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Abstract 

Background: Variation in the longitudinal course of childhood attention deficit/hyperactivity disorder 

(ADHD) coincides with neurodevelopmental maturation of brain structure and function. Prior work 

has attempted to determine how alterations in white matter (WM) relate to changes in symptom 

severity, but much of that work has been done in smaller cross-sectional samples using voxel-based 

analyses. Using standard diffusion-weighted imaging (DWI) methods, we previously showed WM 

alterations were associated with ADHD symptom remission over time in a longitudinal sample of 

probands, siblings, and unaffected individuals. Here, we extend this work by further assessing the 

nature of these changes in WM microstructure by including an additional follow-up measurement 

(aged 18 – 34 years), and using the more physiologically informative fixel-based analysis (FBA).  

Methods: Data were obtained from 139 participants over 3 clinical and 2 follow-up DWI waves, and 

analyzed using FBA in regions-of-interest based on prior findings. We replicated previously reported 

significant models and extended them by adding another time-point, testing whether changes in 

combined and hyperactivity-impulsivity (HI) continuous symptom scores are associated with fixel 

metrics at follow-up.  

Results: Clinical improvement in HI symptoms over time was associated with more fiber density at 

follow-up in the left corticospinal tract (lCST) (tmax=1.092, standardized effect[SE]=0.044, pFWE=0.016), 

and improvement in combined symptoms over time was associated with more fiber cross-section at 

follow-up in the lCST (tmax=3.775, SE=0.051, pFWE=0.019).  

Conclusions: Aberrant white matter development involves both lCST micro- and macrostructural 

alterations and its path may be moderated by preceding symptom trajectory. 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469248


 3 

Keywords 

1. Attention deficit hyperactivity disorder  

2. Magnetic resonance imaging 

3. Diffusion imaging 

4. White matter 

5. Microstructure 

Abbreviations

ADHD: attention-deficit hyperactivity disorder 

CSD: constrained spherical deconvolution 

DTI: diffusion tensor imaging 

DWI: diffusion-weighted imaging 

FA: fractional anisotropy 

FBA: fixel-based analysis 

FC: fiber cross-section 

FD: fiber density 

FDC: fiber density and cross-section 

FOD: fiber orientation distribution 

HI: hyperactivity-impulsivity 

IA: inattention 

lCST: left corticospinal tract 

lSLF: left superior longitudinal fasciculus 

MRI:  magnetic resonance imaging 

ROI: region of interest 

SE: standardized effect 

WM: white matter 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469248


 4 

1. Introduction 

Although (proto)typically considered a childhood syndrome, clinical trajectories of attention-

deficit/hyperactivity disorder (ADHD) vary by individual. Many ADHD-affected adolescents exhibit 

improvement over time, but approximately two-thirds of them retain impairing symptoms into 

adulthood [1–3]. The neural substrates that determine this variable clinical course of childhood ADHD 

have been increasingly investigated through the years, yet the dynamic nature of these mechanisms 

in relation to maturation remains unclear. Theoretically, symptom remission occurs via brain 

compensation-reorganization, and/or normalization-convergence, with a possible fixed anomaly 

‘scar’ or enduring neurological trait—all of which may concurrently arise in different brain regions [4]. 

In a double dissociative neurodevelopmental model of ADHD, the underlying neural mechanisms that 

control onset are distinct from those that drive remission [5]. Thus, onset can be characterized by 

dysfunctional subcortical structures remaining static throughout life, while remission may be 

separately associated with brain (particularly prefrontal cortex) maturation or compensation [4,6,7].  

The theory that maturing frontal cortical regions compensates for initial childhood ADHD 

emergence via top-down regulatory processes, leading to eventual symptom remission, has been 

supported by magnetic resonance imaging (MRI) studies: Reduced symptom severity throughout 

development appears to correlate with prefrontal cortex maturation, and white matter (WM) 

development in frontal-temporal areas subserving emotional and cognitive processes continues to 

mature into early adulthood, coinciding with the typical age range of ADHD symptom remission [5,8–

12]. If so, then it is possible to methodologically differentiate remitted from unaffected brains with 

MRI. Yet, previous neuroimaging studies have reported inconsistent results—perhaps because of 

study-specific differences (e.g. analysis methods, cross-sectional cohorts, sample characteristics). 

Considering this disorder’s neurodevelopmental component, sample age is especially important, 

making systematic longitudinal studies essential in deconstructing the etiological timeline of brain 

mechanisms in reference to remission.  
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Diffusion-weighted imaging (DWI) is an in vivo MRI method which measures the magnitude 

and direction of water molecules diffusing through brain tissue, reflecting the underlying architecture 

of axons and their ensheathing myelin. Diffusion tensor imaging (DTI) has been the most commonly 

used DWI method in ADHD studies, which have usually reported tensor-derived, voxel-wise measures 

like fractional anisotropy (FA). One follow-up case-control DTI investigation in men suggested that 

ADHD is a lasting neurobiological trait irrespective of remission or persistence: Compared to those 

who did not have childhood ADHD, both remittent and persistent probands showed widespread 

reduced FA three decades post-diagnosis [6]. Others showed that children who exhibited symptom 

improvement had the most FA anomalies at follow-up [13]. However, given ADHD’s 

neurodevelopmental aspect, studying symptoms and brain tissues in late adolescence and early 

adulthood (as myelination continues) can give more relevant information about how remission is 

intertwined with maturation. While valuable, the few follow-up DTI reports to date were limited by 

categorical participant groups, sample characteristics (populations that were either pre-pubertal or 

well into adulthood), and only a single follow-up MRI measure—underscoring the need for more 

studies beyond the cross-sectional perspective.  

