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Abstract 

Our ability to flexibly adapt to changing demands is supported by flexible coding of task-relevant 

information in frontal and parietal brain regions. Converging evidence suggest that coding of 

stimuli and task rules in these regions become stronger as task difficulty increases. Here, we tested 

whether there is a corresponding change in the representational format as well, an issue that has 

rarely been addressed directly in past research. Participants performed a visual classification task 

under varying levels of perceptual difficulty, while we acquired fMRI. Using a model-based 

representational similarity approach, we tested whether stimulus representations retain exemplar-

level information. We expected representations to drop such exemplar-level information as 

perceptual difficulty increases, which would indicate a focus on representing behaviorally relevant 

category information. Counter to these expectations, and in contrast to previous research, we found 

frontal and parietal brain regions contained exemplar-level stimulus information. Interestingly, the 

anterior intraparietal sulcus (aIPS) retained exemplar-level stimulus information even in 

perceptually difficult trials, and these representations were directly related to performance. 

Overall, these findings call for a reassessment of the neural mechanisms underlying human 

adaptive behavior during visual classification.  
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1. Introduction 

Humans are able to rapidly, flexibly adapt to changing external demands (Fuster, 2000; 

Miller, 2000). Regardless of the current context in which we find ourselves, we can efficiently 

adjust our behavior to current demands, an ability that is supported by frontal and parietal brain 

regions often called the multiple demand (MD) network (Duncan, 2010; Fedorenko et al., 2013). 

We know from past research using multivariate decoding (Haynes, 2015; Kamitani & Tong, 2006) 

that MD regions encode a wide range of task-related information, including stimuli, responses, 

and task-rules (Woolgar et al., 2016), with preferential coding of task features that are task-relevant 

or explicitly attended (Jackson et al., 2017; Jackson & Woolgar, 2018; Woolgar, Williams, et al., 

2015). Coding of task-related information in these regions is also especially strong when tasks are 

difficult (Woolgar, Hampshire, et al., 2011; Woolgar, Afshar, et al., 2015) and specifically affected 

when part of the MD system is modulated with TMS (Jackson et al., 2021). This has been taken 

as evidence for adaptive coding (Duncan, 2010), in which multi-modal neurons flexibly change 

their coding properties to meet current, changing demands. Adaptive coding in these regions is 

thought to be a key mechanism underlying selective attention (Duncan, 2013), providing a source 

of bias over coding in sensory and motor brain regions (Desimone & Duncan, 1995). Additional 

evidence for adaptive coding comes from fMRI studies showing that coding of task-related 

information changes across reward-conditions (Etzel et al., 2016) and free vs cued task choices 

(Zhang et al., 2013), and MEG studies showing rapid prioritization of task-relevant information 

processing (Barnes et al., 2021; Goddard et al., 2019; Moerel et al., 2021). On the other hand, we 

know that at least under some conditions, frontoparietal representations of task-related information 

does not adapt to changing demands (Loose et al., 2017; Wisniewski et al., 2016, 2019). For 

example, it has been suggested that MD cortex might be better able to adjust to cope with changes 
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in conceptual difficulty than changes in the quality of perceptual input (Wen et al., 2018), although 

apparently compensatory increase in coding following poor perceptual input has also been 

observed (Woolgar, Thompson, et al., 2011; Woolgar, Williams, et al., 2015). Thus it remains an 

open question whether adaptive coding is a general property of these regions, or whether 

frontoparietal cortex only adapts its representations under specific circumstances, and instead re-

uses the same representations when necessary (Botvinick & Cohen, 2014; Feng et al., 2014; 

Wisniewski, 2018).  

In addition, while previous research attempted to answer whether coding adapts to different 

task demands, it did not address the issue of how coding might differ across demands, which would 

require testing whether a set of representational models explain the data. For example, previous 

studies have asked whether information coding is stronger in hard than in easy trials (Woolgar, 

Hampshire, et al., 2011), and, using cross-classification (Kaplan et al., 2015), whether coding 

formats are similar or different across conditions (Wisniewski et al., 2016; Zhang et al., 2013). 

These studies have been optimized to test for the presence or absence of a difference in 

representations across conditions (whether), but make no explicit predictions about the nature of 

that difference (how). Showing that coding is stronger in hard trials might be explained by the 

strengthening of the same representation, or by a change in the representational format used. Thus, 

it remains difficult to draw strong conclusions about specific representational formats used in 

different conditions, and about how these formats change. Here, we argue that understanding 

adaptive coding at the level of representational formats is key to understanding the neural basis of 

goal-directed attention and its biasing influence on sensory and motor processing.  

In the current study, we directly addressed this issue by designing a task that allows us to 

investigate the representational formats used to encode task-related information in MD regions in 
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hard and easy trials, and to quantify how these formats changed across difficulty conditions. For 

this purpose, we combine a visual categorization task (Freedman et al., 2003) with representational 

similarity analysis (RSA) of fMRI data (Kriegeskorte, Mur, & Bandettini, 2008; Nili et al., 2014), 

which offers a powerful tool to formulate specific hypotheses about how representational formats 

change across easy and hard trials.  

Participants performed a simple classification task, determining whether visual stimuli are 

either cats or dogs. Difficulty was manipulated by morphing cat and dog stimuli (morph level, 

ranging from 100% cat to 100% dog stimuli), and by adding random Gaussian noise to the images 

(noise level, clean vs noisy stimuli). We expected MD regions to encode visual stimulus and 

category information, as has been shown before in tasks with similar designs (Jackson et al., 2017, 

2021; Jackson & Woolgar, 2018). Crucially, we tested in which format stimulus information was 

encoded, and whether this changed when we manipulated perceptual difficulty (noise level). 

Neural representations could either preserve stimulus distances of individual exemplars in physical 

space (isomorphic coding, which we call ‘equidistant’ coding here since stimuli were equidistant 

in physical space). Alternatively, neural representations could cluster stimulus representations of 

individual exemplars belonging to the same category, with neural distances being small within 

categories and large between categories (see Figure 1A). Equidistant coding essentially preserves 

exemplar information, representing the full perceptual space, including differences between 

individual dog (or cat) exemplars that are irrelevant to the categorization task. Clustered coding 

collapses representations of individual exemplars and emphasizes differences between the two 

categories, and is thus optimized for performance in this task. These two different coding formats 

would be indistinguishable using the design and analysis methods from past research, since 

multivariate decoding could differentiate the two categories of stimuli regardless of whether 
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representations are equidistant or clustered. Past research in non-human primates has suggested 

that sensory regions show veridical equidistant coding, whereas dorsolateral prefrontal cortex 

(dlPFC) shows clustered coding (Freedman et al., 2003). Furthermore, object-selective regions in 

the ventral visual stream preserve information about specific exemplars within a category (Eger et 

al., 2008). 

We hypothesized that clustered coding should be especially useful when task difficulty is 

high, i.e. when there is a clear need to optimize neural representations to improve performance. 

This prediction is derived from recent theories, which argue that task representations vary from 

low to high-dimensional (Badre et al., 2021; Botvinick & Cohen, 2014), and that this difference is 

related to a trade-off between pattern separability and generalizability. High-dimensional 

representations, like those preserving exemplar-level information in our design (equidistant 

coding), allow for better separation of individual stimuli, but are harder to generalize to novel 

contexts and are more susceptible to noise (Fusi et al., 2016). Low-dimensional representations, 

like those collapsing to just a single relevant stimulus dimension in our design (clustered coding), 

are harder to separate, but are more easily generalized to novel contexts and are less susceptible to 

noise. Therefore, we expected a shift towards more clustered coding on perceptually difficult trials, 

reasoning that this change in representational formats is a key neural mechanism of how MD 

regions adapt to changing task demands.  

In sum, we expected that visual regions would encode stimuli using an equidistant format 

on trials in which stimuli can be clearly seen (clean trials), and that this signal might be weaker or 

absent on trials in which stimuli are noisy (Hypothesis 1). For MD regions we expected a different 

pattern of results. Past research has shown that MD regions represent task-related information like 

object categories preferentially in difficult trials (Woolgar, Hampshire, et al., 2011; Woolgar, 
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Williams, et al., 2015), and we thus expected stimulus coding to be weaker on clean than on noisy 

trials (Hypothesis 2). If we found stimulus information on clean trials, we expected it to be in an 

equidistant format, reflecting bottom-up information from sensory regions that should be sufficient 

to correctly classify stimuli. On noisy trials, we further expected a shift from equidistant to more 

clustered coding (Hypothesis 3), based on previous theories (Badre et al., 2021; Botvinick & 

Cohen, 2014). Such a shift in representational formats might be a key neural mechanism of how 

MD regions adapt to changing task demands.  

