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S1. Shape of the maternal morphogen profiles. 42 

Bicoid (Bcd). The Bcd concentration gradient is generated by diffusion form a 43 

localized source. At steady state, its profile should be exponential, which is fully 44 

consistent with experiments (therefore, we do not consider the possibility raised in 45 

Ref. 1): 46 

𝐵𝑐𝑑(𝑥) = 𝑒
−

𝑥
𝜆𝐵 . 47 

Its absolute length constant 𝜆𝐵 is fully determined by the diffusion constant D and 48 

decay rate γ (𝜆𝐵 = √𝐷 𝛾⁄ ), independent of embryo length 2-5. Reformulating the Bcd 49 

profile using the “relative” coordinate y, which is normalized by embryo length 𝑦 ≡50 

𝑥 𝐿⁄ , yields: 51 

𝐵𝑐𝑑(𝑦) = 𝑒
−

𝑦𝐿
𝜆𝐵 = 𝑒

−
𝑦

𝜆𝐵 𝐿⁄ . 52 

For larger embryos (L>1), the length constant appears to be shortened in the 53 

normalized coordinate.  54 

 55 

Throughout this paper, the length unit is chosen to be the length of a “standard size” 56 

embryo L0 (~490 μm). Therefore, the position x, embryo length L, and 𝜆𝐵 , are 57 

dimensionless (normalized by L0). Measured in this way, the Bcd length constant 58 

λB=0.165, according to a very carefully performed quantitative measurement 6.  59 

 60 

Though the Bcd length constant 𝜆𝐵 cannot scale with embryo length, a positive 61 

correlation between Bcd amplitude (absolute concentration at the anterior pole) and 62 

embryo length L has been observed experimentally 5,7. i.e., larger embryos tend to 63 

have higher overall Bcd dosage. To reflect this fact, an amplitude factor Lβ is 64 

introduced in the Bcd term. Taken together, 65 

Bcd(𝑦, 𝐿) = 𝐿𝛽𝑒
−

𝑦
𝜆𝐵 𝐿⁄                                                    (𝑆1.1) 66 

The exponent β should lie between 2 and 3 according to a not very precise 67 

measurement 8. Being somewhat conservative about this “amplitude correction” effect, 68 



we take β=2 throughout the main text. No matter if β=3 (Fig. S4d). Our model is not 69 

quite sensitive to the exact value of β. 70 

 71 

This effect produces a “neutral point” y=𝛽𝜆𝐵 with invariant Bcd concentration and is 72 

proposed by some authors that is may contribute directly to scaling of the gap genes. 73 

As mentioned in the main text, we don’t agree with this explanation in general. 74 

However, in our framework, although the optimal scaling decoder can always be 75 

well-defined with or without this Lβ factor, the exact Bcd profile affects the exact 76 

orientations of the optimal decision planes. Therefore, to accurately describe the real 77 

situation in Drosophila (hence making correct predictions on mutants), this Bcd 78 

amplitude effect should not be ignored (Fig. S4b, c). 79 

 80 

Maternal Hb (mHb). Like Bcd, the posterior gradient Nos should have an 81 

exponential profile. (No amplitude correction effects are reported experimentally, so 82 

the Lβ factor is not added). 83 

𝑁𝑜𝑠(𝑦) = 𝑒
−

1−𝑦
𝜆𝑁 𝐿⁄  84 

It is well known that Nos functions solely through repressing the maternal component 85 

of the gap-gene protein Hb (mHb) in posterior half of the embryo 9-11. Therefore, the 86 

“immediate” posterior morphogen should be mHb instead of Nos. If we assume that 87 

mHb level is dictated by Nos through an inhibitive Hill function,  88 

𝑚𝐻𝑏(𝑦) =
𝑚𝐻𝑏0

1 + (
𝑁𝑜𝑠(𝑦)

𝐾 )
𝑛 89 

then the mHb gradient takes a sigmoidal shape: 90 

𝑚𝐻𝑏(𝑦) =
𝑚𝐻𝑏0

1 + 𝑒𝛼𝐿(𝑦−1+(1−𝜆𝐻) 𝐿⁄ )
                                   (𝑆1.2) 91 

Where 𝛼 = 𝑛 𝜆𝑁⁄ , 𝜆𝐻 = 1 + 𝜆𝑁 ln 𝐾. Although the raw parameters (λN, K, and n) are 92 

unknown, measured mHb profiles (Hb protein profile in n.c.12 embryos, from the 93 

FlyEX database 12,13) can be well fitted with this sigmoidal curve (with α=15 and 94 

λH=0.425). See Fig. S1 for the fitting. Note that in this paper we normalize the value 95 



of Hb (no matter maternal or zygotic) according to its maxima at n.c.14, so mHb has 96 

an amplitude coefficient mHb0=0.1. 97 

 98 

Torso (Tor). The activity of Tor is induced at both terminus of the embryo by its 99 

ligand in the perivitelline space 14,15. Tor transduces the activation signal into the 100 

syncytial embryo by phosphorylating ERK. Phosphorylated ERK (dpERK) diffuses in 101 

the cytoplasm, trapped by the nucleus, and dephosphorylated (i.e. “degraded”) inside 102 

the nucleus 16. This is a similar picture of the “localized synthesis, diffusion, and 103 

decay” model of Bcd and Nos. So, it is reasonable to assume that the activity of Tor 104 

has an exponential profile as well.  105 

𝑇𝑜𝑟(𝑦) = 𝑒
−

𝑦
𝜆𝑇 𝐿⁄ + 𝑒

−
1−𝑦
𝜆𝑇 𝐿⁄                                         (𝑆1.3) 106 

Quantitative measurements on dpERK indeed show double-exponential profiles 107 

(when projected onto the one-dimensional anterior posterior axis) 16,17. In this paper 108 

we use an estimated value λT=0.07 for its length constant. 109 

 110 

These equations give Eqn. 5a-c in the main text. 111 

 112 

Precise measurements on the scaling property of mHb and Tor is still lacking and very 113 

difficult to perform. Our assumption that they should both be unscaled with embryo 114 

length is the minimal assumption. This minimal assumption is consistent with the 115 

known mechanisms through which the gradients are established, and is also supported 116 

by the case studied in Fig. 5a. See SI-7 for detail. 117 

  118 



S2. Modelling length fluctuation and noisy morphogen gradients 119 

The WT point cloud used for fitting the linear classification planes are defined as 120 

follows. First, the A-P axis is discretized into 101 points y=0% to 100%. For each of 121 

the y position, we sample 400 embryo length values from the normal distribution 122 

L~N(1, 0.1) and calculate the corresponding noise-free (Bcd, mHb, Tor) levels using 123 

Eqn. 5. This three noise-free values are noted by m=(m1, m2, m3) for convenience. 124 

Obviously, 0<m1,3<1 and 0<m2<0.1. This give the 2-d “WT manifold” in Fig. 2c.  125 

 126 

The fact that embryo length L only fluctuates within a limited range is important. 127 

Outside certain L range, the decoder behavior should not be subjected to selection 128 

pressure since embryo size hardly fluctuate that much under natural conditions. Thus, 129 

in the strictest sense, only within the region covered by realistic WT embryos, the 130 

effective input-output relation of the decoder should follow that dictated by scaling. 131 

 132 

Secondly, a Poisson noise is added to each morphogen value mi by assuming the 133 

actual number of molecules is a Poisson variable ni with <ni>=N*mi, and the final 134 

(normalized) morphogen level with noise is mi=ni/N. The (hypothetical) maximum 135 

molecule number N controls the noise magnitude. We set N=1000 throughout the 136 

main text. From a theoretical perspective, the noise terms turn the 2-dinemsional WT 137 

manifold (Fig. 2c) into a 3-dimensional WT point cloud (Fig. 2d).  138 

 139 

Note that N=1000 does not correspond to the number of molecules per nucleus (which 140 

result in the intrinsic noise). Instead, N=1000 is chosen to make the positional error of 141 

modeled Bcd gradient close to that measured by Ref.18, which included both intrinsic 142 

and extrinsic noises. 143 

 144 

To be specific, positional noise (standard deviation 𝜎 of position y) of the Bcd 145 

gradient in standard-sized (L=1) embryos can be expressed as 146 



𝜎𝑦 |
𝑑�̅�𝐵𝑐𝑑

𝑑𝑦
| = 𝜎𝑁𝐵𝑐𝑑

                                                   (𝑆2.1) 147 

For Poisson distribution: (𝜎𝑁𝐵𝑐𝑑
)