A longitudinal design reveals temporal dynamics of underlying neurobiological processes and 

increases statistical power by reducing inter-subject variability. The NeuroIMAGE study and its latest 

follow-up, DELTA, is a longitudinal cohort of ADHD-affected probands, their siblings, and unaffected 

controls from childhood to adulthood [10,14–17]. We previously demonstrated that, at two different 

time-points and in two partly overlapping NeuroIMAGE samples, more improvement in combined and 

hyperactivity-impulsivity symptom scores over time was associated with lower FA at follow-up in an 

area where the left corticospinal tract (lCST) crosses the left superior longitudinal fasciculus (lSLF) 

[10,17]. In that same report, we also systematically demonstrated that symptom change is associated 

with neither baseline FA nor change in FA from baseline to follow-up. Symptom remission was 

counterintuitively and repeatedly associated with decreased FA later in life, whether from childhood 

to adolescence, or to early adulthood. Our longitudinal findings indicated divergent WM 
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microstructure trajectories between individuals with persistent and remittent symptoms at a follow-

up age range of 12 – 29 years. Now, we build on those previous results on the downstream effect of 

symptom progression on WM microstructure by asking whether the same relationship exists in the 

same brain areas at a later time window, when the cohort is aged 18 – 34 years (Figure 1). 

Although in vivo WM microstructure has been most commonly studied through tensor-

derived metrics (e.g. FA), results from voxel-wise DTI-based methods can be unreliable or misleading 

in areas with complex fiber architecture [18]. Given that tensor-based reconstructions are an average 

across an entire voxel and that approximately 90% of voxels contain multiple fiber populations, we 

applied a high angular diffusion model: constrained spherical deconvolution (CSD) [19]. Voxel-based 

methods that model crossing fibers (e.g. BEDPOSTX) only represent a subset of the full range of 

possible fiber orientation distributions (FODs), whereas CSD represents FODs as spherical harmonics, 

free to distinguish more or less arbitrary shapes [20]. Fixel-based analysis (FBA) applies the CSD model 

and can more accurately reconstruct a continuous FOD in both single- and multiple-fiber voxels—

characterizing properties of each “fixel,” or specific fiber population in a voxel [21–25]. Fixels can be 

statistically analyzed for relatively specific indices of underlying fiber physiology: fiber density (FD), a 

microstructural measure of the within-voxel intra-axonal restricted compartment of a fiber 

population; fiber cross-section (FC), a macrostructural measure of the area perpendicular to the fiber 

orientation; and fiber density and cross-section (FDC), a combination of FD and FC [25]. Less FD can 

indicate axonal loss, while less FC can indicate macroscopic fiber atrophy [26–28]. FBA resolves 

crossing fibers more accurately, as well as characterizes the microstructural and morphological, 

macrostructural properties of specific fiber populations.  

One cross-sectional FBA showed that ADHD-affected children who had reduced fine 

motor competence also had lower WM microstructure in all three fixel metrics in the CST. These 

results suggest that cases had fewer and/or thinner CST axons, which may lead to reduced fiber bundle 

information transmission speed [29]. Despite the consistent clamor to resolve crossing fiber regions 

and FBA’s evident advantages, there have been no other published FBA applications in people with 
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ADHD to our knowledge. Furthermore, besides our prior research, there have been no other 

longitudinal follow-up DWI studies of WM in the course of ADHD.  

In an extension of our previous work in overlapping samples, here we followed 139 people 

over approximately 15 years. We used a more recent multi-shell DWI fiber model and a new follow-

up measurement at an older age range. We aimed to assess the time-lag between the course of ADHD 

symptomatology and WM microstructure in a priori models and regions-of-interest (ROIs). Because 

our smaller sample size at an older age range is not suitable for a data-driven search to discover any 

new relevant regions or tracts, the present analyses were intended to further understand the nature 

of our previous results. To compare FBA metrics to our previous FA findings, our first follow-up analysis 

used the same exact sample as our most recent longitudinal DTI study [17]. We hypothesized that, like 

our earlier findings, ADHD symptom improvement would be associated with lower follow-up WM 

microstructure in the lSLF and lCST.  

2. Methods 

2.1 Participants 

Clinical and MRI data were originally collected from probands with childhood ADHD, their 

first-degree relatives, and healthy families in one initial wave: NeuroIMAGE1 (W1) [14]. After an 

average of 3.7 years (standard deviation [SD] = 0.5 years), those participants were invited back for a 

second acquisition: NeuroIMAGE2 (W2). After a mean of 5.1 years (SD = 1.4 years), some individuals 

returned for another wave, DELTA (W3), which included only people who fulfilled full ADHD diagnostic 

criteria in at least one previous wave (Table 1). For the analyses here, we only included participants 

who had clinical data from at least two of the three waves and DWI data from W2 and/or W3 (Figure 

1). For each time-point, there were no differences between the participants included in the current 

analyses and the complete sample in symptom severity, age, and sex (p > 0.12).  

Given our longitudinal design, we did not split our participants into cases versus controls. 