2. Methods 

2.1 Participants 

Forty-nine volunteers (38 female, 11 male, mean age: 24.1 years, range: 18-36 years) with 

normal or corrected-to-normal vision participated in the study. We obtained written informed 

consent from each participant prior to participation, and the Ethics Committee of the Ghent 

University Hospital approved this experiment (project identifier BC-07446). Each volunteer 

received 43€ for their participation. We first calculated the average error rate for each participant 

in the easiest possible condition in this experiment (clean template images, see below for more 

details). Five participants had excessive error rates (above 1.5*IQR of the group mean,): 10.4%, 

10.4%, 12.5%, 16.7%, and 22.9% respectively, group average = 3.1%. These participants were 

excluded from the sample. Four participants showed excessive head movement during scanning 

(> 5mm), and were also removed. Two additional subjects were removed due to technical 

difficulties. The final sample consisted of thirty-eight participants (29 female, 9 male, mean age = 

24.4 years, range: 19-36 years).  
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2.2 Task and Experimental Paradigm 

On each trial, participants performed a perceptual classification task, determining whether 

a visual stimulus presented centrally on screen was a cat or a dog. The stimulus was a morphed 

image, ranging from 100% dog to 100% cat, and could be presented in one of two different 

perceptual difficulty levels (clean and noisy).  

2.2.3 Stimuli and Design 

Stimuli consisted of a large set of gradually, smoothly morphed, greyscale stimuli, created 

using 3 cat templates to 3 dog templates (Fig. 1A), two of which were used for each participant 

(see below). Stimuli were created by linearly combining one cat and one dog template, with 

changing contributions (morph level, e.g. 93.4% cat, 6.6% dog, with steps of 6.6%). These stimuli 

have been used before on non-human primate research, and for more detail on their generation 

please see (McKee et al., 2014). For each combination of cat and dog templates, 16 stimuli were 

created (1 dog template + 1 cat template + 14 morphed stimuli). Given that there were 9 different 

template combinations (between 3 cat and 3 dog templates), the full stimulus set consisted of 144 

stimuli. Each stimulus was categorized as either cat or dog depending on which category 

contributed more to the image (>50%).  This yielded 72 cat and 72 dog stimuli, which differed in 

their distance to the category or decision boundary (choice difficulty). We then used these images, 

and added random Gaussian noise to them, in order to make the classification more difficult (noise 

level). The amount of added noise was adapted to each participant using a staircase procedure (see 

below).  

For each participant, we randomly selected 2 dog and 2 cat template images, and used all 

four possible template combinations between cats and dogs as stimuli. We morphed each cat and 

dog template combination (cat1 – dog 1, cat 1 – dog 2, cat 2 – dog 1, cat 2 – dog 2) in 16 steps 
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(ranging from 100% cat to 100% dog). This yielded 8 dog stimuli and 8 cat stimuli for each 

template combination. For both dogs and cats, the 8 stimuli differed in their choice difficulty, i.e. 

distance to the decision boundary, in 8 steps (e.g. 100% dog, 93.3% dog, 86.7% dog, 80% dog, 

73.3% dog, 66.7% dog, 60.4% dog, 53.4% dog). Additionally, each of these stimuli was presented 

with a low noise level (clean) and a high noise level (noisy), resulting in a 2 (categories) x 8 (choice 

difficulties) x 2 (noise levels) x 4 (template combinations) design with 128 unique stimuli.  

2.2.5 Procedure  

The experiment was programmed using PsychoPy3 (v.2020.1.3, (Peirce, 2007)). 

Participants started by performing a short training session outside the MR scanner. During the 

training session, participants received trial-by-trial feedback on their responses. They first learned 

to classify template images, followed by classifying noise-free morphed images (clean trials). They 

then entered the MR scanner, where they completed a staircase procedure to calibrate the noise 

level in the scanning environment for each individual. For this purpose, we presented template 

stimuli with varying levels of noise added. After each correct response, random Gaussian noise 

increased. After each wrong response, noise decreased. We then counted how often the direction 

of noise level changes reversed (increase then decrease, decrease then increase). After 7 reversals, 

the staircase procedure stopped and we applied the final noise level to all noisy stimuli used in the 

experiment.  

After that, participants performed 6 runs of 128 trials of the experimental task. In each trial, 

a stimulus was presented on screen for 1.8 sec (Figure 1B), which was followed by a variable, 

pseudo-exponentially distributed inter-trial-interval (ITI, mean duration = 2.7 sec, range between 

0.8 sec to 10.4 sec). Participants were instructed to respond while the stimulus was presented on 

screen, as quickly and accurately as possible. As an additional incentive, any participant that was 
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both in the top 20% fastest and the top 20% most accurate participants would receive a 10€ bonus 

payment. Note that being either fast or accurate was not enough, the bonus payment required speed 

and accuracy. Participants responded using the left and right index fingers, using MR-compatible 

response boxes. Category-button-mappings were counter-balanced across runs for each participant 

(dog: right, cat: left in half of the runs, dog: left, cat: right in the other half). Participants received 

feedback at the end of each run (mean error rate + mean reaction time).  

In each run, each unique stimulus was presented once, resulting in 4 repetitions of each 

combination of category, choice difficulty, and noise level. In order to increase the signal-to-noise 

ratio in the fMRI data, we collapsed the 8 levels of choice difficulty to just 4 for the analysis, 

doubling the number of repetitions to 8 per run. Category, choice difficulty, and template 

combination were pseudo-randomized and changed on a trial-by-trial basis. Noise level was 

blocked, and each run consisted of 4 blocks of 32 trials each. Two blocks were noisy, two blocks 

were clean, and half of the runs started with a noisy block, while the other half started with a clean 

block. Each block started with an instructions screen presented for 5 sec (‘Easy block starting 

now’, ’Hard block starting now’). To ensure that none of the design variables were correlated after 

randomization, we computed the mutual information between each design variable within each 

run separately. Only if there was no mutual information between any design variable (tested using 

permutation tests, p > 0.05), did we use the design in the experiment. We used the same procedure 

to ensure that there were no sequential dependencies between trials, so that conditions on trial t 

were unrelated to conditions on trial t+1.  

Due to a coding error, for the first 29 participants, the 6 runs contained different numbers 

of cat and dog stimuli for each combination of choice difficulty and noise level. This introduced 

additional noise to the data, and made signal estimation in some conditions and some runs more 
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difficult. However, due to the mutual information test we employed before accepting designs, we 

ensured that this did not introduce any systematic biases even within participants. 

 
Figure 1: Experimental design. A. Stimuli. On the left, all template images used here are 

depicted. All stimuli above the decision boundary are cats, all below are dogs. Each participant 

was presented 2 out of 3 cat/dog templates (randomly selected for each participant). In the middle, 

example morphed stimuli are depicted for 2 dog and 2 cat template images. On the right, a 

schematic representation of clustered and equidistant coding is depicted. When stimulus 

representations are clustered, representational distances between exemplars of the same category 

(e.g. dog) are small, i.e. representations are highly similar. Distances between categories are large. 

When stimulus representations are equidistant, distances from the perceptual space (middle) are 

preserved in the neural space, including differences between exemplars within the same category. 