2
= �̅�𝐵𝑐𝑑 = 𝑁𝑒−𝑦 𝜆⁄ . Thus: 148 

𝜎𝑦 =
𝜆

√𝑁
𝑒−

𝑦
2𝜆                                                        (𝑆2.2) 149 

Substituting 𝜆=0.165 and N=1000 into this equation, gives the modeled positional 150 

noise as the black curve in Fig. S2, overlapped on the experiment results of (Gregor, 151 

et. al. 2007). 152 

 153 

The measured results on Bcd noise should be reliable in the region 0.2<y<0.6, since it 154 

is far enough from Bcd mRNA is distribution, also, Bcd protein level here is high 155 

enough to be safe from experimental detection limit. In this region 0.2<y<0.6, 156 

strengths of Bcd noise introduced by our Poisson term are close to the measured 157 

values. (Our model is not quite sensitive to the exact value of N, see Fig. S4 E-F for 158 

the results when N=500 or 2000.) 159 

 160 

Note that “Bcd noise” here should stand for the measured embryo-to-embryo 161 

fluctuation in an ensemble of standard-sized (L=1) embryos. i.e., it accounts for both 162 

intrinsic noise (finite number of Bcd protein molecules per nucleus), and extrinsic 163 

noise (e.g., embryo-to-embryo variability in overall Bcd amplitude) except for length 164 

variation. Theoretically, intrinsic and extrinsic noises are different, in that extrinsic 165 

noise is correlated for nucleus belonging to the same embryo. However, since our 166 

decoder works in a spatially decoupled manner, it cannot distinguish whether two 167 

different (Bcd, mHb, Tor) points come from the same embryo or not. In other words, 168 

only the overall strength of fluctuation matters, no matter the fluctuation comes from 169 

intrinsic molecular noise or embryo-to-embryo variation. The decoder deals with all 170 

nucleus in all embryos of the Drosophila species simultaneously. Therefore, intrinsic 171 

and extrinsic noises are not treated separately here.  172 



S3. Fitting the linear classification planes. 173 

The entire point cloud in Fig. 2d consists of 101 subsets m|y, each of them have 400 174 

points. The 100 classification planes locate at y=0.5%, 1.5%, …, 99.5%, numbered as 175 

classifiers #1, …, #100 (and we only consider #6 to #95 in the main text). Each of the 176 

planes should perform the local classification task of distinguishing m points belongs 177 

to adjacent y’s. 178 

 179 

For example, the plane #3 locating at y=2.5% should first go through the m point 180 

representing the noise-free morphogen levels at y=2.5% in standard-sized WT by 181 

itself. Secondly, the plane orientation is defined by that can best distinguishing the 182 

point classes ⋃ 𝒎|𝑦𝑦={0%,1%,2%}  against ⋃ 𝒎|𝑦𝑦={3%,4%,5%} . To find the best-fit 183 

plane orientation numerically, we simply enumerate the Euler angles θ and φ of its 184 

normal vector at the resolution of 1° and find the one with the highest classification 185 

accuracy.  186 

 187 

The noise due to finite sampling and discretizing θ and φ are eliminated by averaging 188 

the classification plane orientations for 25 repeats of the above sampling and fitting 189 

steps. 190 

  191 



S4. Making predictions with the set of linear classifiers. 192 

The portion of (Bcd, mHb, Tor) space where the decoder output is directly dictated by 193 

scaling (that is, the region covered by the WT point cloud) does not include all the 194 

situations in the morphogen mutant embryos. Extrapolations are therefore needed for 195 

making predictions in general. Fortunately, for the Drosophila case most mutants of 196 

interest lie not far away from the WT point cloud. Thus extrapolations could make 197 

sense here. 198 

 199 

We think the most simple and natural assumption is to extrapolate linearly with the 200 

classification planes defined above.  201 

 202 

Firstly, we know from Fig. 6c that the decision boundaries realized by gene 203 

interaction network can only follow the scaling requirements to the linear order in 204 

general, thus starting only from scaling we simply have no information about possible 205 

higher-order features.  206 

 207 

Secondly, the unstable manifold of a bi-stable diagram tends not to have large 208 

curvature except in the neighborhood of a critical point (Fig. 6b). Although the real 209 

gap gene network is not a simple bi-stable system, we think this intuition should still 210 

hold.  211 

 212 

Finally, in Fig. 6d-f we presented a differential-equation-based gene regulation model 213 

using the known gap gene interaction network. This kind of model indeed extrapolate 214 

in a very much linear way. 215 

 216 

We next describe how the linear extrapolations are carried out precisely. Obviously, 217 

100 well-separated planes should divide the morphogen space (the cube with 0<m1<1, 218 

0<m2<0.1, 0<m3<1) into 101 slices, corresponding to �̃�=0% to 100%. If a query m 219 



point falls into the slice �̃�=n%, it locates on the posterior side of classification planes 220 

#1 through #n, and on the anterior side of planes #n+1 to #100. Therefore, the 221 

corresponding cell fate �̃� can be read out from the classification results of all the 222 

linear classification planes. Consider the y=0.4 point in an L=1 bcd-tor- embryo, 223 

whose m=(0,0.059,0) (according to Eqn. 5, shown as black cross in Fig. S3a). This 224 

point lies in the �̃�=0.56 slice, i.e., between the classification planes #55 and #56.  225 

 226 

In some other situations, however, the 100 linear classifiers could have contradictory 227 

outputs. Say, the point (0.004, 0, 0.24) are classified to the posterior side by classifier 228 

#70 but to the anterior side by #30. We introduce a “posterior dominance rule” to 229 

tackle this difficulty. Anytime when this happens, output of the anterior classifier (#30 230 

here) is always ignored. The reason for us to introduce the posterior dominance rule is 231 

simple – some anterior classification planes may intersect with the much more 232 

posterior region of the point cloud, vary far from where they were fitted (Fig. S3b). 233 

This posterior dominance rule works well, yielding the results in Figs. 2-5.  234 

 235 

To be more precise how the fate map curves in Fig. 3 are obtained, we explain here 236 

that which “fate slice” a query point should fall is determined by analyzing the 237 

classification outputs by all the 100 classification planes. In the ideal case, �̃�=n% 238 

means that classifiers #1 through #n output “posterior”, and classifiers #n+1 to #100 239 

output “anterior”. Graphically, the decoder outputs are recorded by a column of pixels, 240 

with grey stands for “anterior” and white stands for “posterior”, and the fate map in 241 

Fig. 3 is then given by extracting the grey-white boundary of Fig. S3c. 242 

 243 

Also note that those classifier outputs ignored by the posterior dominance rule are 244 

shown in lighter color in Fig. S3c. Graphically, this rule is equivalent to wiping out all 245 

the grey pixels once there exists a white pixel above them. The “posterior dominance 246 

rule” is a quite rough rule after all. Sometimes it leads to artifacts near the embryo 247 



terminus. For example, the fate map of bcd1X (and vas-exu-bcd6X) in Fig. 3 shows 248 

abrupt jumps near the anterior (and posterior) end. However, this kind of error do not 249 

affect prediction in most cases.  250 



S5. The Bayesian decoder. 251 

With our settings, given position y and embryo length L, the morphogen levels M 252 

satisfy the Poisson distribution: 253 

𝑝(𝑀𝑖|𝑦, 𝐿) =
(𝑁𝑚𝑖(𝑦, 𝐿))

𝑀𝑖

𝑀𝑖!
𝑒−𝑁𝑚𝑖(𝑦,𝐿)   (𝑖 = 1,2,3), 254 

where m is the noise-free morphogen profile defined in Eqn. 5 in main text, and N is 255 

the “effective maximal molecule number” as described above. Also, noise on different 256 

morphogens are assumed to be independent: 257 

𝑝(𝑴|𝑦) = ∫ 𝑑𝐿 𝜌(𝐿) ∏ 𝑝(𝑀𝑖|𝑦, 𝐿)
3

𝑖=1
, 258 

where the embryo length follows the Gaussian distribution L~N(μ=1, σ=0.1) 259 

𝜌(𝐿) =
1

√2𝜋𝜎
𝑒

−
(𝐿−1)2

2𝜎2  260 

Inferring y from the morphogen levels M can be performed using the Bayes formula 261 

𝑝(𝑦|𝑴) =
𝑝(𝑴|𝑦) 𝑝(𝑦)

𝑝(𝑴)
 262 

Since y is uniformly sampled from 0 to 1, the Bayesian decoder becomes a maximal 263 

likelihood decoder. 264 

argmax
𝑦

𝑝(𝑦|𝑴) = argmax
𝑦

𝑝(𝑴|𝑦) 265 

Decoding results for the WT point cloud of Fig. 2d by the Bayesian decoder is shown 266 

in Fig. S5a. Although arbitrary decision boundary geometry is allowed by the 267 

Bayesian decoder, its Root Mean Squared Error (RMSE) is even larger than the linear 268 

decoder presented in the main text (Fig. S5b). This is conceivable, as maximization of 269 

posterior likelihood could lead to minimal regression error only when the decoding 270 

error is Gaussian, which not satisfied here. Therefore, we claimed in the main text that 271 

the remaining classification errors of the linear decoder should due to the morphogen 272 

noise rather than nonlinearity in classifier geometry. This can be visualized by 273 

choosing a tangential view of the classification planes in Fig. 2D-E (Fig. S5d).  274 