Through the years, symptom scores and diagnoses varied through time, and participant characteristics 
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changed from wave to wave (Figure 2). Some individuals originally recruited as controls or unaffected 

siblings developed ADHD at a later time point and others recruited as ADHD participants remitted—

further highlighting the complex variable course of ADHD. Alternatively, this disorder may be 

operationalized as a continuous trait rather than a binary diagnostic variable, especially in longitudinal 

studies [30,31]. In a previous cross-sectional study, we systematically showed that, compared to 

categorical diagnoses, continuous symptom measures are more sensitive to diffusion-weighted brain 

features in this sample [16]. Thus, all models here used ADHD symptom scores, optimally capturing 

the dynamic and continuous nature of the ADHD spectrum throughout development in this 

longitudinal cohort.  

2.2 Clinical symptom measures 

For continuous measures of symptom dimension severity and in accordance with our previous 

report, we used raw total Conners’ Parent Rating Scale (CPRS) scores from W1 and W2, and Conners’ 

Adult ADHD Rating Scale (CAARS) scores from W3 for hyperactivity-impulsivity (HI) and inattention 

(IA) [17,32,33]. Here, we define symptom change (Δ) as the Conners’ score difference: Δscore = 

scorefollow-up – scorebaseline 

Baseline and follow-up scores were always positively correlated with each other (Figure S1). 

A more positive Δ value indicates the worsening of symptoms, while a more negative Δ value indicates 

the improvement of symptoms over time. In this report, we refer to “symptom remission” 

dimensionally and not diagnostically; as a decrease in or improvement of symptom severity over time. 

 At W1 and W2, we assessed history of comorbid disorders with the Kiddie Schedule for 

Affective Disorder and Schizophrenia Present and Lifetime Version (K-SADS-PL) semi-structured 

interview [34,35]. For children aged <12 years, the child’s parents or the researchers assisted in 

completing the self-report questionnaires. Participants with elevated scores on ≥1 of the K-SADS-PL 

screening questions had to complete a full supplement for each disorder. At W3 (all participants were 

aged ≥18 years), we recorded history of comorbidity using the Structured Clinical Interview for DSM-5 

Disorders (SCID-V) [36]. IQ was estimated using the vocabulary and block design subtests of the 
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Wechsler Intelligence Scale for Children (WISC-III) or Wechsler Adult Intelligence Scale (WAIS-III). We 

excluded one whole dataset from a participant who had an estimated IQ <70. Our final sample’s 

demographic characteristics are summarized in Table 1. 

2.3 Diffusion-weighted imaging acquisition, pre-processing, and quality control 

At W2, single-shell DWI data were acquired with a 1.5-Tesla AVANTO scanner (Siemens, 

Erlangen, Germany) equipped with an 8-channel receive-only phased-array head coil using the 

following parameters: echo time/repetition time (TE/TR) = 97/8500 ms; GRAPPA-acceleration factor 

2; voxel size = 2 × 2 × 2.2 mm; b-values = 0 (5 volumes, interleaved) and 1000 (60 directions) s/mm2; 

twice refocused pulsed-gradient spin-echo EPI; no partial Fourier. More details of this MRI data 

acquisition have been described previously [16,17]. Because our models only included follow-up 

neuroimaging data as a further investigation of the aforementioned analyses, we did not include W1 

DWI. 

At W3, multi-shell DWI data were acquired with a 3-Tesla Prisma scanner (Siemens, Erlangen, 

Germany) equipped with a 32-channel receive-only phased-array head coil using the following 

parameters: TE/TR = 75/2940 ms; multi-band acceleration factor = 3, voxel size = 1.8 mm3; b-values = 

0 (11 volumes, interleaved), 1250 (86 directions), and 2500 (85 directions) s/mm2. 

W2 and W3 images were pre-processed with MRtrix3 (version 3.0.1, http://www.mrtrix.org/) 

according to recommended FBA protocols for multi-shell data [24,25]. Pre-processing included 

denoising and unringing, motion and distortion correction, and bias field correction [37–43]. We 

visually inspected all corrected diffusion images and excluded whole datasets if any motion or 

distortion artefacts remained after pre-processing. After excluding 22 datasets, our final sample 

consisted of 154 total diffusion scans collected from 139 participants at W2 (N = 99) and W3 (N=55). 

2.4 Fixel-based analysis 

Following pre-processing, we computed two unique group average tissue response functions 

for W2: WM and cerebrospinal fluid (CSF) [44]. B0 images can be utilized like a second shell to estimate 
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a CSF-specific response function for each participant [44]. By modeling distinct response functions for 

WM and CSF, we were able to enhance the signal from WM relative to CSF and include our single shell 

data in the multi-shell FBA pipeline. For W3, we calculate three response functions: WM, gray matter, 

and CSF [44]. We upsampled to 1.25 mm3 and performed multi-shell multi-tissue constrained spherical 

deconvolution on all images, resulting in a WM fiber orientation distribution (FOD) within each voxel 

[22,45]. Afterwards, we performed joint bias field correction and global intensity normalization for 

each of the multi-tissue compartment parameters [41]. We then separately generated two study-

specific FOD population templates for W2 and W3 using 40 unrelated participants from each wave per 

template. Symptom scores did not differ between the individuals included in the population 

templates, versus those of the overall samples (P > 0.06). 

For each population template, we calculated the FD, log(FC), and FDC (FDC = FD · FC) for each 

participant across all fixels. Instead of FC, we chose to calculate log(FC) so data would be centered 

around zero and normally distributed. The derivation of these fixel metrics, which are based on FOD 

lobe segmentation and subject-to-template registration warps, are described in detail elsewhere [46]. 