B. Trial timing. Each block started with an instruction screen. Then, stimuli were presented for 

1.8s, interleaved with a variable inter-trial-interval (mean duration 2.7s, range 0.8 – 10.4s).  
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2.3 Image acquisition 

Functional imaging was performed on a 3T Siemens Prisma MRI scanner (Siemens 

Medical Systems, Erlangen, Germany), using a 64-channel head coil. For each of the six functional 

scanning runs, we acquired 350 T2*-weighted whole-brain echo-planar images (EPI, 

TR = 1730 ms, TE = 30 ms, image matrix = 84 × 84, FOV = 210 mm, flip angle=66°, slice 

thickness = 2.5 mm, voxel size = 2.5 × 2.5 × 2.5 mm, distance factor=0%, 50 slices with slice 

acceleration factor 2). Slices were oriented along the AC-PC line for each participant. A T1-

weighted structural scan was acquired prior to the functional scans (MPRAGE, TR = 2250 ms, 

TE = 4.18 ms, TI = 900 ms, acquisition matrix = 256 × 256, FOV = 256 mm, flip angle=9°, voxel 

size = 1 × 1 × 1 mm). We further acquired 2 field maps (phase and magnitude) to correct for 

inhomogeneities in the magnetic field (TR = 520 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, image 

matrix = 70 × 70, FOV = 210 mm, flip angle=60°, slice thickness = 3 mm, voxel 

size = 3 × 3 × 2.5 mm, distance factor=0%, 50 slices).  

2.4 Analysis: Behavior  

Behavioral data were analyzed using RStudio (version 1.2.1335, R version 4.0.3). We first 

removed all trials on which the participant failed to respond. On average, we removed 1.66% (SD 

= 0.64%) of all trials for each participant this way. Additionally, we removed trials with RTs < 

150ms, removing 1.68% of trials on average (SD = 0.64%). To assess task performance, we 

extracted mean RTs and error rates for each combination of noise level and choice difficulty. For 

the RT analysis, we only used correct responses. RTs were then entered into a Bayesian ANOVA 

(BayesFactor::anovaBF, using the default scaled inverse chi-square prior on main effects and 

interactions, scaling factor fixed effects = 0.5, scaling factor random effects = 1), testing for 

evidence for or against both main effects and their interaction. Participants were entered as a 
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random effect into this model. We interpreted the resulting Bayes Factors (BF10) according to the 

following guidelines (Wagenmakers, 2007): BF10 between 1 and 3 are interpreted as anecdotal, 

between 3 and 20 as moderate, between 20 and 150 as strong, and >150 as very strong evidence 

for the alternative hypothesis. BF10 between 0.33 and 1 are interpreted as anecdotal, between 0.05 

and 0.33 as moderate, between 0.007 and 0.05 as strong, and <0.007 as very strong evidence for 

the null hypothesis. The same procedure was then applied to error rates.  

In order to characterize performance better, we additionally fitted psychometric functions 

to the choice data, separately for each participant (Weibull function, quickpsy package, (Linares 

& López-Moliner, 2016)). Specifically, we computed the probability of choosing the dog response 

separately for each combination of morph level and noise level, and then fitted psychometric 

functions separately for both noise levels. This allowed us to extract several key parameters from 

the choice data: k, guess rate, and threshold. k determines the slope of the psychometric function 

and describes how sharply both categories are distinguished. The guess rate quantifies how often 

participants guess, and we expected k to be lower and the guess rate to be higher on noisy, as 

compared to clean, trials. To test this hypothesis, we entered estimates into a Bayesian paired t-

test (BayesFactor::ttestBF, Cauchy prior, scaling factor = 0.707), comparing parameter values 

across noise levels. The threshold quantifies at which point on the scale of morphed images, 

ranging from 100% cat to 100% dog, participants were equally likely to choose cat or dog. We 

expected this to fall in the middle of the scale, i.e. where stimuli are close to 50% cat / 50% dog, 

and tested this hypothesis using a Bayesian t-test (Cauchy prior, scaling factor = 0.707). 

2.5 Analysis: fMRI 

fMRI analyses were performed using Matlab (R2018b, version 9.5.0.944444, The 

Mathworks), SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), The Decoding Toolbox (v 3.99, (Hebart 
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et al., 2014)), and RStudio  (version 1.2.1335, R version 4.0.3). Raw data were first unwarped, 

realigned, and slice-time corrected (code: https://github.com/CCN-github/fMRI-preprocessing-

SPM12). We then estimated normalization fields for each participant, which were then used to 

project mask files from normalized to native space (see below for more details). However, no 

spatial smoothing or normalization were applied to BOLD data to preserve fine-grained voxel 

activation patterns.  

2.5.1 First-level GLM analysis 

The preprocessed data were used to estimate a voxelwise general linear model (GLM, 

(Friston et al., 1994). Sixteen regressors of interest were used, one for each combination of 

category (cat, dog), noise level (clean, noisy), and choice difficulty (1,2,3,4). We then added a 

variable number of nuisance regressors for each participant. First, we added condition-specific 

error regressors, modelling error trials separately for each condition. This led to a variable number 

of nuisance regressors, since not every run had errors in each condition. We chose condition-

specific error regressors over a single error regressor, since we expected errors in very easy trials 

to derive from different processes than in very difficult trials. For example, errors in easy trials 

might represent a momentary lapse in attentional or motor processes, while errors in hard trials 

likely represent guessing in the face of little available stimulus information. Second, we added six 

movement regressors. Regression was time locked to the onset of the stimulus presentation. As a 

base function, we used the finite impulse response function (FIR, 5 time bins with a duration of 

1.73 sec each). In contrast to the canonical haemodynamic response function, FIR functions make 

fewer assumptions about the shape of the haemodynamic response, making it better suited to model 

responses to short events in a heterogeneous set of brain regions from visual to prefrontal cortex 

(see Wisniewski et al., 2015 for a similar approach).  
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2.5.2 Feature selection 

ROI selection: We defined a number of a-priori volumetric regions-of-interest (ROIs), 

based on a recent publication outlining the multiple demand (MD) network using the Human 

Connectome Project atlas (Assem et al., 2020). The following regions were included in this 

experiment: SCEF, 8BM, 8C, IFJp, p9_46v, a9_46v, i68, AVI, IP1, IP2, PFm (see Figure 2, code: 

https://github.com/davidwisniewski/fmri-extract-HCP-mask). As an additional region of interest, 

we used the ventral visual cortex, as defined using the Harvard-Oxford atlas. Data from the chosen 

ROIs was extracted in native space for each subject, by projecting the ROI masks from MNI to 

native space separately for each participant, using the inverse normalization field estimated during 

pre-processing.  

 
Figure 2: ROIs. ROIs were derived from the HCP atlas (Glasser et al., 2016), and included the 

multiple demand regions identified in (Assem et al., 2020). The ventral visual cortex ROI was 

defined using the Harvard-Oxford atlas.  

 

Time-bin selection: Given that we use the FIR basis function, each regressor is modelled 

at five different time points. To select a time window of interest, we first estimated the 

haemodynamic lag to be 2TRs (3.46 sec), based on previous research using MVPA methods to 
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extract task-related information from fronto-parietal cortex (Bode & Haynes, 2009; Momennejad 

& Haynes, 2013; Wisniewski et al., 2015). We then corrected for haemodynamic lag by using data 

from time bins 3 and 4, which started 3.46 sec and 5.19 sec after stimulus onset, respectively, for 

all multivariate pattern analyses. Again, this follows past research on time-resolved pattern 

analysis of task-related information (Momennejad & Haynes, 2012). We expected haemodynamic 

responses to be short, given that the trial duration / stimulus processing was short, and this 

procedure strikes a balance between accounting for the expected short duration, and still allowing 

for the peak response to occur within a variable time window (between 3.46 sec and 6.92 sec after 

stimulus onset).  

2.5.3 Representational similarity analysis 

For each ROI, we first extracted the beta weights for the 16 regressors of interest in each 

run (2 categories x 2 noise levels x 4 choice difficulty levels). We then used The Decoding Toolbox 

(Hebart et al., 2014) to perform a representational similarity analysis (RSA, (Kriegeskorte, Mur, 

& Bandettini, 2008; Nili et al., 2014), using the cross-validated Euclidean distance measure and 

applying multivariate noise normalization (Walther et al., 2016). For this, we split the dataset into 

two independent parts by leaving a single run out in each fold of the cross-validation procedure. 

We then computer pairwise Euclidean distances between each pair of conditions, across the two 

parts. We repeated this procedure until each run had been left out once, leading to a six-fold cross-

validation, and then averaged distances across folds. Using cross-validated distances ensures that 

estimates are unbiased and average to zero if there is no systematic relation between activation 

patterns (Arbuckle et al., 2019). All computed distances were then converted to a 16x16 

representational distance matrix (RDM), representing pairwise distances between all conditions. 
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This procedure was performed separately for each ROI, and for each of the two time bins of 

interest. For each ROI, we then averaged the RDMs across both time bins.  

