Supplement to "A flexible workflow for building spectral libraries from narrow window data independent acquisition mass spectrometry data"

Lilian R. Heil ${ }^{1}$, William E. Fondrie ${ }^{1}$, Christopher D. McGann ${ }^{1}$, Alexander J. Federation ${ }^{1}$, William S. Noble*, ${ }^{*, 2}$, Michael J. MacCoss*, ${ }^{*}$, and Uri Keich*,3
${ }^{1}$ Department of Genome Sciences, University of Washington, Seattle, WA, USA
${ }^{2}$ Paul G. Allen School for Computer Science and Engineering, University of Washington, Seattle, WA, USA
${ }^{3}$ School of Mathematics and Statistics, University of Sydney, NSW, Australia

November 22, 2021

1 Supporting Information

- Supplemental File S1: PDF containing pseudocode for the search procedure along with supplemental tables and figures.
- Supplemental File S2: Python script (precursor_matrix.py) used to convert Tide search results to matrix format.
- Supplemental File S3: R script (process_precursors.R) used to perform search.
- Supplemental File S4: Python script (precursor_confidence.py) used for FDR control.

Table 1: Notation

```
Algorithm 1 DIA analysis
    procedure DIASEARCH (allS, allD, groups)
        allGroups \([1:\) length(groups \()]=[]\)
        allIsTarget \(=[]\)
        allScores \(=[]\)
        allPs \(=[\) ]
        for \(i_{w}=1:\) LENGTH \((\) all \(S)\) do \(\quad D\) loop on isolation windows
            \(D_{T}:=\operatorname{all} D\left[i_{w}\right] ; S:=\operatorname{all} S\left[i_{w}\right]\)
            \([M, T D p a i r s, i s T a r g e t]:=\operatorname{DATABASESEARCHING}\left(D_{T}, S\right)\)
            \(D_{\text {ext }}=\left[D_{T}, D_{T}\right] \quad \triangleright D_{\text {ext }}\) includes precursor ID of targets and corresponding decoys
            \(M:=\) ChangepointDetection \((M) \quad \triangle\) Remove leading and trailing "junk" spectra from \(M\)
            peak \(:=\) ChromatographicPeakDetection ( \(M\), TDpairs, isTarget)
            \(M:=\) PEPTIDESCORENORMALIZATION \((M)\)
            \(I p:=\mathrm{TDC}(M, T D p a i r s\), peak, isTarget \() \quad \triangleright\) keep the higher scoring peptide from each
    target-decoy pair
                Ipt \(:=\) optimalRepresentativeSelection \((M\), Ip, isTarget, peak)
                Ipd \(:=\) optimalRepresentativeSelection( \(M\), Ip, NOT(isTarget), peak)
            \(I p:=[I p t, I p d]\)
            \(m A l l:=0 \quad D m A l l\) is the windows-aggregated number of peptides
            for \(i_{p}\) in \(I p\) do
                if \(i_{p} \neq\) which. \(\max \left(M\left[:, \operatorname{peak}\left[i_{p}\right] . m\right]\right)\) then
                    \(I p=I p\left[-i_{p}\right] \quad D\) Retain only the maximum peptide per spectrum
                end if
                \(m\) All \(:=m\) All +1
                \(i_{g}=\operatorname{WhichGroup}\left(D_{\text {ext }}\left[i_{p}\right]\right.\), isTarget \(\left[i_{p}\right]\), peak \(\left[i_{p}\right]\), groups \() \quad \triangleright\) Determine the group of \(i_{p}\)
    based on its features
                allGroups \(\left[i_{g}\right]=\left[\right.\) allGroups \(\left[i_{g}\right], m\) All \(]\)
            end for
            allPs \(=\left[\right.\) allPs,\(\left.D_{\text {ext }}[I p]\right]\)
            allScores \(=[\) allScores, peak[Ip].s]
            allIsTarget \(=[\) allIsTarget, isTarget \([\) Ip \(]]\)
        end for
        for \(i_{g}=1: \operatorname{LENGTH}(\) groups \()\) do
            Ip \(=\) allGroups \(\left[i_{g}\right]\)
            qvalues \([\) Ip \(]=\) QVALUESVIATDC(allScores \([\) Ip \(]\), allIsTarget \([\) Ip \(])\)
        end for
        return (allPs[allIsTarget], qvalue[allIsTarget], allScores[allIsTarget])
    end procedure