For each FOD template, we performed whole-brain fiber tractography and generated a fixel-fixel 

connectivity matrix from the whole-brain streamline tractograms. 

To obtain each ROI (left corticospinal tract: lCST; left superior longitudinal fasciculus: lSLFI, 

lSLFII, lSLFIII; right cingulum: rCG), we extracted the spherical harmonic peaks from each voxel of both 

FOD population templates. We then applied TractSeg, which is an automated convolutional neural 

network-based approach that directly segments tracts in fields of FOD peaks, circumventing any biases 

that may result from user-defined or atlas-based delineation [47]. Finally, we converted the resultant 

tractograms to fixel maps used as masks to constrain our search space during Connectivity-based Fixel 

Enhancement (CFE) [46] (Figure 3 and Figure S2). 

2.5 Statistical analyses 

To control for the lack of independence in our sample due to siblings, we designed multi-level 

exchangeability blocks per wave and used FSL PALM to generate a set of 5000 permutations per wave 
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[48,49]. Our blocks did not allow permutation between all individuals; instead, constraining 

permutations at both the whole-block level (i.e. permute between families of the same size) and 

within-block level (i.e. permute within families) (Figure S3). We used each set as an input for its 

respective wave to define permutations in data shuffling during nonparametric testing. 

We demeaned our design matrices using Jmisc in R (version 4.0.2) and applied CFE to the fixel-

fixel connectivity matrices using smoothed fixel data [46]. Using only models in which we previously 

found significant effects (i.e. not IA, but only HI and combined scores), for each fixel metric and each 

tract ROI, we constructed general linear models (GLMs) to separately test whether total or HI 

symptom score change (Δscore as independent variables) are associated with fixel metrics at follow-

up (as dependent variables) [17]. Our covariates were: symptom score (either total or HI) at baseline, 

change in age (Δage = age follow-up – age baseline), age at baseline, sex, and head motion (framewise 

displacement) at follow-up. For the W2 FBA, follow-up was W2 and baseline was W1, while for the 

W3 FBA, follow-up was W3 and baseline was W2: fixel metric follow-up ~ Δscore + score baseline + Δage + 

age baseline + sex + head motion follow-up 

As a secondary cross-sectional analysis in W3 only, using the same aforementioned methods, 

we tested for an effect of CAARS score (IA, HI, and total) on each of the three fixel metrics at the level 

of the whole brain, as well as rCG only. We used age, sex, and head motion (framewise displacement) 

as covariates: fixel metric ~ score + age + sex + head motion 

Fixels were considered statistically significant at family-wise error corrected p less than 0.05 

(pFWE < 0.05).  

3. Results 

3.1 Association between white matter at Wave 2 and the change in symptoms from 

Wave 1 to Wave 2 

W2 fiber density (FD) in the lCST was significantly negatively associated with ΔHI score (tmax = 

1.092, standardized effect [SE] = 0.044, pFWE = 0.016; Figure 4). There were no other significant 
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associations between WM microstructure in any other tracts at follow-up and Δtotal or ΔHI score (all 

pFWE ≥ 0.051; Table S1).  

3.2 Association between white matter at Wave 3 and the change in symptoms from 

Wave 2 to Wave 3 

W3 log of fiber cross-section (log[FC]) in the lCST was significantly negatively associated with 

Δtotal symptom score (tmax = 3.775, SE = 0.051, pFWE = 0.019; Figure 4). There were no other significant 

associations between WM microstructure at follow-up in lSLFI, lSLFII, and lSLFIII and Δtotal or ΔHI 

symptom score (all pFWE ≥ 0.058; Table S2).  

3.3 Association between white matter and symptoms at Wave 3 only 

None of the global or rCG WM microstructure metrics were significantly associated with HI, 

IA, or total CAARS score cross-sectionally (all pFWE ≥ 0.053; Table S3).  

4. Discussion 

We conducted a unique study of WM microstructure and longitudinal ADHD symptom 

development between ages 9 and 34 years. Using the FBA framework, we discovered two findings in 

the lCST: (1) HI symptom improvement was associated with axonal expansion at follow-up, and (2) 

combined symptom improvement was associated with larger total cross-sectional area at follow-up 

at a slightly later age-range. Initially, a previous voxel-wise analysis in an overlapping sample found 

that improved HI symptoms were associated with lower follow-up FA (W1, aged 9 – 26 years) [10]. 

Subsequently, we extended this sample by adding a second DWI time-point (W2, aged 12 – 29 years), 

and systematically applied and excluded specific models—ultimately replicating the same effects on 

follow-up FA in the same WM region [17]. Given the counterintuitive nature of these previous highly 

consistent results, the present analysis aimed to further understand the physiological origins and its 

dynamic nature in relation to maturation. Thus here, in the exact same sample (W1-W2) and including 

yet a third DWI acquisition (W3, aged 18 – 34), using the more advanced FBA method, and employing 
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the same GLMs in which we previously found significant voxel-wise effects, we have found increased 

FD in relation to HI remission, and increased FC in relation to combined symptom remission, in only 

the lCST and not the lSLF. In contrast to our previous finding using DTI-based methods, our current 

finding using FBA is more intuitive in the direction of its effect: Indices that are generally indicative of 

“stronger” fibers were associated with clinical improvements over time.  

