the TFs 401 

that they code for commonly serve as input TFs to essential genes [43] (2.5 times 402 

more than average, Fisher test p-value < 0.05). 403 

Finally, over-representation tests of the ontology [44,45] of σ70+38 genes suggest that 404 

they are commonly involved in respiration (Fig S4 in S2 Appendix, Table S4 in S3 405 

Appendix). In agreement, this process is highly affected when changing from 406 

exponential to stationary growth [23,46], since aerobic respiration is reduced, while 407 

fermentation and anaerobic respiration are enhanced [18]. Moreover, we observed 408 

that σ70+38 genes are amongst the most responsive to the change from growth phase 409 

out of the genes associated with these functions (Fig S4 in S2 Appendix). This 410 

suggests that they may control the processes that need most alterations during the 411 

adaptation. Therefore, externally regulating these genes may thus give significant 412 

control over these processes. This is particularly appealing since this control could be 413 

exerted by tuning their promoter sequences (i.e., their p-distances) making the effects 414 

of their integration on a genetic circuit’s response to the growth phase shift largely 415 

predictable as well. This strategy may thus contribute to the engineering of synthetic 416 

circuits with tailored responses to growth phase transitions. 417 
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 418 

4. Materials and Methods 419 

4.1. Bacterial strains and media 420 

E. coli strains and plasmids are listed in Tables S1 and S2 in S3 Appendix. In short, 421 

we used YFP strains from the genetic stock center (CGSC) of Yale University, U.S.A 422 

[32] and, as support, a low-copy plasmid fusion library of fluorescent reporter strains 423 

using GFP to track promoter activity [47]. In both, one measures the levels of 424 

fluorescent proteins under the control of the promoters of our genes of interest which 425 

are a good proxy for the native protein levels [35][39]. For simplicity, we refer to these 426 

fluorescence levels as ‘protein levels’. 427 

We used a RL1314 strain (rpoC::GFP) generously provided by Robert Landick, 428 

University of Wisconsin-Madison [48]), to measure RNA Polymerase levels. Their 429 

rpoC gene codes for β’ sub-unit endogenously tagged with GFP. Since rpoC codes for 430 

the β' subunit, a limiting factor in the assembly of RNAP holoenzyme [49,50], its 431 

numbers serve as a good proxy for RNAP numbers. For simplicity, [RNAP] refers to 432 

the sum of RNAP core and holoenzymes in a cell. Further, we used a MGmCherry 433 

(rpoS::mCherry) strain to measure RpoS levels (kind gift from James Locke [19]). Their 434 

rpoS gene codes for σ38 endogenously tagged with mCherry. Finally, we used wild- 435 

type K12 MG1655 strain for control.  436 

We used M9 medium (1xM9 Salts, 2 mM MgSO4, 0.1 mM CaCl2; 5xM9 Salts 34 g/L 437 

Na2HPO4, 15 g/L KH2PO4, 2.5 g/L NaCl, 5 g/L NH4Cl) supplemented with 0.2% 438 

Casamino acids and 0.4% glucose, and Luria-Bertani (LB) medium with 10 g peptone, 439 
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10 g NaCl, and 5 g yeast extract in 1000 ml distilled water. We used the antibiotics 440 

kanamycin and chloramphenicol from Sigma Aldrich, U.S.A. 441 

4.2. Growth rates and growth phases 442 

Growth rates were measured by spectrophotometry (BioTek Synergy HTX Multi-Mode 443 

Microplate Reader). From a glycerol stock (-80 °C), cells were streaked on LB agar 444 

plates (2%) and incubated at 37 °C, overnight. Next, a single colony was picked, 445 

inoculated in LB medium with antibiotics (Section 4.1), and incubated at 30°C 446 

overnight with shaking. Overnight cultures were further diluted into fresh medium to 447 

an optical density of 600 nm (O.D.600) of 0.01 and incubated for growth by shaking at 448 