    procedure QVALUESVIATDC(scores, isTarget)
        \(n:=\) LENGTH(scores)
        sortPerm \(:=\) ORDER(scores)
        scores \(:=\) scores \([\) sortPerm \(] \quad D\) sort scores in decreasing order
        isTarget \(:=i s\) Target[sortPerm]
        \(n\) TargetWins \(:=\) CuMSUM \((i s T\) Target \()\)
        \(n\) DecoyWins \(:=[1: n]-n\) TargetWins
        estFDR \(:=\min (1,(n\) DecoyWins +1\() / \max (1, n\) TargetWins \())\)
        qvalues \([n]:=\operatorname{estFDR}[n]\)
        for \(i=n-1: 1\) by -1 do
        qvalues \([i]:=\min (\) estFDR \([i]\), qvalues \([i+1])\)
        end for
        return (qvalues[INVERSEPERMUTATION(sortPerm)])
    end procedure
```

```
Algorithm 2 Database searching
    procedure DATABASESEARCHING \(\left(D_{T}=\left(p_{i}\right)_{1}^{m}, S=\left(s_{j}\right)_{1}^{n}\right)\)
        \(D_{D}=\operatorname{CrEATEDEcoyDB}\left(D_{T}\right)\)
        for \(1 \leq j \leq n\) do
            \(M_{T}[i,:]:=\operatorname{scoreAllPeptides}\left(s_{j}, D_{T}\right) \quad \triangle \operatorname{scoreAllPeptides}\) returns the scores of the
    matches between the spectrum \(s_{j}\) and every peptide \(p_{i} \in D\) (here we used Tailor-normalized XCorr)
            \(M_{D}[i,:]:=\operatorname{ScoreAllPeptides}\left(s_{j}, D_{D}\right)\)
        end for
        \(i s T a r g e t[1: m]=\) TRUE
        \(i s T a r g e t[m+1: 2 m]=\) FALSE
        TDpairs \([1: m]=[m+1: 2 m]\)
        TDpairs \([m+1: 2 m]=[1: m]\)
        return \(\left[M:=\operatorname{CONCAT}\left(M_{T}, M_{D}\right)\right.\), TDpairs, isTarget \(]\)
    end procedure
```

```
Algorithm 3 Changepoint detection
    procedure CHANGEPOINTDETECTION \((M)\)
        \(n=\operatorname{NROWS}(M)\)
        for \(j=1: n\) do
            meds \([j]:=\operatorname{MEDian}(M[:, j])\)
        end for
        for \(n c p=2: 4\) do \(\quad \triangle n c p\) is total number of changepoints
            \(A:=\) ChANGEPOINT (meds, ncp) \(\quad \perp\) Inputs for changepoint function (described by Killick et al.,
    2016) are vector of scores and number of changepoints, \(l\)
        if \(A_{n c p}-A_{1} \geq 0.5 \times n\) then
            \(M:=M\left[:, A_{1}: A_{n c p}\right]\)
            return \(M\)
        end if
        end for
        return ERROR
    end procedure
```

```
Algorithm 4 Chromatographic peak detection
    procedure ChromatographicPeakDetection(M,TDpairs, isTarget)
        \(m=\operatorname{NROWS}(M)\)
        for \(i=1: m\) do
            \(\operatorname{med}=\operatorname{median}(M[i,:])\)
            \(\operatorname{MAD}=\operatorname{MEDIAN}(|M[i,:]-\operatorname{med}|)\)
            \(M^{R Z}[i,:]:=(M[i,:]-\operatorname{med}) / M A D\)
        end for
        for \(i_{t}=1: m\) do
            if isTarget \(\left[i_{t}\right]\) then
                \(i_{d}=T\) Dpairs \(\left[i_{t}\right]\)
            else
            continue
            end if
            \(\left[\right.\) peak \(\left.\left[i_{t}\right] \cdot m, l_{t}, r_{t}\right]:=\operatorname{FindPeakInRow}\left(M^{R Z}\left[i_{t},:\right]\right)\)
            \(\left[\right.\) peak \(\left.\left[i_{d}\right] \cdot m, l_{d}, r_{d}\right]:=\operatorname{FindPEAKInRow}\left(M^{R Z}\left[i_{d},\right]\right)\)
            if \(l_{t}+r_{t}<l_{d}+r_{d}\) then
                \(l=l_{d} ; r=r_{d}\)
            else
                \(l=l_{t} ; r=r_{t}\)
            end if
            \(\operatorname{peak}\left[i_{t}\right] \cdot l=\max \left(\operatorname{peak}\left[i_{t}\right] \cdot m-l, 1\right)\)
            \(\operatorname{peak}\left[i_{t}\right] \cdot r=\min \left(p e a k\left[i_{t}\right] \cdot m+r, n\right)\)
            peak \(\left[i_{i}\right] \cdot w=l+r+1\)
            \(\operatorname{peak}\left[i_{t}\right] \cdot s=M\left[i_{t}, \operatorname{peak}\left[i_{t}\right] \cdot m\right]\)