2.5.4. Model-based RSA 

The main goal of this experiment was to identify whether and how stimulus information is 

encoded in the MD network. For this purpose, we first defined two alternative theoretical models 

of how stimulus information could be encoded in the brain.  

First, stimulus information can be encoded in an equidistant format, i.e. all distances in the 

perceptual space can have an equivalent representation in neural representational space (Figure 3). 

Here, the full perceptual space is preserved in neural space, e.g. if a stimulus is 6.6% more ‘doggy’ 

than another stimulus, that distance will be half as large as to a stimulus that is 13.2% more ‘doggy’ 

in neural state space, irrespective of whether the two compared stimuli cross the decision boundary 

or not. This model assumes that slight perceptual differences between individual cat (and dog) 

stimuli are preserved, despite not being relevant for in the categorization task whatsoever.   

Second, stimulus information can be encoded in a clustered, i.e. all distances between 

individual stimuli within a category (all dogs or all cats) are very small, while distances between 

categories are large. Here, coding of slight perceptual distances between individual stimuli within 

a category is dropped, and only the behaviorally relevant feature of the stimulus (category) is 

encoded.  

2.5.5 Zero-order correlations 

In order to test whether visual and/or fronto-parietal regions encode stimulus information, 

we first computed canonical, zero-order Spearman correlations between the two models and the 

data, separately for each participant. For this purpose, we only considered data from the lower half 

of the RDM, excluding the diagonal. These correlations were Fisher-z transformed and entered 
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into a Bayesian one-sided t-test (BayesFactor::ttestBF, Cauchy prior, scaling factor = 0.707) to 

assess whether they were above zero. This analysis was performed for each ROI separately, and 

only using data from clean trials since stimulus information should be strongest here. Note that in 

principle, model-based RSA allows us to independently investigate evidence for both models, i.e. 

both, only one, or no model could potentially explain the data. Thus, even if both models partly 

explained the data, we would be able to identify this pattern of results. 

2.5.6 Hypothesis 1: Visual cortex uses an equidistant coding format  

We hypothesized that stimulus information in ventral visual cortex is represented in an 

equidistant format on clean trials. While the manipulation check assessed whether either model 

explains variance in the data, zero-order correlations do not control for potential correlations 

between the two explanatory variables / models. Given that the clustered and equidistant coding 

models correlated positively with one another (r = 0.66), we used partial Spearman correlations to 

investigate unique shared variance between the equidistant coding model and data RDMs extracted 

from visual cortex, while controlling for shared variance with the clustered coding model. This 

analysis was performed separately for clean and noisy trials, again only using the lower half of the 

RDM and excluding the diagonal. Partial correlation coefficients were then Fisher-z transformed 

and entered into a Bayesian one-sided t-test (BayesFactor::ttestBF, Cauchy prior, scaling factor = 

0.707) to assess whether the partial correlation was above zero. To directly test whether equidistant 

coding became weaker on noisy trials, we computed paired Bayesian one-sided t-tests 

(BayesFactor::ttestBF, Cauchy prior, scaling factor = 0.707) between clean and noisy trials, 

expecting correlations to be weaker on noisy trials.    
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As a control analysis, we computed the opposite partial correlations, between the clustered 

coding model and data, controlling for any shared variance with the equidistant coding model. We 

did not expect to see evidence for positive correlations in this analysis in the visual cortex.  

2.5.6 Hypothesis 2: Weak stimulus coding on clean trials in MD regions 

For clean trials, we expected to see either no or weak equidistant stimulus coding in MD 

regions. To test this hypothesis, we used the same partial correlation approach as in Hypothesis 1, 

only applying it to clean trials only, separately in all MD ROIs. This allowed us to test whether 

MD regions encode stimulus information using an equidistant format. Again, similarly to 

Hypothesis 1, we performed a control analysis explicitly testing for clustered coding as well. 

2.5.7 Hypothesis 3: Stronger, clustered coding on noisy trials in MD regions 

Lastly, we hypothesized that stimulus coding would be stronger on noisy trials in MD 

regions, similar to past research (Woolgar, Hampshire, et al., 2011; Woolgar, Afshar, et al., 2015). 

Crucially, we not only expected a difference in coding strength, but also a change in the 

representational format. Namely, we expected a shift to a clustered format, which should 

compensate for the increased task difficulty. To test this hypothesis, we first used the partial 

correlation approach outlined above to test whether clustered coding explains data on noisy trials 

in MD ROIs. In order to directly compare results across noise levels, we again used paired 

Bayesian t-test (see Hypothesis 1).  

As a control analysis, we used the same approach to quantify evidence for equidistant 

coding on noisy trials as well.  
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Figure 3: Model-based RSA. On the left, an example data representational distance matrix 

(RDM) is depicted, from the anterior intraparietal sulcus (IP2). Each of the 16 conditions (2 

categories: cat, dog; 4 choice difficulty levels: cd1, cd2, cd3, cd4; 2 noise levels: clean, noisy) is 

represented in one row / column. Each cell represents the pairwise cross-validated Euclidean 

distance (cvDistance) between beta vectors from the corresponding conditions. Dark colors 

indicate low distances, while bright colors indicate high distances. In the middle, two stimulus 

coding models are represented in the same RDM format as the data. On the right, a schematic 

representation of our partial correlation analysis demonstrates how unique shared variance 

between each model and the data RDM was computed.  

 

3. Results 

3.1 Behavioral results 

3.1.1 Error rates and reaction times 

We first characterized performance by computing a 2 (noise level) x 4 (choice difficulty) 

Bayesian ANOVA on the error rates, collapsing data across both categories (Figure 4A). We found 

performance to range from 2.33% errors to 44.25% errors. We found very strong evidence for 

main effects of both noise level and choice difficulty, BF10s > 150, with noisy trials and high 

choice difficulty trials having higher error rates. We also found very strong evidence for an 

interaction effect, BF10 > 150, indicating that the effect of noise level decreased with increasing 

choice difficulty. This likely reflected a floor effect in the performance, in which classification 
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was so hard in strongly morphed trials that adding noise to the images had a negligible effect on 

performance.  

For reaction times, we found that participants responded within 850ms on average (SEM 

= 13ms, Figure 4A). Similar to error rates, we found very strong evidence for an effect of noise 

level, choice difficulty, BF10s > 150, with RTs on noisy trials and in high choice difficulty trials 

being longer. We also found strong evidence for an interaction effect, BF10 = 80.51, again 

indicating that the effect of noise level decreased with increasing choice difficulty. Only correct 

trials were used in RT analyses. 

3.1.2 Psychometric functions 

Next we assessed performance by fitting psychometric functions to the choice data of each 

participant (Figure 4B). We first tested whether the slope of the function differed between noise 

levels, and found very strong evidence for steeper slopes on clean trials, BF10 > 150 (mean kclean 

= 3.48, mean knoisy = 1.81). As expected, this demonstrated that categories are more easily 

distinguishable on clean, as compared to noisy trials. Next, we tested for a corresponding 

difference in guess rate, and found very strong evidence for higher guess rates on noisy trials, 

BF10 > 150 (mean guessclean = 0.01, mean guessnoisy = 0.13). This showed that adding noise leads 

to substantially more guessing, in addition to a weaker separation of both categories.  

In an additional analysis, we then used the estimated threshold (i.e. the point at which 

choosing cat and dog was equally likely) to determine whether choices were biased towards either 

category. Morph level ranged from 1 to 16, with the decision boundary being between 8 (most 

strongly morphed cat) and 9 (most strongly morphed dog). For unbiased choices, thresholds should 

thus be between 8 and 9 on the morph level scale. To test this hypothesis, we first computed a 

Bayesian t-test (BayesFactor::ttestBF, Jeffreys prior, r = 0.707) using data from clean images only.  
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Figure 4. Behavioral Results. A. Error rates and reaction times. Plots show error rates (left) 

and reaction times (right) as a function of choice difficulty (1 = easy / far away from decision 

boundary, 4 = hard / close to decision boundary). Raincloud plots include boxplots centered around 

the median (black lines), probability density estimates (right half), and raw data (left half), jittered 

for illustration purposes. B. Psychometric functions. Example choice data from two participants 

(#12, #8, left). Each dot represents the probability of choosing ‘dog’ (p(dog)), as a function of 

morph level (expressed in % dog included in the morphed image). Lines represent fitted 

psychometric functions. The performance of one participant (#8) was heavily affected by noise 

level, while it was not for the other participant (#12). Estimated slope (k) and guess rate parameters 

are shown on the right, as a function of noise level (clean, noisy). blue = clean trials, green= noisy 

trials.  