 275 



In comparison with the Bayesian decoder, there are some additional arguments on our 276 

linear extrapolation hypothesis. As expected, decision boundaries of the Bayesian 277 

decoder are effectively linear within the WT point cloud (Fig. S5c, on the alpha plane). 278 

However, situations outside the WT point cloud are quite different: There, outputs of 279 

the Bayesian decoder are determined by extremely improbable cases, say very large L 280 

variation or very large fluctuation in morphogen level, which are basically irrelevant 281 

to realistic embryos. While the linear classifier emphasizes more on simplicity of the 282 

decision boundary geometry, and turned out to be a better way of extrapolation. 283 

  284 



S6. Discussion on some of the predictions in Fig. 3d. 285 

(mhb-). Among the mutant cases in Fig.3d, we do not have quantitative data for mhb-, 286 

but we are quite confident that this prediction is correct. It has long been known that 287 

although nos- embryos (where mHb is uniformly high) lack all abdominal segments, it 288 

can be largely rescued by further eliminating mHb completely. The nos-mhb- double 289 

mutation embryo is viable and has basically normal morphology 9,10. This observation 290 

led people to discover that for WT the only function of Nos is to inhibit mHb, but it 291 

also shows that even if the morphogen mHb does not exist at all, the embryo should 292 

not miss any segment. Our prediction in mhb- matches this observation. The predicted 293 

fate map is almost along the diagonal albeit slight distortions. Fig. S6 provides a 294 

graphical visualization on the case of nos- and mhb-. 295 

 296 

(vas-exu-bcd6X). The vas-exu-bcd6X embryo lacks nos and has flattened and overall 297 

increased Bcd gradient 19, and the measured bcd profile is used for this prediction. 298 

This mutant display mirrored head structures near the posterior pole. The yellow 299 

squares marked in Fig. 3d vas-exu-bcd6X panel represent the expression peaks and 300 

boundaries of the head gap genes otd, btd, and ems, measured by Ref.19. 301 

 302 

(bcd1X and bcd4X). bcd1X or bcd4X here means the situations where Bcd dosage is 303 

halved or doubled exactly, not the actual bcd copy number. Hb boundary in bcd1X or 304 

bcd4X is predicted to shift by -7.3% or +9.1% by our scaling decoder, and the 305 

experimentally measured shifts are -6.4% and +9.4% according to Ref. 6. 306 

 307 

 308 

  309 



S7. bcd- and bcd6X embryos with reduced lengths. 310 

The case of bcd- has been discussed in the main text. Our model predicts that domains 311 

iv and v should disappear successively (main text Fig. 5a), this is visualized 312 

graphically in Fig. S6a as the bcd- curve losses contact with the green and red regions 313 

successively as L shrinks.  314 

 315 

This prediction is consistent with the experiments of Ref. 7, where bcd- embryos with 316 

greatly reduced embryo lengths are obtained by fat2RNAi. We replot the experiment 317 

data (Fig. 6B of Ref. 7) here for a quantitative comparison (Fig. S7b, the narrow 318 

anterior gt domain is ignored). In this figure, each horizontal bar represents a 319 

measured gap gene expression domain in a bcd- or bcd-fat2RNAi embryo. Its position 320 

in the vertical direction represents its embryo length. With decreasing length, the kni 321 

and gt domains shifts anteriorly in the normalized coordinate y. Also, Kr and kni 322 

domains disappears successively, leaving a widened gt domain in the middle.  323 

 324 

To allow quantitative comparisons, it worth noting that the length of the fixed 325 

embryos used in the immunostaining experiments is in general shrinked. We still have 326 

some difficulties in figuring out all the complexities and experimental details 327 

regarding the shrinking ratio (i.e., the ratio of the embryo length after fixation and 328 

immunostaining to that of the same embryo when still alive). Therefore, the shrinking 329 

ratio is assumed to be 90% here, which makes the experiments and our model 330 

prediction overlaps satisfactorily (Fig. S7c).  331 

 332 

This result directly supports our basic assumption on the maternal morphogens, that 333 

mHb and Tor gradients should be unscaled with L. In this picture, both posterior Tor 334 

and mHb gradients measure the absolute distance from the posterior pole, and the gap 335 

gene domains v-viii should simply follow these fixed distances and move anteriorly in 336 

relative coordinate as L shrinks. Similarly, the anterior bands (reversed domains vii 337 



and viii) are kept at fixed distances from the anterior pole by reading the anterior Tor 338 

gradient. In between is the Kr domain, which shrinks with L. 339 

 340 

Using the fat2RNAi technique, Ref. 7 also studied the gap gene patterns in bcd6X 341 

embryos under length change. Note that with 6 copies of bcd, the resulting Bcd 342 

protein dosage was actually only be approximately doubled 20, rather than multiplied 343 

by 3. This knowledge is consistent with the position of cephalic furrow reported in 7, 344 

that CF locates at y=0.42 in the bcd6X embryos, very close to those Bcd dosage ≈ 2.2 345 

embryos reported by Ref. 6. So, Bcd dosage is set to 2.2 in our model to simulate 346 

these bcd6X embryos. Scaling is not preserved in these embryos – that the gap gene 347 

domain boundaries shift significantly when L changes (Fig. S7d). This is the expected 348 

result, as according to our basic assumption, scaling stems from cancelation of the 349 

first-order effects of morphogen level difference due to a change of L. Those 350 

first-order derivatives are different for the altered zeroth-order profiles, thereby failed 351 

to cancel each other out. 352 

 353 

In Fig. S7d, the measured boundary positions by 7 are shown as dots, while our 354 

predictions are the solid lines (no “shrinking ratio” is assumed here). Errors between 355 

predictions and the experiments are generally acceptable, except for some of the 356 

boundaries – namely, both boundaries of the kni domain, and the anterior boundaries 357 

of the posterior gt and hb domains. Note that these errors could be corrected by more 358 

careful data processing. And the observation that the kni and posterior gt domains 359 

may disappear in short enough embryos 7 does not seem to be captured by our 360 

extrapolation based predictions.  361 

 362 

Especially, shift of the mid-embryo hb domain can be studied analytically, because 363 

the effect of Tor is nearly negligible in the central region. Profiles of Bcd and mHb 364 

when Bcd dosage is 2.2 are as follows. 365 



{
Bcd(𝑦′, 𝐿′) = 2.2 𝐿′𝛽𝑒−𝑦′𝐿′ 𝜆𝐵⁄                                 

mHb(𝑦′, 𝐿′) = mHb0(1 + 𝑒𝛼𝐿′(𝑦′−1+(1−𝜆𝐻) 𝐿⁄ ′))
−1                  (𝑆7.1) 366 

Assume that there exists a WT embryo of length L with perfectly scaling gap gene 367 

pattern, in which the y=0.473 position (hb boundary) has identical Bcd and mHb 368 

values as the above equation. i.e., 369 

{
         𝐿𝛽𝑒−𝑦𝐿 𝜆𝐵⁄ = 2.2 𝐿′𝛽𝑒−𝑦′𝐿′ 𝜆𝐵⁄   

mHb0(1 + 𝑒𝛼𝐿(𝑦−1+(1−𝜆𝐻) 𝐿⁄ ))
−1

= mHb0(1 + 𝑒𝛼𝐿′(𝑦′−1+(1−𝜆𝐻) 𝐿⁄ ′))
−1 370 

Relationship between y’ and L’ can be easily solved by eliminating the unknown L: 371 

𝐿′ = 𝜆𝐵

ln 2.2 − 𝛽 ln
1 − 𝑦′
1 − 𝑦

1 −
1 − 𝑦′
1 − 𝑦

                                                (𝑆7.2) 372 

This analytical result is compared with experiments in Fig. S7e. Note that this 373 

prediction not even depends on the precise profile of mHb. 374 

 375 

Similar to Fig. 5a-d, we present predicted gap gene domain positions of many other 376 

maternal morphogen mutants with greatly changed embryo lengths in Fig. S7f. Some 377 

of them may be tested by experiments in the future. 378 

  379 



S8. The three maternal gradients in Drosophila function as two bi-gradient pairs. 380 

The “tri-gradient system” of Bcd, mHb, and Tor can largely be decomposed into two 381 

parallel bi-gradient systems: Bcd&mHb in the middle part, and Bcd&Tor near both 382 

termini.  383 

 384 

The contribution of each morphogen to scaling can be characterized as follows. From 385 

the results shown in Fig. 5a, c, d, we can calculate the derivative of the position y 386 

where a certain cell fate �̃� appears with respect to embryo length L (evaluated at 387 

L=1.0), defined as the size sensitivity SL. 388 

𝑆𝐿 ≡ lim
∆𝐿→0

|
Δ𝑦

Δ𝐿
|                                                     (𝑆8.1) 389 

With the fitted decoder classification planes, SL can be computed as follows. Let 390 