            \(\operatorname{peak}\left[i_{d}\right] \cdot l=\max \left(\operatorname{peak}\left[i_{d}\right] \cdot m-l, 1\right)\)
            \(\operatorname{peak}\left[i_{d}\right] \cdot r=\min \left(p e a k\left[i_{d}\right] \cdot m+r, n\right)\)
            peak \(\left[i_{d}\right] \cdot w=l+r+1\)
            \(\operatorname{peak}\left[i_{d}\right] \cdot s=M\left[i_{d}, \operatorname{peak}\left[i_{d}\right] \cdot m\right]\)
        end for
        return peak \(\quad \triangleright\) an m-dimensional structure array storing peak data for each peptide
    end procedure
    procedure findPeakInRow \(\left(M_{r}\right)\)
        \(m=\) wнісн. \(\max \left(M_{r}\right)\)
        \(M_{r}=M_{r} / M_{r}[m]\)
        for \(l=0: m-1\) do
            if \(M_{r}[m-l]<0.75\) then
                \(l=l-1\)
                break
            end if
        end for
        for \(r=0: n-m\) do
            if \(M_{r}[m+r]<0.75\) then
                \(r=r-1\)
                break
            end if
        end for
        return \([m, l, r]\)
    end procedure
```

```
Algorithm 5 Peptide score normalization
    procedure PeptideScoreNormalization \((M)\)
        \(m=\operatorname{NROWS}(M)\)
        for \(i=1: m\) do
            \(q^{0.99}:=\operatorname{QuANtile}(M[i,:], 0.99)\)
            \(M[i,:]=M[i,:] / q^{0.99}\)
        end for
        return \(M \quad D\) return the peptide normalized scores
    end procedure
```

```
Algorithm 6 Target/decoy competition
    procedure TDC(M, TDpairs, peak, isTarget)
        \(m=\operatorname{NROWS}(M)\)
        \(I p:=\emptyset\)
        for \(i_{t}=1: m\) do
            if isTarget \(\left[i_{t}\right]\) then
                \(i_{d}=\) TDpairs \(\left[i_{t}\right]\)
            if peak.s \(\left[i_{t}\right]>\) peak.s \(\left[i_{d}\right]\) then
                    \(I p=\left[I p, i_{t}\right]\)
            else
                \(I p=\left[I p, i_{d}\right]\)
            end if
            end if
        end for
        return \(I p\)
    end procedure
```

```
Algorithm 7 Selection of optimal representatives
    procedure optimalRepresentativeselection \((M\), Ip, isTarget, peak)
        Ipt \(:=I p[i s T a r g e t]\)
        Ipd \(:=I p[\mathrm{NOT}(\) isTarget \()]\)
        \(I p t:=I \operatorname{Ipt}[\operatorname{ORDER}(\) peak.s[Ipt])] \(\quad\) Sort scores in decreasing order
        for \(i_{p}\) in Ipt do
            \(p\) Row \(:=M\left[i_{p},:\right]\)
            overlaps \(=\left\{i \in \operatorname{Ipt}: \operatorname{peak}\left[i_{p}\right] \cap \operatorname{peak}[i] \neq \emptyset\right.\) AND peak.s \([i]<\) peak.s \(\left.\left[i_{p}\right]\right\}\)
            \(\operatorname{acosNull}=0\)
            draws \(:=\) PERMUTE (Ipd)
            for \(l=1: \min (1000, \operatorname{LENGTH}(I p d))\) do
                \(p\) Row \(2=M[\) draws \([l],:]\)
                    \(\operatorname{acos} N u l l:=\max (\operatorname{acosNull},(\mid p\) Row \(\cdot p\) Row \(2 \mid) /(\| p\) Row \(\| \| p\) Row \(2 \|))\)
            end for
            for \(i\) in overlaps do
                    \(p\) Row \(2=M[i,:]\)
                    acosTest \(=(\mid p\) Row \(\cdot p\) Row \(2 \mid) /(\| p\) Row \(\| \| p\) Row \(2 \|)\)
                    if \(a \operatorname{cosTest}>a \operatorname{cosNull}\) AND \([(p R o w 2>0) \cdot(p R o w>0) / n]>0.25\) then \(\quad D\) Check if acos
    distribution and predicted ion overlap are significant
                \(I p t=\operatorname{Ipt}[-w h i c h(\operatorname{Ipt}==i)] \quad \triangleright\) Remove the lower scoring peptide from the final matrix
                    end if
            end for
        end for
        return \(I p t\)
    end procedure
```