250 rpm at 37°C. OD600 was recorded every 20 min, for 800 min. Cells were extracted 449 

at 150 min and at 700 min after inoculation into fresh medium to represent cells in 450 

exponential and stationary growth phases, respectively (Fig 1A). 451 

4.3. Microscopy and Image analysis 452 

To collect microscopy data, cells were placed between a coverslip and agarose gel 453 

pad (2%) and visualized by a confocal laser-scanning system, using a 100× objective. 454 

Green fluorescence images were captured using a 488 nm laser and a 514/30 nm 455 

emission filter. Phase-contrast images were simultaneously acquired for purposes of 456 

segmentation and to assess health, morphology, and physiology. 457 

Images were analyzed using “CellAging” software [51]. After automatically segmenting 458 

cells and manually correcting errors, we applied 2D Gaussian filters to remove 459 

measurement noise, and extracted each cell’s total fluorescent intensity.  460 

4.4. RNA-seq  461 
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4.4.1. Sample preparation 462 

Cells were grown until reaching either the exponential or stationary growth phases, 463 

respectively. At each of these moments, they were treated with a double volume of 464 

RNA protect bacteria reagent (Qiagen, Germany) for 5 min, at room temperature, to 465 

prevent RNA degradation. Cells were then pelleted and frozen immediately at -80 ⁰C. 466 

After unfreezing the cells, total RNA was extracted using RNeasy mini-kit (Qiagen) 467 

according to the instructions. RNA was treated twice with DNase (Turbo DNA-free kit, 468 

Ambion, Life Technologies, U.S.A.) and quantified using Qubit 2.0 Fluorometer RNA 469 

assay (Invitrogen, Carlsbad, CA, USA). Quality of total RNA was determined by gel 470 

electrophoresis, using 1% agarose gel stained with SYBR safe (Invitrogen, U.S.A.). 471 

RNA was detected using UV with a Chemidoc XRS imager (BioRad, U.S.A.). 472 

4.4.2. Sequencing  473 

Sequencing was performed by GENEWIZ, Inc. (Leipzig, Germany). The RNA integrity 474 

number (RIN) of the samples was obtained with Agilent 4200 TapeStation (Agilent 475 

Technologies, Palo Alto, CA, USA). Ribosomal RNA depletion was performed using 476 

Ribo-Zero Gold Kit (Bacterial probe) (Illumina, San Diego, CA, USA). RNA-seq 477 

libraries were constructed using NEBNext Ultra RNA Library Prep Kit (NEB, Ipswich, 478 

MA, USA). Sequencing libraries were multiplexed and clustered on 1 lane of a flow-479 

cell. Samples were sequenced using single-index, 2x150bp paired-end (PE) 480 

configuration on an Illumina HiSeq instrument. Image analysis and base calling were 481 

conducted with HiSeq Control Software (HCS). Raw sequence data (.bcl files) were 482 

converted into fastq files and de-multiplexed using Illumina bcl2fastq v.2.20. One 483 

mismatch was allowed for index sequence identification. 484 
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4.4.3. Data analysis 485 

RNA-seq data analysis pipeline: i) RNA sequencing reads were trimmed to remove 486 

adapter sequences and nucleotides with poor quality with Trimmomatic [52] v.0.39. ii) 487 

Trimmed reads were then mapped to the reference genome (E. coli MG1655, 488 

NC_000913.3) using STAR v.2.5.2b aligner [53]. iii) featureCounts from Rsubread R 489 

package (v.1.34.7) was used to calculate unique gene hit counts [54]. Genes with less 490 

than 5 counts in more than 3 samples, and genes whose mean counts are less than 491 

10, were removed. iv) Next, the unique gene hit counts were used for subsequent 492 

differential expression analysis, using DESeq2 R package (v.1.24.0) [55] to compare 493 

gene expression between samples and calculate p-values and log2 of fold changes 494 