 

We then extracted the 95% credible interval from the posterior distribution (number of 

iterations = 100.000), and tested whether this interval includes any values between 8 and 9. If it 

did, this would indicate that thresholds are indistinguishable from the expected threshold. If it did 

not, this would indicate that thresholds differ from the expected threshold. For clean trials, the 95% 
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credible interval (95% CI = [8.21, 8.73]) indicated that thresholds were indeed between 8 and 9, 

as expected.  For noisy trials, thresholds were somewhat lower and had a higher variance (95% CI 

= [7.10, 8.61]), but were still overlapping with the range of expected values. Using different priors 

(r = 1, r = 1.41) did not change this result. Thus, we concluded that choices were unbiased on clean 

trials, and that adding noise to the stimuli did not introduce biases.  

3.2 fMRI analyses  

3.2.1 Zero-order correlations 

We first tested whether either of the two theoretical models (clustered coding, equidistant 

coding) explains the data using zero-order Spearman correlations on clean trials (Figure 5, see 

Table 1 for an overview of all results). As expected, we found very strong evidence for equidistant 

coding in ventral visual cortex (r = 0.14, BF10 > 150), and strong evidence for clustered coding in 

the same region (r = 0.08, BF10 = 80.00). For the MD ROIs, we found evidence for equidistant 

coding in posterior dlPFC (8C, r = 0.05, BF10 = 4.89), and IPS (IP1, r = 0.06, BF10 = 7.49, IP2,  

r = 0.09, BF10 > 150). There was anecdotal evidence for a equidistant coding in the anterior dlPFC 

(p946v, r = 0.04, BF10 = 2.81) and the angular gyrus (PFm, r = 0.05, BF10 = 2.85). No MD ROI 

showed evidence for clustered coding (all BF10s < 0.58). Thus, we were able to detect stimulus 

information in visual, parietal, and lateral prefrontal brain regions in clean trials. In noisy trials, 

we found strong evidence for equidistant coding in the posterior IPS (IP1, r = 0.06, BF10 = 28.14) 

and moderate evidence for clustered coding in the same region (r = 0.05, BF10 = 8.25). The 

anterior IPS showed anecdotal evidence for equidistant coding in noisy trials (IP2, r = 0.06, BF10 

= 2.85). We also found evidence for equidistant coding in dmPFC (8BM, r = 0.06, BF10 = 5.90). 

Please note that it remains difficult to attribute results to a specific coding model here, since both 

candidate models were positively correlated and zero-order correlations do not explicitly control 
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for their covariance. These results demonstrate however that, in principle, we are able to detect 

both coding formats in both clean and noisy trials. 

 

 

Figure 5. Model-based RSA results – zero-order correlations. Raincloud plots (Allen et al., 

2021) depict the canonical / zero-order correlation of both models (clustered = blue, equidistant = 

green) with the data RDM of each ROI. Raincloud plots include boxplots centered around the 

median (black lines), probability density estimates (right half), and raw data (left half), jittered for 

illustration purposes. Numbers at the bottom of the plots indicate Bayes factors of a t-test against 

zero. We only depict results from ROIs that showed evidence for an effect in at least one of the 

four conditions depicted.  
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  Clean trials Noisy trials 

  Clustered model Equidistant model Clustered model Equidistant model 

ROI r BF10 r BF10 r BF10 r BF10 

mPFC                   

  SCEF -0.01 0.11 0.01 0.29 0.02 0.45 0.03 0.72 

  8BM -0.03 0.08 -0.02 0.10 0.02 0.61 0.06 5.90 

lPFC                 

  8C 0.02 0.43 0.05 4.89 0.02 0.43 0.01 0.21 

  IFJp -0.02 0.08 0.03 0.56 0.04 1.56 0.01 0.29 

  p9-46v 0.01 0.23 0.04 2.81 0.03 1.37 0.04 0.98 

  a9-46v 0.01 0.36 0.01 0.27 0.02 0.37 0.03 1.66 

  i68 -0.01 0.11 0.02 0.45 0.01 0.30 0.04 1.27 

AI/FO                 

  AVI -0.01 0.15 -0.02 0.10 0.02 0.35 0.02 0.27 

parietal cortex                

  IP1 0.01 0.36 0.06 7.49 0.05 8.25 0.06 28.14 

  IP2 0.02 0.58 0.09 205.25 0.00 0.21 0.06 2.85 

  PFm 0.00 0.21 0.05 2.85 0.00 0.14 0.01 0.27 

visual cortex                

  VVC 0.08 80.00 0.14 246885.68 0.03 1.95 0.03 1.14 

Table 1: Zero-order correlations. Canonical / zero-order Spearman correlations (r) between the 

models and the data RDM, including the Bayes factor (BF10) of the corresponding t-test against 

zero, separately for clean and noisy trials. mPFC = medial prefrontal cortext (SCEF, 8BM), lPFC 

= lateral prefrontal cortex (8C, IFJp, p9-46v, a9-46v, i68), AI/FO = anterior insula / frontal 

operculum (AVI), VVC = ventral visual cortex 

 

3.2.2 Hypothesis 1: Visual cortex uses an equidistant coding format 

Next, we assessed stimulus coding in ventral visual cortex. We expected the equidistant 

coding model to explain a unique part of the data variance on clean trials, which we tested using 

partial correlations (Figure 6). Indeed, we found very strong evidence that the equidistant coding 

model explained a unique part of the variance on clean trials (r = 0.12, BF10 > 150). Interestingly, 

for noisy trials, we found moderate evidence against a unique contribution of equidistant coding 

(r = 0.02, BF10 = 0.33). Directly comparing both results using a paired t-test yielded moderate 

evidence for a difference (BF10 = 4.97), suggesting that the equidistant coding model better 

explained data on clean than on noisy trials. These results are largely in line with our predictions. 
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Ventral visual cortex indeed encodes stimuli using an equidistant format on clean trials. We did 

not detect a unique contribution of equidistant coding on noisy trials however, likely reflecting the 

fact that stimulus input was strongly degraded.  

As a control, we repeated the analysis assessing evidence for clustered coding over and 

above equidistant coding. There was moderate evidence against the clustered coding model 

explaining a unique part of the data variance on clean trials (r  = -0.03, BF10 = 0.09), and the same 

was true for noisy trials as well (r  = 0.01 BF10 = 0.23). The paired t-test yielded moderate evidence 

for no difference between these values (BF10 = 0.29).  

3.2.3 Hypothesis 2: Weak stimulus coding on clean trials in MD regions 

For the partial correlation analyses in MD ROIs, we restricted the number of ROIs to those 

that showed an effect in either clean or noisy trials in the manipulation check reported above, since 

it can be difficult to interpret partial correlations in the absence of zero-order correlations. This 

includes parietal cortex (IP1, IP2, and to a lesser degree PFm), dlPFC (8C, and to a lesser degree 

p946v), and dmPFC (8BM). We expected to see either no evidence for stimulus coding on clean 

trials, or weak evidence for equidistant coding in these trials. We found evidence for a unique 

contribution of equidistant coding, after partialling out clustered coding, in parietal cortex (IP1, r 

= 0.07, BF10 = 3.44, IP2, r  = 0.11, BF10 = 37.05, PFm, r = 0.07, BF10 = 12.12, Figure 6), and 

dlPFC (8C, r  = 0.06, BF10 = 3.17, p946v, r = 0.05, BF10 = 2.57), but not in dmPFC (8BM, r = 

0.00, BF10 = 0.20). As a control analysis, we also tested for evidence for clustered coding after 

partialling out equidistant coding. For all FPC ROIs, we found evidence against clustered coding 

(all rs < 0.01, all BF10s < 0.27). The clustered coding model thus failed to explain unique variance 

on clean trials in all ROIs assessed here. Parietal cortex thus seemed to robustly represent 

equidistant stimulus information on clean trials, with effects in dlPFC being somewhat weaker. 
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Overall, these findings were largely in line with our predictions, MD stimulus coding on clean 

trials was either absent, too weak to be detected reliably, or present only in an equidistant format.  