(Bcd(y), mHb(y), Tor(y)) be the morphogen levels at y in an embryo (WT or maternal 391 

morphogen mutant), the corresponding cell fate is �̃�(𝑦). Since we would like to track 392 

the position where �̃� is fixed, the total shift in the (Bcd, mHb, Tor) space caused by 393 

∆L and ∆y should be perpendicular to the normal vector K of the local decision plane:  394 

(∆𝐿 (
𝜕𝐵𝑐𝑑

𝜕𝐿
,
𝜕𝑚𝐻𝑏

𝜕𝐿
,
𝜕𝑇𝑜𝑟

𝜕𝐿
) + ∆𝑦 (

𝜕𝐵𝑐𝑑

𝜕𝑦
,
𝜕𝑚𝐻𝑏

𝜕𝑦
,
𝜕𝑇𝑜𝑟

𝜕𝑦
)) ∙ 𝑲(�̃�) = 0             (𝑆8.2) 395 

SL=∆y/∆L can thus be obtained. 396 

 397 

SL values for WT are always below 0.1 (black curve in Fig. S8a-c); so, even standard 398 

deviation of L is 10%, positional error introduced by imperfect scaling should be less 399 

than 1% (consistent with Fig. 2f). In bcd-, patterns follow the fixed absolute distances 400 

to both termini (Fig. S8a, the dashed grey lines). When the Tor gradient is absent (Fig. 401 

S8c), SL increases significantly near both termini compared with WT, following that 402 

dictated by Bcd alone (dashed grey line); while in the middle part (x/L between 0.4 to 403 

0.6) SL is still close to zero due to the remaining mHb gradient. The situation is 404 

similar when the mHb gradient is lost (mhb- or nos-, Fig. S8b).  405 

 406 



Taken together, these model predictions point to an intuitive interpretation to our 407 

phenomenological decoder. First, Bcd plays a central role throughout the entire 408 

embryo. Second, the gradient of mHb works together with Bcd as a pair of 409 

“bi-gradient” morphogens in the middle part (y = 0.25 to 0.75), while Bcd and Tor 410 

works together near both ends (0 to 0.35, and 0.65 to 1.0). 411 

 412 

This feature can also be illustrated from another perspective. We can directly 413 

calculate the contribution of each morphogen in discriminating adjacent points 𝑦 −414 

𝛿𝑦 2⁄  and 𝑦 + 𝛿𝑦 2⁄  in the WT embryo (for WT 𝑦 ≡ �̃�), i.e. specifying the cell fates 415 

in WT. The linear classifier sitting at position y works by computing the sign of the 416 

inner product: 417 

𝑍(𝑦′) ≡ (𝐵𝑐𝑑(𝑦′) − 𝐵𝑐𝑑(𝑦), 𝑚𝐻𝑏(𝑦′) − 𝑚𝐻𝑏(𝑦), 𝑇𝑜𝑟(𝑦′) − 𝑇𝑜𝑟(𝑦)) ∙ 𝑲(𝑦) 418 

Z values for adjacent y’ points should differ by 419 

𝑍(𝑦 + 𝛿𝑦 2⁄ ) − 𝑍(𝑦 − 𝛿𝑦 2⁄ ) = (
𝜕𝐵𝑐𝑑

𝜕𝑦
,
𝜕𝑚𝐻𝑏

𝜕𝑦
,
𝜕𝑇𝑜𝑟

𝜕𝑦
) ∙ 𝑲(𝑦)𝛿𝑦. 420 

The contribution of Bcd, for example, is simply defined as the contribution of the Bcd 421 

term in this inner product: 422 

𝑐𝐵𝑐𝑑 =

𝜕𝐵𝑐𝑑
𝜕𝑦

∙ 𝐾1(𝑦)

(
𝜕𝐵𝑐𝑑

𝜕𝑦
,
𝜕𝑚𝐻𝑏

𝜕𝑦
,
𝜕𝑇𝑜𝑟

𝜕𝑦
) ∙ 𝑲(𝑦)

                           (S8.3) 423 

Values of cBcd, cmHb and cTor along the A-P axis are shown in Fig. 5e. Obviously, these 424 

three c terms should add up to 1. The regions in which mHb and Tor play a role is 425 

clearly shown.  426 

 427 

Note that we can define the Bcd dosage sensitivity SBcd in a similar manner. SBcd 428 

describes the shift ∆y of certain cell fate �̃� upon an infinite small change of Bcd 429 

dosage (by a factor of 1+ε, thus the Bcd exponential profile is effectively shifted by 430 

𝜆𝐵휀). 𝑆𝐵𝑐𝑑 ≡ ∆𝑦 𝜆𝐵휀⁄ . ∆y here is determined by 431 



(휀(𝐵𝑐𝑑, 0, 0) + ∆𝑦 (
𝜕𝐵𝑐𝑑

𝜕𝑦
,
𝜕𝑚𝐻𝑏

𝜕𝑦
,
𝜕𝑇𝑜𝑟

𝜕𝑦
)) ∙ 𝑲(�̃�) = 0 . 432 

Since Bcd has an exponential profile, working out the formula yields that SBcd is in 433 

fact the same quantity as cBcd defined above.  434 

 435 

An interesting point is that morphogen contributions are different for WT embryos of 436 

different lengths – larger embryos seem to rely more on mHb (Fig. S8d). This may be 437 

a testable prediction for future experiments – the same perturbation in mHb (or Nos) 438 

should introduce larger pattern shift (or more sever segment defects) for larger 439 

embryos (Fig. S8e). 440 

 441 

Also note that Bcd functions throughout the entire embryo is also feasible 442 

biochemically. There should be still around 100 Bcd molecules per nucleus 443 

(concentration on the order of nM) even at the most posterior nucleus (estimated by 444 

the measurements of 18, with GPF maturation effect corrected following Ref.6).  445 

  446 



S9. Shift of the even-skipped (eve) stripes under Bcd dosage change. 447 

Shift of the cephalic furrow (CF, corresponds to the fate �̃�=0.344) in response to Bcd 448 

dosage change (but embryo length is fixed to L=1.0) is discussed in the main text. 449 

This prediction can obviously be generalized to other “marks” on the fate map. For 450 

example, the seven eve stripes at �̃�=(0.353, 0.435, 0.505, 0.56, 0.62, 0.675, 0.75) 451 

according to the measurements of 21. Fig. S9a presents the predictions of the eve stripe 452 

positions under Bcd dosage change with or without the presence of the other maternal 453 

gradients (mHb and/or Tor). The intuitive explanation raised in Section S8 is again 454 

reflected in these results – that Bcd dosage robustness in the middle/terminal part 455 

depends on mHb/Tor (arrow heads). Note that since the 5th strip of eve locates at the 456 

posterior “boulder” between the region mainly governed by Bcd-mHb and that by 457 

Bcd-Tor, it should have exactly the same behaviors as CF discussed in Fig. 5f-h 458 

(which locates at the anterior “boulder” of this kind). This may be tested by future 459 

experimental studies. 460 

 461 

Our predictions on bcdnX without further mutating mHb or Tor can be compared to 462 

the measurements of 22. Their measurements on the eve stripes were carried out at 463 

some different developmental timepoint (and the embryo orientations are not 464 

well-controlled). So, we use their measured WT positions �̃�=(0.33, 0.415, 0.5, 0.565, 465 

0.635, 0.7, 0.78) to predict their results on BcdnX (Fig. S9b). The Bcd dosage of their 466 

bcd4X embryos is assumed to be 1.7 times of the WT since no exact values were 467 

provided. 468 

  469 



S10. Optimal decoder for noisy gradients without embryo length variation. 470 

Given the distribution of input signal, the decoder structure can be properly shaped to 471 

best utilize the available information, hence minimizing output error. This optimal 472 

decoding idea is commonly used in biological scenarios, ranging from neural sciences 473 

to developmental biology 23. However, to get meaningful results via this approach, 474 

there should be much insight about the exact form of input fluctuations that the 475 

decoder really cares about – although minimizing output noise is always “a good 476 

thing”, in many real-world situations, the decoder structure is shaped mainly by the 477 

requirements of other (more important) functions, not just by the simplest form of 478 

input noise alone. 479 

 480 

In the case of Drosophila A-P patterning, we have considered two types of input 481 

fluctuations: noisy morphogen gradients and fluctuation in embryo length. We reason 482 

that the real-world Drosophila decoder must deal with both kinds of noise (especially 483 

the latter, i.e., scaling), since the decoder should function in all cells in all embryos of 484 

different lengths. Therefore, a decoder optimally designed only for noise attenuation 485 

in L=1 embryos is actually not optimal, by definition, for the Drosophila species in 486 

natural environment. In this section, we discuss the difference between the full scaling 487 

decoder (that in the main text, which takes into consideration both types of noise) and 488 

the optimal noise attenuation decoder where fluctuation in L is not considered. By 489 

these analyses, we emphasize the importance of having the correct form of input 490 

noise in obtaining the correct optimal decoder structure. 491 

 492 

The first situation studied here is called “noise-only decoder”, where the Poisson 493 

noise term on morphogen gradients is the same as in Fig. 2d, but L is now fixed to be 494 