The fixel metrics we used for quantifying WM microstructure contain complementary 

information. FD is thought to be related to the microstructural properties of WM, whereas FC pertains 

to the macrostructural properties (cross-sectional area). FD is an estimate of the intracellular volume 

of fibers oriented in a particular direction. Higher FD at follow-up could result from developmental 

processes like axon diameter growth, or more axons occupying a given space [50]. In our W1-to-W2 

analysis, greater lCST axonal density in individuals who became less hyperactive-impulsive over time 

suggests plasticity, or a greater ability to relay information, after symptom improvement. 

Furthermore, higher myelin content could decrease the water exchange between intra- and extra-

axonal compartments, resulting in an apparent increase in the intra-axonal compartment’s volume 

and, hence, an increase in FD [42,51]. FC measures the morphological macroscopic change in the 

cross-sectional area perpendicular to a fiber bundle (calculated during registration to the template 

image). In W2-to-W3, higher follow-up lCST cross-sectional area in individuals whose combined 

symptom score improved, again, suggests plasticity, greater myelination, or fiber bundle organization 

after symptom remission [25]. 

Though intuitive, our current results seem to unexpectedly align with neither our hypotheses 

nor our previous report. However, although the direction of effects in our FBA analyses are opposite 

to that of our aforementioned FA analyses, they are not incompatible. In some cases, crossing fiber 

complexity can have an inverse correlation with FA, wherein greater complexity occurs when more 

fixels in a voxel have the same fiber density [52]. An analogous inverse association exists in our 

previous W1-to-W2 voxel-wise analysis, wherein less follow-up FA was associated with improved HI 

symptom score. Notably, our results were in the approximate location of where the lSLF and lCST 
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cross, while our present fixel-wise results in the lCST seem to be absent from where the lSLF crosses 

this tract. Therefore, as we previously suggested, our tract-based spatial statistics results may have 

been due to the neuroanatomical location of the effects, which, when labeled with an atlas, were in 

an area where these tracts cross. Compared to our voxel-wise study, we presently accounted for 

crossing fibers better through FBA, as well as the specific, FOD-based segmentation of these tracts as 

separate ROIs. Accordingly, symptom improvement over time can conceivably be associated with 

increased CST fiber maturation, which by our previous DTI methods may have appeared as reduced 

FA in voxels where a more dominant SLF crosses those corticospinal fibers. 

The lCST is the only tract in which we have consistently found longitudinal effects. However, 

a cross-sectional study of symptoms in an overlapping W1 sample found the most FA differences in 

the right cingulum-angular bundle [16]. Anatomically, this differs from that of the present and 

previous longitudinal effects, which suggests a dissociation in the WM tracts associated with cross-

sectional differences versus those that are associated with symptom remission. This dissociation 

points to the neurodevelopmental models of remission, which all predict atypical neural features in 

adults with persistent ADHD, but have different predictions about those with remittent symptoms: If 

symptom remission occurred via WM normalization, convergence, or passive delayed maturation, 

then we would have observed neurological alterations at follow-up in participants with persistent 

symptoms, but no differences between those with remittent symptoms and healthy controls. If, 

regardless of symptom trajectory, this disorder imparted an indelible mark or scar on the brain, then 

we would not have observed follow-up neurological differences between those with persistent versus 

remittent symptoms, and only healthy controls would have been differentiated by our follow-up 

analyses. If symptom remission occurred via compensation or reorganization, then remitted brains 

would have differed from both the never affected and the persistent ADHD brains, but in different 

ways. The dissociation we observed in the tract that is important for symptom remission versus the 

tract that is important for symptom severity alone implies the last model of remission. According to 

our current findings, we tentatively suggest an interpretation consistent with our previous report: In 
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a top-down fashion, remitters may have learned compensatory strategies to overcome symptoms as 

they aged, while persisters may have either learned disadvantageous strategies, other beneficial 

compensatory strategies, or none at all—leading to diverging WM development trajectories in specific 

brain regions in individuals with persistent ADHD symptoms (Figure S4).  

Based on our longitudinal design, we postulate that different WM alteration patterns are 

associated with symptom trajectory in a tract-specific manner: HI symptom remission preceded lCST 

plasticity at 20 years median age (range 12 – 29 years), and combined symptom remission preceded 

lCST plasticity at 26 years median age (range 18 – 34 years). Perhaps our sample at a slightly younger 

age, in response to HI symptom improvement or learning new skills, gained more lCST fibers over 

time. Tract expansion could have been a compensatory mechanism to improve motor control, 

followed by more myelination of those fibers. Then, as our participants became slightly older, 

improvement in both dimensions may have led to greater lCST WM microstructure and improved 

motor control (Figure S5). We can speculate that improved IA (and related executive control) could 

help suppress HI, leading to greater motor control evinced as larger FC at a later age. In our remitters, 

higher measures of lCST WM might also result from reorganization in other brain areas outside of the 

tracts we studied. Overall, we have again found that higher WM microstructure appears to follow 

symptom remission. Speculatively, this suggests that WM changes may be a downstream result of 

ADHD symptom remission. 