(LFC) using Wald tests (function nbinomWaldTest). P-values were adjusted for 495 

multiple hypotheses testing (Benjamini–Hochberg, BH procedure [56]) and genes with 496 

adjusted p-values (False discovery rate (FDR)) smaller than 0.05 were classified as 497 

differentially expressed (D.E.). 498 

Due to filtering (iii), only 783 (777 D.E.) out of the 931 σ70 genes, 87 (all D.E.) out of 499 

the 93 σ38 genes, 57 (56 D.E.) out of the 64 σ70+38 genes, and 3257 (2737 D.E.) out of 500 

3607 remaining genes were assessed by RNA-seq. Other genes did not produce 501 

enough reads. 502 

4.5. Flow cytometry 503 

We used a ACEA NovoCyte Flow Cytometer equipped with yellow (561 nm) and blue 504 

lasers (488 nm), controlled by Novo Express (V1.50). Cells were diluted 1:10000 into 505 

1 ml of PBS vortexed for 10 sec. For each gene and condition, we performed 3 506 

biological replicates, acquiring 50,000 events in each. For GFP and YFP, we used the 507 
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blue laser for excitation and the FITC-H channel (520/20 nm filter) for emission. For 508 

mCherry, we used a yellow laser for excitation and PE-Texas Red (615/20 nm filter) 509 

for emission. We collected events at a flow rate of 14 µl/minute, a core diameter of 510 

7.7 µM, and adjusted PMT voltage for each parameter. We have set the FSC-H 511 

detection threshold to 5000. 512 

We collected single-cell fluorescence distributions. To remove outliers due to debris, 513 

cell doublets, and other undesired events, we performed gating by setting the 514 

maximum values of SSC-H to 5104 and of FSC-H to 105. These limits allowed 515 

observing the whole distributions, without cutting their natural tails. The results did not 516 

differ widely from using unsupervised gating as in [57,58], if setting α to 0.95.  517 

Finally, we discarded “far out” events using Tukey’s fences [59]. This had little effect 518 

on the results. Furthermore, background fluorescence was not subtracted since doing 519 

so did not affect the results (Section S1.2 in S1 Appendix and Fig S2 in S2 Appendix). 520 

4.6. Spectrophotometry 521 

Time-lapse protein fluorescence of MGmCherry cells was measured by a BioTek 522 

Synergy HTX Multi-Mode Microplate Reader. Overnight cultured cells were diluted 523 

1:1000 times into fresh M9 medium, aliquoted into 24 well dark bottom microplates, 524 

and kept at 37°C with shaking of 250 rpm. Fluorescence intensities were recorded for 525 

14 hours, every 20 min, using excitation (590/20 nm) and emission (645/20 nm) filters. 526 

Temporal profiles of fluorescence intensity were extracted using Gen5 software, based 527 

on 6 biological repeats. 528 

4.7. Statistical analyses of the data 529 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.17.468920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.17.468920
http://creativecommons.org/licenses/by/4.0/


29 

 

Data points from microscopy, flow cytometry, etc. are based on at least 3 biological 530 

replicates each. Meanwhile, to assess if genes measured by flow cytometry were a 531 

good representative of the set of all σ70+38 genes, we used two-sample Kolmogorov-532 

Smirnov tests (KS tests) to compare their sequences (Dσ38 and Dσ70) and dynamics 533 

(LFCRNA, µ, and CV2). Further, gaussian fittings were made by the Distribution Fitter 534 

app (MATLAB). To evaluate its fitting, we calculated the coefficient of determination 535 

(R2) between the PDF of the distributions and the PDF of the fitting. Finally, linear 536 

correlations were estimated by least-squares fitting (FITLM of MATLAB) and 537 

considered significant if the p-value of an F-test on the fitted regression line was 538 

smaller than 0.05. Other curves were fitted using MATLAB’s curve fitting toolbox (apart 539 

from the fitting of Hill functions, which was done using the Hill function [60]).  540 

As for gene ontology representations, we perform overrepresentation tests using 541 