1 instead of being a random variable. The second model is a more drastic 495 

simplification, that morphogen noise is assumed to be vanishingly small. In this limit, 496 

each m(y) point is blurred into a small 3-d sphere, therefore, the optimal decision 497 



plane separating adjacent “spheres” is just the normal plane of m(y). We call it the 498 

“null model”, as it represents the most naïve form of “optimal” decoder one may 499 

imagine. Systematic investigation of the “noise-only decoder” and the “null model”, 500 

in comparison with the full “scaling decoder” in the main text, is summarized in Fig. 501 

S10. 502 

 503 

First, the noise-only decoder and the null model are different from the optimal scaling 504 

decoder. This can be seen by direct visualization of the decision planes (Fig. S10a, e, 505 

i), which is further highlighted by the different extrapolations on the Bcd-mHb plane 506 

(Fig. S10b, f, j). Some of the differences are marked by arrowheads. Also, the 507 

morphogen contribution plots are different in three models (Fig. S10c, g, k). In Fig. 508 

S10d, h, the decoding result of these two other models on the full WT point cloud 509 

(that of Fig. 2d in the main text) are shown, scaling errors are in general larger 510 

compared to the scaling decoder (Fig. S10L). Therefore, the noise-only decoder and 511 

the null model are no longer optimal if fluctuations in embryo length are considered. 512 

 513 

These structural differences are significant, since they lead to observable differences 514 

in mutant predictions (Fig. S10m, n, o). Predictions of our scaling decoder (panel o) 515 

match experiments the best, while the noise-only decoder or the null model has 516 

prediction error typically on the order of >5% embryo length (marked by 517 

arrowheads).  518 

 519 

As an example, consider the vi-vii boundary (gt-hb boundary). In the scaling decoder, 520 

Bcd plays a non-negligible role near the posterior pole to allow for scaling (Fig. S10k). 521 

Graphically, the vi-vii boundary is inclined up (Fig. S10i, arrow head). This feature is 522 

supported by experimental measurements, that the posterior hb domain expands 523 

anteriorly in bcd- (Fig. 4b, Fig. S10r). However, this is not captured by the null model 524 

(Fig. S10q), nor the noise-only decoder (Fig. S10p), where this boundary is nearly 525 



parallel to the Bcd-mHb plane (Fig. S10a, e, arrowheads). In this example, the scaling 526 

decoder is the best description of Drosophila gap gene system among the three, as it 527 

predicts the mutant situation the most precisely. 528 

 529 

Fig. S10s&t is in parallel with Fig. 5a of the main text, albeit for the noise-only and 530 

null models. Especially, the null model predicts that Kr and kni domains should 531 

disappear at nearly the same L, which contradicts experiments 7 qualitatively. Fig. S10 532 

u&v is about the issue of cephalic furrow, in parallel with the main text Fig. 5f-h. 533 

Admittedly, the noise-only decoder predicts the CF position as satisfactorily as the 534 

scaling decoder. But the null model failed to predict the robustness of XCF with 535 

respect to Bcd dosage change (Fig. S10v), which is the most important feature here. 536 

 537 

In summary, the analyses above demonstrate that scaling has indeed introduced some 538 

additional (and correct) constraints on the decoder structure, beyond merely decoding 539 

noisy gradients at fixed embryo length. The gap gene system seems to be “optimized” 540 

for both the kinds of fluctuations: noisy morphogen gradients and that in embryo 541 

length. 542 

  543 



S11. Implementing the scaling decoder with a dynamical gene regulation model. 544 

In this section, we present an ordinary differential equation (ODE) model which 545 

realizes the phenomenological scaling decoder for the Drosophila case. 546 

 547 

The idea is fully illustrated by the toy model in Fig. 6a-c, although the gap gene 548 

network has more degrees of freedom and more scaling boundaries, and does not 549 

necessarily have to reach a dynamical attracting point. As we show below, after being 550 

properly fitted, the ODE gap gene regulation model turned out to have basically the 551 

same input-output relations as the previous phenomenological decoder. It also has 552 

satisfactory predictions on mutant patterns.  553 

 554 

Under the local-readout hypothesis, diffusion of gap gene products is ignored. At each 555 

spatial point, the ODE model calculates the synthesis rates out of the current gap gene 556 

product (P) and morphogen (M) levels. (Degradation coefficient is simply set to a 557 

fixed value 𝛾=0.05 min-1.) 558 

𝑑

𝑑𝑡
𝒈 = 𝒇(𝑷, 𝑴) − 𝛾𝒈  559 

Here we model the regulation logics of anterior and posterior hb domains separately, 560 

since they are known to be generated by different regulation rules even at a course 561 

grained level 24,25. Similar situation applies to the two gt domains 26,27. Therefore, a 562 

total of 7 “gap genes” are considered. 563 

g = (g1, …, g7) = (hba, hbp, Kr, kni, gta, gtp, tll) 564 

Since hba and hbp encode the same Hb protein, P has only 5 components. 565 

P = (g1+g2, g3, g4, g5+g6, g7) 566 

And in the input term M, we consider Bcd, Tor and Caudal (Cad, which is shaped by 567 

translational repression from Bcd directly, and its profile is fitted to the measurements 568 

of Ref.13,28. Cad = 1 (1 + 1250 ∗ Bcd2.47)⁄ ).  569 

 570 



The mHb profile is used as the initial condition of hba, and the rest g dimensions are 571 

initialized at zero. 572 

 573 

The f term implements the known gap gene interactions reviewed in Ref.24 (Fig. 6d 574 

and Table S2) with a set of Hill-function-like formulas defined as follows. For 575 

example, if Pj plays an activating role in fi, the corresponding term is: 576 

𝑓𝑖
𝑗

= 𝑣𝑖𝑗 ∙ 𝜎(𝑃𝑗 , 𝐾𝑖𝑗 , 𝑏𝑖𝑗) . 577 

Instead, if the regulation role is inhibitory,  578 

𝑓𝑖
𝑗

= 1 − 𝜎(𝑃𝑗 , 𝐾𝑖𝑗, 𝑏𝑖𝑗) . 579 

Here, 𝜎 is an S-shaped function with K and b as its parameters. 580 

𝜎(𝑥, 𝐾, 𝑏) =
𝑠(𝐾(𝑥 − 𝑏)) − 𝑠(−𝐾𝑏)

1 − 𝑠(−𝐾𝑏)
,    where 𝑠(𝑧) =

1

1 + 𝑒𝑥𝑝(−𝑧)
 581 

This function mimics the Hill function, with K and b together defines the steepness 582 

and half-maxima position of the S-shaped curve. These are free parameters to be fitted. 583 

Our reason for choosing this function form is purely technical – it performs better in 584 

parameters optimization by gradient descent than the original Hill function. Taken 585 

together, when a gap gene is regulated by multiple factors, the activation terms are 586 

summed and multiplied by the repression terms. 587 

𝑓𝑖 = (∑ 𝑓𝑖
𝑗

𝐴𝑐𝑡.
) (∏ 𝑓𝑖

𝑗

𝐼𝑛ℎ.
)       𝑖 = 1 ⋯ 6 588 

An exception is tailless (tll). As tll is known to act upstream of the gap gene network, 589 

and is shaped mainly by Tor and Bcd 29, here we explicitly write down the equation 590 

for tll using Hill functions. 591 

𝑓7 =
1

1 + (
𝐵𝑐𝑑

0.011)
4 (1 −

1

1 + (
𝑇𝑜𝑟
0.07)

2) 592 

 593 

With the above dynamical equations and initial condition, the model is integrated 594 

numerically at each embryonic position (101 discrete points along the A-P axis) 595 



independently, as we ignore diffusion of the gap gene products. The model trajectory 596 

is compared with the measured WT profiles 30 in the following two aspects to define 597 

the Loss function for parameter fitting:  598 

(1) Averaged temporal trajectory. Those protein profiles in 30 are measured in the 14th 599 

nucleus cleavage cycle (n.c.14) at the blastoderm stage. We smoothed those 600 

profiles both spatially and temporally, and extracted 7 equally-spaced frames 601 

between 8 and 41 minutes into n.c.14. (The t=41min frame is the one shown in 602 

Fig. 2b of main text). The model trajectory for a L=1 embryo is compared with 603 

these frames at the corresponding time steps, defining the first term in Loss 604 

function. 605 

(2) Scaling. We simulate a batch of 16 embryos with L’s sampled from the normal 606 

distribution N(0, 0.15). Obviously, these embryos may have different gap gene 607 

patterns in the initial simulation steps due to their different initial profiles of hb. 608 

Therefore, to impose scaling, we add a second Loss term penalizing pattern 609 

differences only at the final frame (t=41 min into n.c.14). 610 

Parameter fitting is then carried out using the Adam optimizer implemented in 611 