A strength of the current study is its large sample size over three clinical and two DWI time-

points. Our approach using two separate follow-up analyses lent further characterization to the 

temporal dynamics of ADHD-WM microstructure interplay. Of particular concern given this disorder, 

we mitigated potential confounding effects of head motion through careful data screening, correction 

during preprocessing, and inclusion as a covariate in our models. Using multi-shell FBA, we 

demonstrated that WM-associated differences are fiber-specific even within regions of crossing fibers, 

and we were able to further characterize WM micro- and macrostructural properties. Nonetheless, a 

limitation of this study is that the first follow-up analysis included DWI data acquired with only one 
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relatively low b-value at 1.5T, which may have precluded us from discovering effects in other tracts 

and/or symptom dimensions since higher b-value shells improve correspondence between FD 

estimates and intra-axonal signal fraction simulations by increasing extra-axonal signal suppression 

[53]. Second, our inability to replicate our previous cross-sectional tractography findings may stem 

from the different DWI analysis methods used and W3 included a comparatively smaller number of 

affected-only individuals, which reduced our statistical power to detect smaller cross-sectional effects 

in the cingulum. Third, our follow-up samples were prone to selection bias from attrition and our 

explicit selection criteria in W3, where we also used different instruments (CRPS vs. CAARS) and raters. 

Returning participants were different from those who participated only once. Finally, even in a 

longitudinal study, we cannot prove causality. ADHD symptom persistence is likely associated with 

many other factors in daily life, or medication, or comorbid symptomatology—and any combination 

of these could also contribute to neurological differences at follow-up. 

Our findings contribute to the growing body of evidence describing the progression of 

symptoms in relation to WM development. Defining the correlates and predictors of remission may 

eventually lead to an improved allocation of treatment resources for persistent or complicated ADHD. 

A better understanding of the underlying neural mechanisms of these changes in time can contribute 

to the promotion of favorable future perspectives for children and adolescents with this disorder.  
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7. Tables and Figures 
 
 

  Wave 1   Wave 2   Wave 3       
 N = 119  N = 135  N = 55  

  
  Mean (SD)   Mean (SD)   Mean  (SD)   

Test 
Statistic 

(p) 

Age, years 16.98 (3.47)  20.22 (3.48)  24.82 (4.07)   
 

Sex, female N = 48 40%  N = 53 39%  N = 19 35%  χ23 = 1.51 (0.68) 

Estimated IQa 98.41 (14.81)  105 (16.82)  102.35 (14.17)  F2,192 = 2.23 (0.11) 

Head motion, 
framewise 
displacement 

0.47 (0.17)  0.53 (0.42)  0.82 (0.17)  F2,298 = 24.71 (<10-10) 

Handedness, right N = 96 81%  N = 111 82%  N = 45 82%  χ23 = 4.61 (0.20) 

Medication ever 
used, yesb,c N = 66 56%  N = 45 33%  N = 42 76%   χ23 = 32.03 (<10-6) 

           
 

Symptom raw 
score by diagnostic 
groupd 

          

 
Combined scoree 13.03 (12.33)  12.96 (13.05)  20.53 (9.34)   

 
Hyperactivity-
impulsivity score 4.94 (5.73)  4.71 (5.68)  10.85 (5.38)   

 
Inattention score 8.05 (7.51)  7.55 (7.45)  9.67 (4.85)   

 
            
Comorbidity 
diagnosis            

Anxiety disorder N = 2 2%  N = 2 1%  N = 1 2%  χ23 = 57.344  (<10-11) 

Avoidant 
personality disorder N = 1 1%  N = 2 1%  N = 0 0%  χ23 = 81.886  (<10-15) 

Conduct disorder N = 2 2%  N = 2 1%  NA NA  χ22 = 55.107  (<10-11) 

Major depression N = 1 1%  N = 1 1%  N = 4 7%  χ23 = 57.435  (<10-11) 

Oppositional 
defiant disorder N = 15 13%  N = 16 12%  NA NA  χ22 = 7.8901 (7.89) 

Panic disorder N = 0 0%  N = 1 1%  N = 0 0%  χ23 = 137.76 (<10-15) 

            

Substance use            

Alcohol N = 19 16%  N = 21 16%  N = 7 13%  χ23 = 6.2621 (0.10) 

Tobacco N = 43 36%  N = 45 33%  N = 12 22%  χ23 = 5.1952 (0.16) 

Cannabis or hash N = 22 18%  N = 23 17%  N = 6 11%  χ23 = 6.8817 (0.08) 

Other drugs N = 6 5%  N = 6 4%  N = 2 4%  χ23 = 23.734 (<10-4) 
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Table 1. Demographic and clinical characteristics of participants at Wave 1 (W1), Wave 2 (W2), and 
Wave 3 (W3) with mean and standard deviation (or numerical count and percentage). W3 included 
only those who fulfilled full ADHD diagnostic criteria in at least one previous wave. Values reported 
here are for all participants in the final sample after all quality control (N = 139).  
a IQ was estimated using the vocabulary and block design subtests of the Wechsler Intelligence Scale 

for Children or Wechsler Adult Intelligence Scale.  
b Medication ever used: Whether or not participants had ever taken ADHD medication. 
c Medications: Ritalin (methylphenidate), Concerta (methylphenidate), Strattera (atomoxetine), and 

any other ADHD medication. The majority of patients were taking prescription medication for ADHD, 
mostly methylphenidate or atomoxetine.  

d Symptom scores in W1 and W2 were collected via Conners’ Parent Rating Scale, and W3 scores were 
collected via the Conners’ Adult ADHD Rating Scale.  

e Combined symptom score: Sum of hyperactivity-impulsivity and inattention scores.  
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469248