 

   

 
 

Figure 6. Model-based RSA results – partial correlations. Raincloud plots (Allen et al., 2021) 

depict the partial correlations of both models (clustered = blue, equidistant = green) with the data 

RDM of each ROI, controlling for the other model, respectively. Raincloud plots include boxplots 

centered around the median (black lines), probability density estimates (right half), and raw data 

(left half), jittered for illustration purposes. Numbers at the bottom of the plots indicate Bayes 

factors of a t-test against zero. We only depict results from ROIs that showed evidence for an effect 

in the manipulation check (Figure 5). For ventral visual cortex and IP2, we also depict brain 

behavior correlations. The x-axis shows the difference in equidistant coding between noisy and 

clean trials. The y-axis shows the difference in guessing, as estimated using psychometric 

functions, between noisy and clean trials. In IP2, the more equidistant coding collapsed in noisy 

trials, the more participants guessed. This was not the case in ventral visual cortex.  
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  Clean trials Noisy trials 

  Clustered model Equidistant model Clustered model Equidistant model 

ROI r BF10 r BF10 r BF10 r BF10 

mPFC                   

  SCEF -0.03 0.08 0.03 0.58 -0.01 0.14 0.03 0.46 

  8BM -0.03 0.08 0.00 0.20 -0.02 0.10 0.06 6.30 

lPFC                 

  8C -0.02 0.09 0.06 3.17 0.03 0.63 -0.03 0.09 

  IFJp -0.06 0.06 0.06 2.82 0.05 2.38 -0.03 0.10 

  p9-46v -0.03 0.08 0.05 2.57 0.02 0.30 0.01 0.22 

  a9-46v 0.01 0.22 0.00 0.19 0.00 0.20 0.02 0.39 

  i68 -0.04 0.07 0.05 1.36 -0.03 0.08 0.06 1.78 

AI/FO                 

  AVI 0.01 0.27 -0.02 0.10 0.01 0.24 0.01 0.24 

parietal cortex                

  IP1 -0.04 0.08 0.07 3.44 0.02 0.54 0.03 0.78 

  IP2 -0.07 0.06 0.11 37.05 -0.05 0.07 0.08 4.57 

  PFm -0.04 0.06 0.07 12.12 -0.01 0.11 0.01 0.27 

visual cortex                

  VVC -0.03 0.09 0.12 468.64 0.01 0.23 0.02 0.33 

Table 2: Partial correlations. Partial Spearman correlations (r) between the models and the data 

RDM, including the Bayes factor (BF10) of the corresponding t-test against zero, separately for 

clean and noisy trials. mPFC = medial prefrontal cortext (SCEF, 8BM), lPFC = lateral prefrontal 

cortex (8C, IFJp, p9-46v, a9-46v, i68), AI/FO = anterior insula / frontal operculum (AVI), VVC = 

ventral visual cortex 

 

 

3.2.4 Hypothesis 3: Stronger, clustered coding on noisy trials in MD regions 

Lastly, we predicted that stimulus coding would be stronger on noisy trials in MD ROIs, 

and that the information would be represented in a clustered format. Although we expected this 

effect to be widespread in the MD network, in fact we only found anecdotal evidence for a unique 

contribution of the clustered format on noisy trials in IFJp (r = 0.05, BF10 = 2.38). For all other 

ROIs, we found evidence against a unique contribution of clustered coding (all rs < 0.04, all BF10s 

< 0.63, see Table 2 for full results). Paired t-tests revealed that only IFJp showed evidence for 

stronger clustered coding on noisy as compared to clean trials (BF10 = 9.50, all other BF10s < 

1.05). Thus, of all MD ROIs, only IFJp shows an effect that was in the expected direction, but this 
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finding remains difficulty to interpret since we found no strong evidence for a corresponding zero-

order correlation with the clustered model in IFJp (Table 2).  

Unexpectedly, we found evidence for a unique contribution of equidistant coding on noisy 

trials in parietal cortex (IP2, r = 0.08, BF10 = 4.57), as we had seen in this region on clean trials 

above (IP2, r = 0.11, BF10 = 37.05). We also found evidence for equidistant coding in dmPFC for 

noisy trials (8BM, r = 0.06, BF10 = 6.30), which had evidence against equidistant coding on clean 

trials (8BM, r = 0.00, BF10 = 0.20). Thus the trend was for equidistant coding to go down, from 

clean to noisy trials, in IP2, and to go up in 8BM. However, paired t-tests revealed moderate 

evidence against differences across noise levels in IP2 (BF10 = 0.32) and anecdotal evidence 

against a difference in 8BM (BF10 = 0.80), indicating that these trends were not statistically 

reliable.  

One possible explanation for the relative lack clustered stimulus coding in MD regions on 

noisy trials might be that the signal-to-noise-ratio on noisy trials was too low to reliably detect 

stimulus information. We believe this explanation to be unlikely though, as we were able to detect 

equidistant stimulus coding in parietal and medial prefrontal cortex on noisy trials. It has been 

shown previously that detecting information in prefrontal cortex is especially difficult (Bhandari 

et al., 2018), and the fact that we were able to detect stimulus information in prefrontal cortex on 

noisy trials shows that, in principle, experimental power is high enough to detect such information 

even in small regions where signals are often weak.  

Another possible explanation might be that our analysis approach was biased towards 

detecting equidistant coding, since the equidistant model has an overall higher variance and 

complexity than the clustered model and might therefore be easier to detect in correlation analyses. 

To directly assess this possibility, we performed a number of simulation analyses. Using simulated 
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data, we demonstrate that if anything, our analysis approach was biased towards clustered and 

against equidistant coding, making our results even more surprising (for full methods and results 

see Supplementary Analysis 1).  

3.2.5 Brain-behavior relations  

Overall, the analyses above demonstrated that the unique part of the variance explained by 

equidistant coding decreases in ventral visual cortex on noisy trials, and that unexpectedly, 

equidistant coding explains unique variance in anterior IPS (IP2) on both clean and noisy trials. 

We further found that dmPFC (8BM) showed evidence for equidistant coding on noisy trials. We 

thus explored these findings further, asking whether (equidistant) stimulus coding in these regions 

was related to behavioral performance.  

For this purpose, we used the parameters of the psychometric function estimated separately 

for each participant, and computed Bayesian Pearson correlations (BayesFactor::correlationBF, 

Jeffreys prior, r = 0.33) with the Fisher-z transformed partial correlation between the equidistant 

coding model and the data RDM. We reasoned that weak stimulus signals would be related to 

increased guessing. Correlating equidistant coding (after partialling out clustered coding effects) 

with guess rate on clean trials yielded no evidence for a relation between these variables (ventral 

visual, r = -0.01, BF10 = 0.37, IP2, r = -0.03, BF10 = 0.42, 8BM, r = -0.23, BF10 = 1.46). 

Interestingly, on noisy trials we found a relationship between equidistant coding and guessing 

specifically in IP2 (r = -0.39, BF10 = 9.81), but not in ventral visual cortex (r = 0.13, BF10 = 0.22) 

or 8BM (r = 0.06, BF10 = 0.28). The direction of this relationship showed that weaker equidistant 

coding on noisy trials in IP2 was associated with more guessing (Figure 6). To test whether this 

correlation was specific to noisy trials, we extracted the posterior distribution of the correlation on 

noisy trials, and tested whether the correlation on clean trials fell within the 95% credible interval 
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of that distribution. The 95% credible interval was CI = [-0.63,-0.09], and thus the correlation on 

clean trials (r = -0.03) fell outside of this interval. Thus, we have evidence for a difference between 

both correlations, showing that neural coding of task-related information in IP2 was specifically 

linked to behavior only on noisy, but not on clean trials.  