Tensorflow. Note that no mutant information is used for fitting. Table S2 lists a 612 

typical fitted parameter set.  613 

 614 

To evaluate the fitted model, we generate a set of WT morphogen profiles with L 615 

ranging from 0.85 to 1.15 according to Eqn. 5 (Fig. S11a). The ODE model 616 

successfully evolves to yield final patterns that scale with embryo lengths (Fig. S11b), 617 

and it indeed shows the overall structure quite similar to the phenomenological 618 

decoder (Fig.6e, f, main text). This is expected, as we have shown previously that any 619 

scaling local decoding scheme should follow the structure of our phenomenological 620 

decoder. Fig.6e shows the Tor=0 section (corresponding to the α plane of Fig.3a). 621 

Here, colors stand for the high-expressing gap gene given by the gene-circuit 622 

dynamics at the “final” timepoint. Dashed black lines represents the same linear 623 



classification planes as in Fig. 3a. Also note that in Fig. 6e-f, outside the WT region, 624 

domain boundaries of this ODE model indeed extend in an almost linear manner, 625 

supporting our linear extrapolation hypothesis. 626 

 627 

As expected, having the correct decoder geometry for scaling should naturally lead to 628 

correct predictions on mutants (Fig. S11c, even gap gene mutants (Fig. S11e) which is 629 

not covered by the phenomenological decoder framework). To further evaluate these 630 

predictions in a quantitative way, we compared the predicted and measured positions 631 

of each gap gene expression domain (peaks and boundaries) in 9 different maternal 632 

morphogen mutants (bcd-, nos-, tor-, bcd1X, bcd4X, bcd-nos-, bcd-tor-, nos-tor-, 633 

mhb-tor-), and the root mean square error is only 3.3% embryo length (EL). This is an 634 

impressive result. To our knowledge, it has not been reported in previous literatures 635 

that a gap gene regulation model (if fitted with WT data only) can make correct 636 

predictions in these knockout mutants. 637 

 638 

As a negative control (Fig. S11g) to emphasize the importance of the quantitative 639 

constraints imposed by scaling, we also fit this model with the scaling requirement is 640 

removed from fitting. The resulting model shows no scaling property and hence 641 

incorrect mutant predictions (Fig. S11 g, h, i) 642 

 643 

We also implement the scaling decoder using another widely used gene circuit 644 

modeling scheme 31-33. The only difference is in the form of the f term (with γ = 0.035 645 

min-1), and the regulation network itself emerged through data fitting (as the sign of 646 

the regulation matrixes W and V). 647 

𝑑

𝑑𝑡
𝑔𝑖 = 𝜎 (∑ 𝑊𝑖𝑗𝑃𝑗

𝑗

+ ∑ 𝑉𝑖𝑘𝑀𝑘

𝑘

+ 𝑏𝑖) − 𝛾𝑔𝑖  ;        𝜎(𝑥) =
1

1 + 𝑒−𝑥+3
 648 

The resulting effective decoder structure and predictions on mutants are also similarly 649 

satisfactory (Fig. S12). See Table S3 for model parameters. 650 



 651 

The last thing needs to be noted here is diffusion of the gap gene products, through 652 

which decoders in adjacent nuclei may communicate with each other, going beyond 653 

the “local-decoding paradigm”. However, remind that “local-decoding” is in fact a 654 

more stringent requirement. Although diffusion is a physical effect and can never be 655 

shut down in reality, it has been pointed out by the authors of “gene circuit model” 32 656 

that their model does not actually rely on diffusion of the gap proteins – shutting 657 

down diffusion in silico does not affect any dynamical process of their model albeit 658 

making the resulting profile less smooth. Similarly, our ODE model here does not 659 

include the effect of diffusion, but adding a diffusion term,  660 

𝑑

𝑑𝑡
𝒈(𝑥) = 𝐷∇2𝑷 + 𝒇(𝑷(𝑥), 𝑴(𝑥)) − 𝛾𝒈(𝑥) , 661 

appears only to smooth the established spatial pattern, not affecting scaling (Fig. 662 

S11k). Here, diffusion constant is set to 0.3 μm2/s, twice as that estimated using the 663 

exponential tail of the measured gap gene protein pattern of the FlyEX database 12,13 664 

(Fig. S11i, j). In Fig. S11k, the parameter sets listed in Table S2 was used, which is 665 

fitted in the absence of diffusion. The model would be compatible to even stronger 666 

diffusion if such diffusion effect is considered during parameter fitting. 667 

  668 

  669 



S12. Nos/mHb as the posterior gradient. 670 

Our work is largely inspired by the bi-gradient model. The original bi-gradient models 671 

20,34, however, are not widely accepted partly because they introduced a hypothetical 672 

(and non-exist) posterior gradient. This hypothetical gradient is needed because Nos 673 

was ruled out from the very beginning, based on the observations by (and only by) 674 

Ref.4 that positional variability of Hb boundary do not seem to be seriously affected in 675 

nos- or mhb- embryos. By contrast, in our model mHb/Nos is the second gradient. 676 

Below, we demonstrate that the observations in 4 can in fact be well explained with 677 

the updated understanding of Bcd gradient since 2002, namely, it has very low noise 678 

and its amplitude partially scales with the embryo length. Therefore, those 679 

observations cannot rule out mHb/Nos; a hypothetical posterior gradient is not 680 

actually needed. 681 

 682 

There are two arguments relevant to this topic in the 2002 paper by Houchmandzadeh 683 

et al. 4. First, if Nos/mHb is the factor that helps setting Hb-Kr boundary (Tor is 684 

effectively zero here) together with Bcd, then in nos- or mhb- embryos, positional 685 

noise of the Hb boundary should follow that of Bcd. The observed positional error of 686 

Hb boundary increases from 1%EL (WT) to 1.6%EL (nos-), while the positional noise 687 

of Bcd measured by 4 is almost 30%EL. There seem to be a big gap. However, as has 688 

been correctly pointed out later by Gregor et al., 18, this 30% positional error of Bcd 689 

profile is an artifact due to inappropriate normalization; and the true Bcd positional 690 

error should be around 1~2% EL if measured with GFP-tagged Bcd and normalized 691 

properly 18,35 (and Fig. S2). Therefore, this first argument is invalid from the current 692 

point of view. Hb boundary noise is at the same level of Bcd in nos- or mhb- 693 

background. 694 

 695 

A second related observation of Ref.4 is that, scaling of the Hb boundary seems not to 696 

be completely destroyed in nos- or mhb- embryos: its absolute position (measured 697 



from the anterior pole, in μm, denoted as xhb) remains to depend on embryo length 698 

(with a linear correlation coefficient about 0.7). We think this evidence is also not 699 

sufficient for excluding mHb/Nos. This correlation can be explained by the Bcd 700 

amplitude effect – that larger embryo tends to have higher absolute level of Bcd 5 (and 701 

SI-1). This amplitude effect (which is even slightly underestimated if setting β=2 as in 702 

Eqn. 5a) makes the hb boundary appear to be partially scaling, even if it is determined 703 

solely by Bcd threshold: 704 

∂𝑥ℎ𝑏

∂𝐿
|

𝐿=1
= 𝛽𝜆𝐵 ≈ 0.33                                           (𝑆12.1) 705 

The hb boundary locates near the center of embryo. Thereby this quantity should be 706 

approximately 0.5 for perfect scaling, and equals to 0 for non-scaling as naively 707 

expected. The seemly partially preserved scaling in nos- or mhb- can be explained in 708 

this way. 709 

  710 



S13. Discussion on the long-germband insect Megaselia abdita.  711 

Geometrically speaking, in our framework scaling stems from quantitative matching 712 

of the decoder decision boundaries with the y-constant curves. On the other hand, 713 

from the regulatory perspective, it is equivalent to say that all three morphogen levels 714 

change as L varies, but their effects on the entire gap gene network should cancel out 715 

(at the linear order) to give unchanging outputs. This kind of precise cancellation 716 

relies on quantitative tuning of regulatory link strengths in the gap gene network. 717 

Such “fine-tuning” may not seem to be a reliable mechanism at a first glance. 718 

However, it is consistent with the current understanding of the evolution of the gap 719 

gene network. The maternal morphogen system is very diverse among different long 720 

germband insects, but gap gene cross regulation network is much more conserved 24. 721 

We suggest that by tuning its link strengths quantitatively, a long-germband insect 722 

species can easily make the “ancient” gap gene network adapt to its specific maternal 723 

morphogen system and achieve scaling patterning. 724 

 725 

We would like to briefly discuss, with our scaling framework, another long-germband 726 

insects with different sets of maternal morphogen gradients – Megaselia abdita. As 727 

experimental data (especially on mutants) are very limited, we cannot discuss this 728 

point in depth. Like Drosophila, Megaselia also have Bcd and mHb. The mHb profile 729 

is very similar to that of Drosophila, but Bcd extends more to the posterior 36,37. 730 