 27 

 

 
 
Figure 1. Schematic of how this study chronologically relates to previous studies, the samples included 
in each, relevant clinical and neuroimaging measurements, study sample age ranges, mean years 
(standard deviation) in between each acquisition wave, and the analysis methods used. The present 
study is a fixel-based analysis of W1 to W2 and W2 to W3, using only the models in which we found 
significant effects in a previous voxel-wise tract-based spatial statistical analysis of W1 to W2. 
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Figure 2. Change in participant characteristics from Wave 1, to Wave 2, to Wave 3. Longitudinal data 
points are connected by a line. Note that participants at W3 were selected to on the basis of their 
history of ADHD diagnosis, so W3 tends to differ quite markedly from the other two waves, which also 
include never-affected controls. This conceals the typical pattern of average symptom remission that 
would be expected in a follow-up study without this selection criterion. 
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Figure 3. Tract-specific region-of-interest masks of the left corticospinal tract for Wave 2 (top) and 
Wave 3 (bottom) colored by direction (red: left-right, green: anterior-posterior, blue: inferior-
superior). (A) Fixel mask overlaid on a single representative coronal slice of the study-specific white 
matter fiber orientation distribution template. Template contrast was adjusted and fixels have been 
thickened for visualization. (B) Coronal, (C) sagittal, and (D) axial views of the tract reconstruction from 
TractSeg (applied to each fiber orientation distribution template) and displayed in glass brains for 
visualization. 
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Figure 4. Symptom change may precede lCST WM microstructure plasticity. Top: Improvement of HI 
score is associated with more follow-up fiber density (FD). Bottom: Improvement of combined score 
is associated with more follow-up fiber cross-section (FC). Streamline segments have been cropped 
from the template tractogram to include only streamline points that correspond to significant fixels 
for this tract (FWE-corrected p-value < 0.05). Significant streamlines are colored by the standard effect 
size of ‘Δscore’ on ‘FD at W2’ and ‘log(FC) at W3’ and displayed across coronal and sagittal slices of 
the study-specific white matter fiber orientation distribution templates.  
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8. Supplementary material 

 
Table S1. Results from the tract-specific fixel-based analysis of W1 to W2 in lCST and lSLF. 
  

Search space 
Dependent variable 
Fixel-based metric 

Contrast 
Independent variable 

Symptom score change 
(Δ = W2 – W1) 

tmax Std. effect PFWE 

Left 
corticospinal 

tract 

Fiber density 

( + ) total 0.858 0.011 0.165 

( – ) total 0.917 0.012 0.104 

( + ) HI 0.949 0.038 0.225 

( – ) HI 1.092 0.044 0.016* 

Fiber cross-section 

( + ) total 1.846 0.023 0.591 

( – ) total 2.264 0.029 0.343 

( + ) HI 1.909 0.076 0.627 

( – ) HI 2.189 0.087 0.536 

Fiber density and cross-
section 

( + ) total 0.969 0.012 0.280 

( – ) total 0.828 0.011 0.439 

( + ) HI 1.051 0.042 0.294 

( – ) HI 0.948 0.038 0.083 

Left superior 
longitudinal 
fasciculus I 

Fiber density 
( + ) total 2.238 0.028 0.496 

( – ) total 1.300 0.017 0.285 

Fiber cross-section 
( + ) total 2.627 0.033 0.252 

( – ) total 1.759 0.023 0.474 

Fiber density and cross-
section 

( + ) total 2.483 0.032 0.112 

( – ) total 1.351 0.017 0.493 

Left superior 
longitudinal 
fasciculus II 

Fiber density 
( + ) total 1.547 0.020 0.462 

( – ) total 1.462 0.019 0.682 

Fiber cross-section 
( + ) total 1.987 0.025 0.319 

( – ) total 1.372 0.017 0.625 

Fiber density and cross-
section 

( + ) total 1.666 0.021 0.245 

( – ) total 1.304 0.017 0.777 

Left superior 
longitudinal 
fasciculus III 

Fiber density 
( + ) total 1.464 0.019 0.762 

( – ) total 1.290 0.016 0.225 

Fiber cross-section 
( + ) total 1.331 0.017 0.709 

( – ) total 3.121 0.040 0.051 

Fiber density and cross-
section 

( + ) total 1.766 0.022 0.863 

( – ) total 1.239 0.016 0.407 
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Search space 
Dependent variable 
Fixel-based metric 

Contrast 
Independent variable 

Symptom score change 
 (Δ = W3 – W2) 