PANTHER Classification [61] for finding significant overrepresentations by Fisher’s 542 

exact tests. For p-values < 0.05, the null hypothesis that there are no associations 543 

between the gene cohort and the corresponding GO of the biological process is 544 

rejected. This p-value is corrected by calculating if the overall False Discovery Rate 545 

(FDR) is < 0.05. FDR is calculated by the Benjamini-Hochberg procedure [56]. 546 

4.8. Features of the promoter sequences 547 

4.8.1. σ factor preference 548 

Table S3 in S3 Appendix informs on the σ factor preference of the genes. From 549 

Regulon DB v10.5 (August 14, 2019), we obtained lists of all transcription units (TUs), 550 

promoters (including σ factor preferences), and genes of E. coli [62]. Recently, we 551 

compared our lists with information on July 1st, 2021 and found no changes that would 552 
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affect the conclusions. TUs only differed by ~1%, promoters by ~0.5%, and genes by 553 

~1%. 554 

From the 3548 TUs (gene(s) transcribed from a single promoter), we extracted 2179 555 

with known promoters, containing 2713 genes in total. To minimize interference to the 556 

classification of σ factor preferences arising from transcription by multiple promoters, 557 

we narrowed our list to 1824 genes transcribed by only one promoter and, of those, to 558 

the 1328 genes with known σ factor preference. From those, 1242 have a preference 559 

for only one σ factor, including 931 with a preference for σ70, and 93 with a preference 560 

for σ38. Conversely, 76 genes have promoters with a preference for two σ factors. Out 561 

of these, 64 are transcribed by only one promoter with a preference for σ70 and σ38. 562 

4.8.2. Promoter sequence logos 563 

Promoter sequence logos were created using WebLogo [63]. In each position (from -564 

41 to -1), we counted how many times a nucleotide is present in all promoters 565 

considered. Then, we stacked all nucleotides (A, C, T, G) on top of each other, and 566 

sorted from the least found one in the bottom to the most present one on the top. For 567 

each position, we quantified its ‘bit’, as the difference between the maximum 568 

information possible (entropy given the 4 nucleotides) and the information considering 569 

the variability of the nucleotides (sum of the entropy for each of the 4 nucleotides) in 570 

that position (observed entropy): 
4

2 1 2Bit log 4 log ( )n n nf f== −  . From this, the height 571 

of each letter is set to be proportional to its frequency of occurrence. Finally, the height 572 

of each position was normalized, so as to equal its corresponding amount of 573 

information (with the more conserved positions having more bits) [64].  574 

4.8.3. Promoter sequence p-distance 575 
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The p-distance D of a promoter [65] is the fraction of its nucleotides between positions 576 

-41 to -1 (assuming that transcription start site starts at position +1) that differ from the 577 

consensus (most common) nucleotide in that position of a cohort of genes (here, 578 

genes with preference for a given σ factor). We extracted the consensus sequences 579 

related to each σ from RegulonDB [62]. To measure the D of promoters with 580 

preference for both σ38 and σ70, we calculated the p-distances Dσ38 and Dσ70, and then 581 

an overall p-distance, Δ, defined as: Δ = Dσ38 – Dσ70. 582 

 583 

5. Supporting Information 584 

S1 Appendix. Extended Methods and Materials. (Word) 585 

S2 Appendix. Supporting Figure. (Word)  586 

S3 Appendix. Supporting Tables. (Word)  587 

S4 Table. List of genes classified as σ70, and σ38 or as both σ70 and σ38 dependent 588 

(Excel)  589 

S5 Table. Consensus sequences of promoters with preference for one σ factor. 590 

(Excel) 591 

S6 Table. Fold changes in RNA levels of genes with a promoter with preference for 592 

σ70 and σ38. Measurements by RNA-seq in the exponential and stationary growth 593 

phases. (Excel)  594 

S7 Table. Statistics of single-cell distributions of fluorescence of cells measured by 595 

flow cytometry. (Excel) 596 
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