Different morphogen shapes lead to different geometry of the WT point clouds (Fig. 731 

S13a), hence different predictions on mutants. In the case of more extended Bcd, 732 

when the decision boundary is linearly extrapolated to predict bcd-, the kni domain 733 

expands and the Kr domain disappears completely (Fig. S13 illustrates this point with 734 

λBcd=0.225), which is qualitatively the situation observed in bcd- Megaselia 38. 735 

  736 



Supplemental Figure legends. 737 

 738 

Fig. S1. The mHb profile can be fitted by a sigmoidal curve. The Hb protein profile in 739 

n.c.12 embryos are regarded as maternal Hb here. Data cited from the FlyEX 740 

database. 741 

 742 

Fig. S2. Simulating noise in the Bcd gradient by a Poisson noise term. Black curve: 743 

positional error (standard deviation 𝜎𝑦) calculated according to Eqn. S2.2 (with 744 

N0=1000, 𝜆𝐵=0.165, and 𝛽=2). Blue/green data points: the measured Bcd positional 745 

error 18, without/with the known measurement error being subtracted. The Poisson 746 

noise term simulates Bcd noise correctly in the region 0.2<y<0.6. 747 

 748 

Fig. S3. Predicting mutant fate-map with linear classifiers. (a) A graphical illustration 749 

of predicting the fate of ymut=0.4 point in bcd-tor- mutant. Grey and white pixels stand 750 

for different classifier outputs on this point. (b) A typical case where the “posterior 751 

dominant rule” should be employed. A linear classification plane fitted at the anterior 752 

(#20 here) intersected with much more posterior parts of the WT point cloud, far 753 

away from where the #20 plane was fitted. Hence its classification on those posterior 754 

points (yellow rectangle) should be ignored. (c) By listing the outputs of all 755 

classification planes on all points form a mutant embryo, the predicted fate map is the 756 

grey-white boundary. Those outputs ignored by the “posterior dominant rule” are 757 

shown in lighter color. 758 

 759 

Fig. S4. Effects of the Bcd β factor and noise amplitude on model performance. (a) 760 

By re-adjusting the classification orientations, a scaling phenomenological decoder is 761 

also obtained without the Bcd amplitude factor. It finds the correct �̃� values with 762 

relatively small error (RMSE~1%) for WT embryos with length variations. (b-c) 763 

Though scaling is not affected by dropping the amplitude factor, the geometry of the 764 



WT point cloud hence the corresponding mutant phenotypes do change (marked by 765 

the arrowhead in panel c). (d) Setting β to 3 does not have much influence on the 766 

mutant predictions, compared with Fig. 3d of the main text. (e-f) With the settings in 767 

the main text (β=2), changing the Poisson noise strength do not affect our main results. 768 

The predictions are still satisfactorily consistent with experiments. 769 

 770 

Fig. S5. The Bayesian decoder. (a) Decoding error for the WT ensemble in Fig.2d of 771 

main text. (b) The Root-Mean-Squared decoding error is on the same order as our 772 

linear decoder. Though arbitrary nonlinear boundary geometry is allowed by the 773 

Bayesian decoder, its error is even larger than the linear one. (c) Bayesian decoder 774 

outputs. Within the region covered by the WT point cloud, they are quite similar to 775 

the linear decoder outputs. While there is much difference away from the WT point 776 

cloud. Dashed black lines are the same as Fig.3a in the main text. (d) Tangential 777 

views of the iv-v and v-vi linear classification planes of the decoder used in main text. 778 

The remaining classification error is due to the Poisson noise rather than nonlinearity 779 

in the domain interface geometry. 780 

 781 

Fig. S6. Outputs of the scaling decoder on mHb=0 and mHb=mHb0 planes. The 3-d 782 

orientations of the decision planes naturally explans that while nos- embryos have lost 783 

the abdominal fates (domains v & vi), nos-mhb- embryos still have these two domains 784 

just as WT. 785 

 786 

Fig. S7. Maternal morphogen mutant embryos with greatly changed length. (a) A 787 

graphical illustration of the prediction in Fig. 4a of the main text. (b) Measured gap 788 

gene domain positions in normal-length and greatly shortened bcd- embryos7. The 789 

narrow anterior gt domain is not shown here. (c) Overlapping panels A and B for 790 

comparison. (d) Predicted and measured gap gene domain boundaries in greatly 791 

shortened bcd6X embryos. Solid lines, model prediction; dots, measurements by Ref.7. 792 



(e) Analytical calculation of the hb boundary position in bcd6X embryos of varying 793 

lengths. The black curve follows Eqn. S7.2, with parameters 𝜆𝐵=0.165, and 𝛽=2. (f) 794 

Predicted gap gene domain positions of many other maternal morphogen mutants with 795 

greatly changed L’s. The horizontal dashed lines mark typical range of natural length 796 

variation within a fly line. 797 

 798 

Fig. S8. The three maternal gradients function as two bi-gradient pairs. (a-c) Size 799 

sensitivity SL evaluated at L=1. This quantity is equivalent to absolute slopes of the 800 

domain boundaries in Fig. 5a, c, d in the main text. SL is low everywhere in the WT 801 

embryo, indicating good scaling (black, SL <0.1). Missing Bcd (a) destroys scaling 802 

completely (purple), while missing the posterior (b) or terminal (c) morphogen only 803 

affects scaling in part of the embryo. The dashed grey lines show the non-scaling 804 

baselines of SL. (d) Contribution of each morphogen (defined in Section S8) in 805 

discriminating adjacent positions in WT embryos. Bcd forms bi-gradient pair with 806 

mHb in the middle part, and with Tor near both ends. Note that morphogen 807 

contributions are different for different embryo lengths. Nots that mHb seems to play 808 

a more important role in larger embryos. (e) Therefore, the same perturbation in Nos 809 

should introduce more sever segmentation defects for larger embryos. Here, we 810 

present predictions on larger and smaller embryos with reduced Nos dosage/activity. 811 

Gap gene pattern should be basically normal-looking for L=0.7, while for L=1.3 the 812 

Kr domain should expand greatly. This prediction may be checked experimentally in 813 

the future.  814 

 815 

Fig. S9. Shift of the even-skipped (eve) stripes under Bcd dosage change. (a) 816 

Predictions with or without the other two maternal morphogens. (b) A 817 

semi-quantitative comparison with the experimental measurements in Ref.22.  818 

 819 



Fig. S10. Optimal decoder for noisy gradients with or without length variation. Here, 820 

“scaling decoder” stands for the model studied in the main text. The “noise-only 821 

decoder” is defined similarly – L is fixed to 1 in generating the WT point cloud, while 822 

the Poisson noise term is the same as the scaling decoder. “Null model” is the most 823 

naïve form of linear decoder, that the decision planes are always defined to be normal 824 

to the (Bcd, mHb, Tor) curve. (a-h) Geometry, contribution of each morphogen, and 825 

performance in decoding the full-version WT point cloud (i.e., that in Fig.2d main 826 

text) of the noise-only decoder and the null model They differs from the scaling 827 

decoder (i-l) significantly. (m-o) The scaling decoder turns out to be a better 828 

description of the real Drosophila gap gene system; its predictions (grey-white 829 

boundary, as in Fig. S3) on mutant patterns match the best with experiments (black 830 

dotts). For the noise-only decoder and the null model, where their prediction deviates 831 

from the experiments are marked by red arrowheads. (p-r) According to the scaling 832 

decoder, Bcd should play a non-negligible role even near the posterior pole. This is 833 

supported by experiments (expansion of the posterior hb domain in bcd-). Note that 834 

this feature is not captured by either the null model or the noise-only decoder. (s-v) 835 

Analysis of the noise-only decoder and the null model following Fig. 5a and f-h of the 836 

main text.   837 

 838 

Fig. S11. The ODE-based gap gene regulation model. (a) The morphogen profiles for 839 

L ranging from 0.85 to 1.15 following Eqn. 5. These morphogens define the external 840 

inputs and initial condition of an ordinary differential equation model for the gap gene 841 

network. Note that mHb is multiplied by a factor 4 for better visualization. (b) This 842 

gene regulation model generates scaling gap gene pattern by reading the non-scaling 843 

morphogens in panel A. The requirement of scaling in included in parameter fitting. 844 

(c) Mutant Predictions (solid lines) and corresponding measured profiles (dashed 845 

lines, cited from Refs.6 and21). (d) A systematic assessment of mutant predictions. 846 

Predicted vs. measured positions of peaks and boundaries of the gap gene domains are 847 



shown. The predicted positions have a root-mean-square-error (RMSE) of around 3.3% 848 

embryo length, which is quite impressive. (e) This model even has reasonable 849 

predictions on gap gene mutants. Take the Kr- mutant as an example here. 850 

Semi-quantitatively, without Kr, the posterior gt domain should expand anteriorly and 851 

eliminate the kni domain by inhibition. This is exactly the situation observed in 852 

experiments 26,39. (f-h) Regulation network topology alone cannot ensure scaling. (f) 853 