Demonstrating that correlations differ between noise levels does not directly demonstrate 

that changes in coding are related to changes in behavior, however. For each participant, we thus 

computed the degree to which equidistant coding changed across noise levels (r(clean) – r (noisy)), 

and to which degree guessing changed across noise levels (guess(clean) – guess(noisy)). If a brain 

region was indeed involved in compensating for increased noise level by enhancing equidistant 

coding, we would expect that increases in stimulus coding from clean to noisy trials would be 

associated with less guessing on noisy trials. Indeed, we found evidence for this correlation in IP2 

(r = -0.40, BF10 = 10.47, Figure 6) indicating that participants who had stronger equidistant coding 

of items on noisy compared to clean trials tended not to increase their guessing on noisy trials, 

whereas participants who failed to increase (or even decreased) their equidistant coding on noisy 

trials tended to guess more on those trials. There was no such relationship in the other regions 

showing equidistant coding on noisy trials: ventral visual cortex (r = 0.10, BF10 = 0.24), or 8BM 

(r = -0.01, BF10 = 0.37). 

We then explored whether stimulus coding in IP2 was also related to the slope of the 

psychometric function, which would indicate a sharper category distinction for participants with 

stronger stimulus signals. We omitted 8BM here since we found evidence against stimulus coding 

in clean trials in this region. We found evidence against a relationship between slope and stimulus 

coding however, r = -.012, BF10s = 0.23. One potential explanation for this finding is that using 

partial correlations, we remove at least some of the variance related to categorical coding, making 
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it unlikely to find a relation to sharper category distinctions in behavior. Repeating the same 

analysis using zero-order correlations yielded similar results however, r = -0.04, BF10 = 0.30, 

making this explanation unlikely.  

4. Discussion 

4.1 Summary 

In this experiment, we investigated whether and how MD regions adapt their coding of 

task-related information under changing perceptual difficulty conditions. Participants performed a 

visual categorization task under two different difficulty conditions (clean vs noisy stimuli), and we 

tested both whether stimuli are represented across the MD network, and in which representational 

format they are encoded (equidistant or clustered) in each condition. Equidistant coding assumes 

that information about individual exemplars within a category is preserved, while clustered coding 

assumes that exemplars within a category are represented similarly, and only information about 

categories is preserved. We had three hypotheses. First, based on prior research, we expected visual 

cortex to represent stimuli in an equidistant format in easy trials (Eger et al., 2008; Freedman et 

al., 2003), and expected a drop in coding strength in perceptually difficult trials (Hypothesis 1). 

We found evidence for this hypothesis. Second, for MD regions, we expected to see either no or 

weak equidistant coding of stimulus information on easy trials (Hypothesis 2), reflecting the fact 

that MD regions are less strongly engaged in easy than in difficult trials (Woolgar, Hampshire, et 

al., 2011). Although we found little evidence for clustered coding of stimuli in most MD regions, 

both parietal cortex (IP1, IP2, PFm) and dlPFC (8C, p9-46v) showed evidence for equidistant 

coding in easy trials. Third, we expected a different pattern of results for perceptually difficult 

trials, hypothesizing that MD regions would compensate for the increased perceptual difficulty by 

strengthening stimulus coding and/or clustering these representations (Hypothesis 3). Clustered 
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coding has been shown before in cognitive control related brain regions in non-human primates 

(Freedman et al., 2003), and based on recent theories (Badre et al., 2021; Botvinick & Cohen, 

2014) we reasoned that changing stimulus coding to a more clustered format might be a key neural 

mechanism of how MD regions compensate for increased task difficulty. However, we found no 

evidence for this hypothesis. On the contrary, stimulus coding seemed weaker on perceptually 

difficult trials in most MD regions. Only two regions still encoded stimulus information on noisy 

trials (dorso-medial PFC, 8BM, anterior IPS, IP2), and did so using an equidistant format. Anterior 

IPS (aIPS) encoded stimuli equally well in clean and noisy trials, which was remarkable since the 

ventral visual cortex showed a marked drop in equidistant coding on noisy trials, and may reflect 

compensation for the weaker input. Additionally, we found that coding in aIPS was related to 

changes in behavior, with weaker stimulus coding in this region resulting in more guessing.  

4.2 Clustered vs equidistant coding in MD 

When performing a visual classification task, we need to represent incoming stimulus 

information, extract relevant stimulus features, and then extract category membership to enable a 

behavioral response. Prior work on non-human primates demonstrated that this is supported by 

ventral visual and prefrontal brain regions (Freedman et al., 2003). Ventral visual cortex maintains 

information about both categories and individual exemplars within these categories, both in 

humans and non-human primates (Eger et al., 2008; Kriegeskorte, Mur, Ruff, et al., 2008), and our 

results are largely in line with these findings. The equidistant model, containing information about 

both categories and individual exemplars, explained response patterns in ventral visual cortex. In 

contrast, high-level brain regions such as the fronto-parietal cortex are thought to be closer to 

behavior than to perceptual information. It has been shown that dlPFC and parietal cortex in non-

human primates only represent behaviorally relevant stimulus categories, but carry little 
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information about individual exemplars within these categories (Freedman et al., 2003; Freedman 

& Assad, 2006). For humans, category representations in dlPFC have been shown to be highly 

abstract, and independent of low-level stimulus features (Mok & Love, 2021), and this reflects the 

tuning of stimulus representations towards the task goal, i.e. successful classification. Irrelevant 

differences between exemplars within the same category are discarded and representations are 

optimized for object classification instead.  

This change from more ‘perceptual’ to more ‘behavioral’ representations essentially 

reflects a dimensionality reduction in stimulus representations, as they move from visual to fronto-

parietal brain regions. High-dimensional representations that carry information about the whole 

perceptual space are transformed into low-dimensional, binary representations that merely carry 

information about the task-relevant category membership. Recent theories suggest that high-

dimensional representations are more easily separable, but are susceptible to noise (Badre et al., 

2021; Fusi et al., 2016). Low-dimensional representations have lower separability, but are more 

robust to noise. For this reason, we hypothesized that low-dimensional clustered stimulus 

representations would be used in MD regions especially on perceptually difficult trials, where 

stimulus information is degraded. In perceptually simple trials, we expected to see either no or 

weaker stimulus coding in comparison. 

Our results were only partly in line with these predictions. We observed equidistant 

stimulus coding on perceptually easy trials in parts of the MD network, namely the parietal cortex 

and dlPFC, but not the medial PFC and the anterior insula / frontal operculum. Yet, we found no 

strong evidence for low-dimensional clustered coding in perceptually difficult trials. We found 

anecdotal evidence for such an effect in the inferior frontal junction (IFJp), but evidence was weak 

and difficult to interpret since it was based on a partial correlation result in the absence of a 
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corresponding zero-order correlation. Surprisingly, we did find evidence for equidistant coding in 

the aIPS and dmPFC however.  

There are two notable aspects to this finding. First, we were unable to find stronger coding 

on difficult as compared to easy trials, which has been observed before in MD cortex for stimulus 

position (Woolgar, Hampshire, et al., 2011), stimulus shape (Woolgar, Williams, et al., 2015) and 

task rules (Woolgar, Afshar, et al., 2015). On the contrary, information coding in the MD system 

tended to decrease for noisy trials, except in aIPS in which coding was equally strong coding in 

both easy and hard trials. Second, we were unable to find evidence for a shift from equidistant to 

clustered coding as perceptual difficulty increased, which we had predicted on theoretical grounds 

(Badre et al., 2021), and following work in non-human primates (Freedman et al., 2003; Freedman 

& Assad, 2006). Instead, aIPS encoded stimuli in an equidistant format on both perceptually easy 

and hard trials. Given that such a representational format is likely to be more susceptible to noise, 

finding it on trials in which stimulus information was noisy and degraded was somewhat 

surprising.  

One potential explanation for this might be the difficulty of the classification task overall. 

Error rates were well over 30% for stimuli close to the decision boundary, and it might be that 

stimulus and category signals were very weak as a result. Although we expected precisely this fact 

to drive clustered stimulus representations, we cannot rule out that these representations were too 

weak to detect in some cases, and our design might have lacked the statistical power to detect 

clustered coding in perceptually difficult trials. However, our simulations (Supplementary 

Analysis 1) demonstrated that, if anything, our analysis was more sensitive to finding clustered 

coding, and less sensitive to finding equidistant coding. Thus, having found evidence for 
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equidistant coding indicates that we could have, in principle, also found evidence for clustered 

coding as well.  

Another, more interesting explanation for this finding is that it might be driven by the type 

of experimental manipulation we used in this study. By definition, multiple demand regions are 

more strongly active in difficult, as compared to easy tasks in multiple domains (Assem et al., 

2020; Duncan, 2010; Fedorenko et al., 2013). Recently, it has been suggested however that some 

types of difficulty manipulation might engage the MD regions more than others (Wen et al., 2018). 