tmax Std. effect PFWE 

Left 
corticospinal 

tract 

Fiber density 

( + ) total 1.288 0.017 0.612 

( – ) total 1.687 0.023 0.156 

( + ) HI 1.344 0.036 0.636 

( – ) HI 1.761 0.048 0.200 

Fiber cross-section 

( + ) total 0.916 0.012 0.896 

( – ) total 3.775 0.051 0.019* 

( + ) HI 0.911 0.025 0.960 

( – ) HI 3.575 0.097 0.058 

Fiber density and cross-section 

( + ) total 1.122 0.015 0.821 

( – ) total 1.776 0.024 0.093 

( + ) HI 1.190 0.032 0.908 

( – ) HI 1.800 0.049 0.141 

Left superior 
longitudinal 
fasciculus I 

Fiber density 
( + ) total 1.632 0.022 0.428 

( – ) total 1.519 0.020 0.956 

Fiber cross-section 
( + ) total 0.740 0.010 0.963 

( – ) total 2.863 0.038 0.169 

Fiber density and cross-section 
( + ) total 1.727 0.023 0.413 

( – ) total 1.823 0.024 0.715 

Left superior 
longitudinal 
fasciculus II 

Fiber density 
( + ) total 1.264 0.017 0.837 

( – ) total 1.247 0.017 0.882 

Fiber cross-section 
( + ) total 0.882 0.012 0.978 

( – ) total 2.863 0.038 0.259 

Fiber density and cross-section 
( + ) total 1.340 0.018 0.587 

( – ) total 1.305 0.017 0.730 

Left superior 
longitudinal 
fasciculus III 

Fiber density ( + ) total 2.062 0.028 0.067 

 ( – ) total 1.572 0.021 0.340 

Fiber cross-section 
( + ) total 1.450 0.019 0.778 

( – ) total 2.210 0.030 0.437 

Fiber density and cross-section 
( + ) total 1.928 0.026 0.191 

( – ) total 1.734 0.023 0.516 

 
Table S2. Results from the tract-specific fixel-based analysis of W2 to W3 in lCST and lSLF. 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 19, 2021. ; https://doi.org/10.1101/2021.11.19.469248doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469248


 33 

 

Search space 
Dependent variable 
Fixel-based metric 

Contrast 
Independent variable 

CAARS score 
(W3) 

tmax Std. effect PFWE 

Whole brain 

Fiber density 

( + ) total 3.011 0.045 0.562 

( – ) total 2.739 0.041 0.858 

( + ) HI 3.195 0.082 0.501 

( – ) HI 2.640 0.068 0.835 

( + ) IA 3.120 0.095 0.053 

( – ) IA 2.862 0.087 0.757 

Fiber cross-section 

( + ) total 2.775 0.042 0.835 

( – ) total 4.446 0.067 0.261 

( + ) HI 2.172 0.056 0.892 

( – ) HI 4.218 0.109 0.173 

( + ) IA 3.721 0.113 0.700 

( – ) IA 3.749 0.114 0.362 

Fiber density and cross-
section 

( + ) total 3.027 0.046 0.678 

( – ) total 2.847 0.043 0.778 

( + ) HI 3.111 0.080 0.864 

( – ) HI 2.774 0.071 0.827 

( + ) IA 3.166 0.096 0.119 

( – ) IA 2.840 0.086 0.716 

Right 
cingulum 

bundle 

Fiber density 
( + ) HI 0.047 1.841 0.410 

( – ) HI 0.043 1.678 0.315 

Fiber cross-section 
( + ) HI 0.763 0.020 0.980 

( – ) HI 3.806 0.098 0.063 

Fiber density and cross-
section 

( + ) HI 1.653 0.043 0.688 

( – ) HI 1.764 0.045 0.172 

 
Table S3. Results from the cross-sectional global and tract-specific fixel-based analysis of W3 only. All 
general linear models showed no significant effects of CAARS score on any fixel-based metric.  
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Figure S1. Correlation scatterplots of baseline against follow-up scores colored by dimension with 95% 
confidence intervals and Pearson correlation coefficients reported for each. Top row: Wave 1 
associations with Wave 2 scores. Bottom row: Wave 2 associations with Wave 3 scores. Left column: 
Hyperactivity-impulsivity dimension scores. Center column: Inattention dimension scores. 
Right column: Combined scores (calculated as the sum of hyperactivity-impulsivity and inattention). 
Darker colored points indicate individuals with overlapping score data. 
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Figure S2. Tract-specific region-of-interest masks of the left superior longitudinal fasciculus (lSLF) at 
Wave 2 and Wave 3, and the right cingulum bundle (rCG) at Wave 3 colored by direction (red: left-
right, green: anterior-posterior, blue: inferior-superior). Coronal (left column), sagittal (middle 
column), and axial (right column) views of the tract reconstructions from TractSeg (applied to the 
fiber orientation distribution templates) and displayed in glass brains for visualization.   
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Figure S3. Visualization of the exchangeability block structure of (A) Wave 2 and (B) Wave 3, each 
represented in permutation trees. Each white dot is one individual and each group of white dots 
represents families of a specific size. At each permutation, branches beginning at blue dots can be 
permuted, while those beginning in red dots cannot. These permutation sets were generated with FSL 
PALM and used in connectivity-based fixel enhancement analysis to control for related siblings in each 
sample. 
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Figure S4. Graphs illustrating the relationship between left corticospinal tract (Top) mean fiber density 
values and change in hyperactive/impulsive symptom score from Wave 1 to Wave 2, and (Bottom) 
mean fiber cross-section values and change in combined symptom score from Wave 2 to Wave 3. Both 
plots include solid green regression lines with 95% confidence intervals. For reference, the mean fiber 
density at Wave 2 for unaffected participants is marked by a dashed gray line. Change in symptom 
score was calculated as: ΔScore = score follow-up – score baseline. Participants are shown as individual 
points, differentiated according to whether their change in symptom score was above or below the 
median change in score. 
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Figure S5. Participants from all waves pooled together (never affected are in gray triangles, and 
affected are circles colored according to wave in red [W1], blue [W2], and green [W3]) and plotted by 
age against symptom score in dimensions HI (Top) and IA (Bottom). Wave 3 included less participants 
and only those with a history of ADHD; scores were obtained with CAARS instead of CPRS. 
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