The ODE model failed to achieve scaling if scaling is not explicitly introduced in 854 

parameter fitting. (g-h) When being viewed as a decoder of maternal morphogens, its 855 

structure deviates from that of our phenomenological scaling decoder (dashed lines). 856 

Having the “correct” regulation network topology (identical to Fig. 6d) is not enough 857 

for scaling. Quantitative features matter. (i-j) Estimating diffusion constant for the gap 858 

gene products using the “exponential tails” in the protein profiles. Half-life of the Hb 859 

or Kr protein is assumed to be 14 min. Note that this is only a rough estimation. (k) 860 

The scaling ODE model of panel B is robust to diffusion. The resulting pattern 861 

remains normal and scaling, albeit smoothed by diffusion. Diffusion constant here is 862 

relatively large, twice the estimated value.  863 

 864 

Fig. S12. The scaling gene circuit model. (a) With its parameters being properly fitted, 865 

using the Loss function defined in Section S11, the gene circuit model generates 866 

scaling output pattern successfully. (b) The equivalent decoder structure also follows 867 

the phenomenological linear decoder (dashed lines). (c) The gap gene cross regulation 868 

network emerges from data fitting. (d-e) This gene circuit model also has satisfactory 869 

predictions on maternal morphogen mutants, as expected. (f) It can also reproduce Fig. 870 

5a-d of the main text, reflecting its structural similarity with the phenomenological 871 

scaling decoder. 872 

 873 

Fig. S13. Generating scaling Drosophila gap gene pattern with a more extended Bcd 874 

profile. (a) Increasing the Bcd length constant (form 0.165 used in main text to 0.225 875 



here) leads to “stretching” of the WT point cloud. The decision boundaries of a 876 

scaling decoder are also shifted (dashed black lines). (b) As a result, by extrapolating 877 

with these decision planes, the fate corresponding to the Kr expression domain (iv) no 878 

longer presents on the Bcd=0 plane. Compare this panel with Fig. 3a-b to see this 879 

difference. Therefore, in a semi-quantitative sense, bcd- embryo should no longer 880 

have a Kr domain with this more extended Bcd. Note that the Drosophila gap gene 881 

positions are used in this figure, making it comparable with Figs. 2 and 3 in the main 882 

text. 883 
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Table S1. Peak and boundary positions extracted form maternal morphogen mutants. 885 

wt bcd1X bcd4X bcd- nos- 

Pos (% EL) name pos name pos name pos name pos name 

12.8 hb1L 14.8 hb1L 15.6 hb1L 18.1 hb2P 18.2 hb1L 

47.4 hb1R 40.8 hb1R 56.6 hb1R 11.5 hb2R 50.5 hb1R 

80.8 hb2P 80.7 hb2P 84.8 hb2P 25.8 hb2L 82.8 hb2P 

74.8 hb2L 74.2 hb2L 79.4 hb2L 77.7 hb2P 74.6 hb2L 

87.7 hb2R 86.5 hb2R 89.3 hb2R 68 hb2L 89 hb2R 

51.6 krP 46.5 krP 60.6 krP 86.2 hb2R 56.6 krP 

45.8 krL 40.3 krL 55.4 krL 39.4 krP 50 krL 

58.5 krR 54.3 krR 66.1 krR 32.2 krR 67.4 krP 

61.6 kniP 58.5 kniP 68.7 kniP 47.1 krR 38.3 gt1P 

56.5 kniL 52.5 kniL 64.4 kniL 47.4 kniP 23.8 gt1L 

66.6 kniR 63.9 kniR 72.7 kniR 35.8 kniL 43.5 gt1R 

35.4 gt1P 28.3 gt1P 44.4 gt1P 55.6 kniR 
  

20 gt1L 18.9 gt1L 26.6 gt1L 26.3 gt2P 
  

40.9 gt1R 33.5 gt1R 49.4 gt1R 21.9 gt2R 
  

69.7 gt2P 67.7 gt2P 74.8 gt2P 31.5 gt2L 
  

64.7 gt2L 62.6 gt2L 71 gt2L 58.6 gt2P 
  

74.8 gt2R 73.5 gt2R 79.9 gt2R 50.8 gt2L 
  

8 otdL 
    

69 gt2R 
  

26 otdR         

22 emsL         

31 emsR         

25 btdL         

33 btdR         

 886 
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Table S1 continued. 888 

tor- bcd-tor- nos-tor- bcd-nos- nos-tor-mhb- 

pos name pos name pos name pos name pos name 

48.4 hb1R 10 krP 3.32 hb1L 17.2 hb2P 42.7 hb1R 

53.6 krP 29 krP 49.6 hb1R 11.2 hb2R 46.7 krP 

47.5 krL 47.1 krR 60 krP 25.3 hb2L 40 krL 

60.9 krR 51.6 kniP 80 krP 82.8 hb2P 55 krR 

65.6 kniP 43.1 kniL 49.3 krL 74.8 hb2L 60 kniP 

59.2 kniL 62.6 kniR 33.3 gt1P 89.4 hb2R 53 kniL 

72.5 kniR 55.5 gt2L 9.9 gt1L 50 krP 69.7 kniR 

35.4 gt1P 70 gt2P 39.3 gt1R 33.2 krR 30 gt1P 

11.2 gt1L 
    

66.6 krR 11.1 gt1L 

41.1 gt1R 
    

25.2 gt2P 35.4 gt1R 

78.8 gt2P 
    

20.2 gt2R 76 gt2P 

70.7 gt2L 
    

29.2 gt2L 66 gt2L       

74.8 gt2P 
  

      

70.5 gt2L 
  

      

80 gt2R 
  

 889 

6Bvas-exu- 

pos name 

40 otdR 

50 emsR 

56 btdR 

24 emsL 

30 btdL 

82 otdR 

80 emsR 

78 btdR 

90 emsL 

85 btdL 

 890 

 891 
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Table S2. Parameters for the scaling ODE model. 893 

Regulation link Sign W b c 

Hb to hb-a Act. 12.86 8.1300 0.2665 

Kr to hb-a Inh. 9.674 -3.5490 / 

Kni to hb-a Inh. 33.98 10.6600 / 

Bcd to hb-a Act. 27.03 6.7250 0.8884 

Tor to hb-a Inh. 3.265 9.8870 / 

Kr to hb-p Inh. 16.35 8.4220 / 

Kni to hb-p Inh. 17.12 8.8830 / 

Tll to hb-p Act. 32.97 9.9490 2.2230 

Tor to hb-p Inh. 8.948 10.9600 / 

Hb to Kr Inh. 5.909 -0.3211 / 

Kni to Kr Inh. 11.4 -2.7410 / 

Gt to Kr Inh. 20.2 2.4620 / 

Tll to Kr Inh. 25.35 9.1960 / 

Bcd to Kr Act. 8.417 -0.6508 5.7930 

Cad to Kr Act. 20.05 -3.6540 1.5560 

Tor to Kr Inh. 24.06 12.2500 / 

Hb to kni Inh. 38.25 4.3050 / 

Gt to kni Inh. 24.56 -2.7790 / 

Tll to kni Inh 69.30 10.7100 / 

Bcd to kni Act. / / 0 

Cad to kni Act. 6.008 -0.6122 2.0760 

Tor to kni Inh. 3.993 6.9190 / 

Kr to gt-a Inh. 22.08 7.3770 / 

Bcd to gt-a Act. 27.1 2.0770 1.5040 

Tor to gt-a Inh. 27.27 1.8270 / 



Hb to gt-p Inh. 21.55 12.3600 / 

Kr to gt-p Inh. 14.45 2.8210 / 

Tll to gt-p Inh. 4.086 9.1700 / 

Cad to gt-p Act. 6.042 -3.1790 3.3710 

Tor to gt-p Inh. 7.685 1.8580 / 

 894 
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Table S3. Parameters for the scaling gene circuit model. 897 

Weights: W&V 898 

 hb-a hb-p Kr kni gt-a gt-p 

Hb -0.855 4.031 -3.526 -15.49 1.084 -22.06 

Kr 1.179 -22.44 4.152 -2.664 -14.11 -18.03 

Kni -64.61 -11.24 -3.721 6.641 -37.88 3.473 

Gt 2.135 4.918 -10.06 -9.866 -0.609 2.392 

Tll -17.6 -0.248 -14.01 -44.98 1.735 -2.996 

Bcd -2.911 -38.12 -3.172 -8.143 -15.35 -31.18 

Cad -3.129 4.412 -1.654 2.084 -8.448 5.898 

Tor -2.928 -3.23 -51.2 -4.751 -20.07 -5.281 

 899 

Bias: 900 

 hb-a hb-p Kr kni gt-a gt-p 

Bias b 5.127 -2.953 4.732 1.728 7.834 -1.639 

 901 
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