Specifically, this paper suggested that difficulty manipulations that limit or degrade incoming 

stimulus information (e.g. shorter stimulus presentations, increased noise) might not recruit MD 

regions as much as manipulations that make stimulus processing harder (e.g. incongruent distractor 

stimuli, mental rotation, Han & Marois, 2013). This would make sense if MD regions recruit 

additional attentional resources to compensate for increased processing demands (Duncan et al., 

2020), but are not involved in refining stimulus representations themselves. From this perspective, 

adding noise to degrade incoming information might be a difficulty increase that MD regions 

cannot compensate for, and are not strongly involved as a result. Obviously, this interpretation is 

speculative at the moment, and does not immediately account for all the existing literature 

(Woolgar, Williams, et al., 2015), but could account for the findings reported here. Future research 

using different, more processing-based difficulty manipulations will be needed to directly compare 

to these results.  

4.3 Difficulty-invariant coding in anterior intraparietal sulcus  

Of all the regions assessed in this study, the anterior intraparietal sulcus (aIPS) appeared to 

have a special role in compensating for increased perceptual difficulty. aIPS is involved in the 

processing of stimulus features (Grefkes et al., 2002), but also more broadly implied in regulating 
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top-down attention (Humphreys & Lambon Ralph, 2015). Here, it was the only brain region that 

consistently encoded stimulus information across clean and noisy trials. This is in contrast to 

stimulus coding in ventral visual cortex, which we only found in clean, but not in noisy trials. 

Thus, aIPS represented stimulus information in perceptually difficult trials that was undetectable 

in perceptual brain regions, suggesting a role in maintaining performance under challenging 

conditions. This pattern of results was only found in aIPS. And although one might expect 

somewhat weaker or different results in PFC compared to parietal cortex (Bhandari et al., 2018),  

it would have been reasonable to predict similar patterns of results in the two areas.  

Together with the prior research on feature-based attention mentioned above, one 

interpretation of our results is that aIPS maintains attention to relevant stimulus features under 

varying difficulties. This would also help explain why aIPS represents stimuli in an equidistant 

format. Since stimulus features differ between different exemplars within the same category, it 

would be sub-optimal to discard exemplar-level information and only encode category information 

instead. Maintaining exemplar-level information instead allows the aIPS to direct attention 

towards relevant features, in perceptually easy and hard trials.  

Additionally, coding in aIPS was predictive of behavior. The more stimulus coding 

decreased from perceptually easy to difficult trials, the more guessing increased from perceptually 

easy to difficult trials. Although speculative, this might indicate that successful regulation of 

feature-based attention, mediated by aIPS, is related to more meaningful, evidence-based 

decisions. Clearly, more research will be needed to replicate this exploratory finding, yet it 

suggests that aIPS may be important for successfully classifying visual images that are difficult to 

perceive.  
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4.4 Conclusion 

Although some results were unexpected, this research demonstrates the value of using 

model-based RSA to assess adaptive coding in MD regions. While past research focused on 

whether the strength of representations of visual stimuli (Woolgar, Hampshire, et al., 2011; 

Woolgar, Williams, et al., 2015) and rules (Etzel et al., 2016; Wisniewski, 2018; Woolgar, Afshar, 

et al., 2015) change with difficulty, we instead focused on the representational format of stimulus 

information. Our results suggest that information coding in the MD system does not always 

increase with perceptual difficulty, but that codes in at least one MD region (the aIPS) may be 

robust to noisy visual input. Despite our prediction that perceptual difficulty would result in a 

change in representational format, we instead found that equidistant coding, characteristic of 

coding in the visual system in easy trials, was in fact maintained in the aIPS on hard trials. 

Moreover, the maintenance of these veridical codes was predictive of individual behavior. Our 

data emphasize the value in examining not only whether task-relevant information is encoded 

under various cognitive conditions of interest, but also in what format.  
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Supplementary Analysis 1: Simulations 

Although the two model RDMs both capture stimulus information, they differ significantly 

in how stimulus categories are encoded. The clustered coding model assumes binary coding of 

stimulus information, discarding all differences between exemplars and only encoding category 

differences. The equidistant coding model however assumes that information about different 

exemplars is preserved in the neural code, and thus contains information about both categories and 

exemplars.  

One effect of these assumptions is that the clustered coding model has an overall lower 

complexity, with the equidistant model making subtler predictions about representational distances 

even within the same category. Together with the fact that the equidistant coding model contains 

exemplar + category information while the clustered coding model contains only category 

information, this might lead to an unfair competition between these models in the partial 

correlation analyses used here. The clustered model might be ‘nested’ within the equidistant 

model, in that it does not contain unique information that is not also contained in the equidistant 

model. If this were the case, we would expect the clustered model to always be outperformed by 

the equidistant coding model, which might explain the lack of clustered coding we found.  

To test this possibility, we performed a simulation analysis. Specifically, we generated data 

from either the clustered or equidistant model, and then tested whether our analysis approach was 

suitable to recover which model generated the data. To do so, we first took the clustered model 

RDM (range of values = [0,1]), and added varying amounts of random Gaussian noise to each cell 

of the matrix (mean = 0, sd = [0.01 - 3.00]). This procedure was repeated 1000 times to generate 

1000 simulated ‘participants’. These simulated RDMs were then used as input to the same analyses 

performed on the actual data in the main manuscript, including both the zero-order/canonical and 
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partial correlation analyses. We expected correlations of the simulated RDMs and the clustered 

model to be higher than with the equidistant coding model, which would indicate successful model 

‘recovery’.  

Results (Figure S1 A.) indicated that the clustered model better explained the data 

regardless of noise level in the zero-order correlation analysis, although the equidistant model also 

explained simulated data to some degree. In the partial correlation analysis, it can be clearly seen 

that only the clustered model explained the data, while the equidistant model was effectively 

suppressed and unrelated to the data, irrespective of how noisy the data was assumed to be. We 

repeated the same analysis, only generating data from the equidistant coding model, and results 

showed the equidistant model explaining the simulated data better than the clustered model (Figure 

S1 B). Thus, using our analysis approach, we could recover which model was used to generate the 

simulated data well, regardless of how noisy data RDMs are assumed to be.  

One might argue that these analyses incorrectly assumed that data RDMs are either 100% 

clustered or 100% equidistant. In reality, data RDMs likely reflect a mix of clustered and 

equidistant signals, which we did not account for in the above analyses. But what if both models 

contributed equally to the signal? In this case, both models should explain the data equally well, 

and this seems a more likely scenario than assuming data are either 100% clustered or 100% 

equidistant. To test this, we first generated data similarly to the previous two simulations, only 

now using a ‘mixed’ model in which both the equidistant and clustered models contribute equally. 

This mixed model was computed by taking the mean of both model matrices, i.e. in each cell of 

the matrix both models contributed to an equal degree. In addition to being more realistic, this 

analysis was also more sensitive to detect potential biases towards either model in our analysis 

approach, as in principle both models should be able to explain an equal part of unique variance 
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in the data in the partial correlation analysis. If one model outperformed the other, our analysis 

would be biased towards detecting it in our data. Simulation results (Figure S1 C) suggest that the 

clustered model explains the data slightly better when noise is weak. For noisier data, both models 

explain the data equally well. Thus, if anything, our analysis approach is slightly biased towards 

detecting clustered coding (assuming little noise), making our findings of equidistant coding in 

parietal cortex and other MD regions even more striking.  
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Figure S1: Simulation results. A. Clustered data. Correlations between simulated data, 

generated from the clustered coding model, and the two different model RDMs (clustered, 

equidistant), for different amounts of noise on the data RDMs.  B. Equidistant data. The same 

correlations are depicted, only for data generated from the equidistant model. C. Mixed data. The 

same correlations are depicted, only for data generated from a mixed model (50% equidistant 

coding, 50% clustered coding). Zero-order correlations are depicted on the left, partial correlations 

on the right. Shaded areas represent 90% confidence intervals. The black line represents the noise 

ceiling, estimated following (Nili et al., 2014), and indicates the maximum correlation that can be 

expected given a particular level of noise in the data.  
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