Parameter	Value
min-length	6
max-length	50
min-mass	200
max-mass	7200
enzyme	trypsin
deisotope	0
digestion	full-digest
missed-cleavages	0
keep-terminal-aminos	NC
num-decoys-per-target	1
min-mods	1
max-mods	1
mods-spec	$1 \mathrm{STY}+79.966331$

Table 2: Parameters for Tide index of phosphopeptide enriched samples.

Parameter	Value
min-peaks	20
deisotope	0
precursor-window	1.007
precursor-window-type	mz
mz-bin-width	0.02
mz-bin-offset	0.4
spectrum-charge	2
top-match	100000
use-tailor-calibration	true
concat	true

Table 3: Parameters for direct Tide search of phosphopeptide enriched samples.

Parameter	Value
RPmax	25
RFmax	300
CorrThreshold	0.2
DeltaApex	0.6
RTOverlap	0.3
AdjustFragIntensity	true
BoostComplementaryIon	true
ExportPrecursorPeak	false
ExportFragmentPeak	false
SE.MS1PPM	20
SE.MS2PPM	40
SE.SN	2
SE.MS2SN	2
SE.MinMSIntensity	5
SE.MinMSMSIntensity	1
SE.MaxCurveRTRange	1
SE.Resolution	15000
SE.StartCharge	2
SE.EndCharge	3
SE.MS2StartCharge	2
SE.MS2EndCharge	3
SE.NoMissedScan	1
SE.MinFrag	10
SE.EstimateBG	true
SE.MinNoPeakCluster	1
SE.MaxNoPeakCluster	3
SE.StartRT	0
SE.EndRT	9999
SE.MinMZ	200
SE.IsoPattern	0.8
SE.MassDefectFilter	true
WindowType	MSX

Table 4: DIA-Umpire parameters for generating pseudospectra from phosphopeptide-enriched data.

Parameter	Value
min-peaks	20
deisotope	0
precursor-window	20
precursor-window-type	ppm
mz-bin-width	0.02
mz-bin-offset	0.4
spectrum-charge	2
top-match	3
use-tailor-calibration	true
concat	true

Table 5: Parameters for Tide search of pseudospectra from phosphopeptide enriched samples.

Parameter	Value
min-length	6
max-length	50
min-mass	200
max-mass	7200
enzyme	trypsin
deisotope	0
digestion	full-digest
missed-cleavages	0
keep-terminal-aminos	NC
num-decoys-per-target	1
min-mods	0
max-mods	255

Table 6: Parameters for Tide index for yeast search.

Parameter	Value
min-peaks	20
deisotope	0
precursor-window	1.007
precursor-window-type	mz
mz-bin-width	0.02
mz-bin-offset	0.4
spectrum-charge	all
top-match	10000
use-tailor-calibration	true
concat	true

Table 7: Parameters for direct Tide search of yeast samples.

Figure 1: Graphical representation of a single $2-m / z$ matrix produced after Tide search (A) The full matrix has 1733 peptides (rows) and 1439 spectra (columnns). (B) A zoom in on the area of (A) marked by the yellow box. The peptide NLEIQQSLGTLK is accepted at 1% FDR based on this example.

Figure 2: Plot of median scores for each spectrum across a DIA window. Changepoint detection automatically removes spectra with median scores distinct from the rest of the run. To account for shifts in score distributions early in the chromatographic gradient, only spectra between red dashed lines are retained for analysis. We first identify two changepoints and retain only the n^{\prime} mass spectra between these two changepoints provided $n^{\prime} \geq 0.5 n$, where n is the original number of spectra. If $n^{\prime}<0.5 n$ then we repeat the changepoint detection while increasing the number of changepoints, this time considering the n^{\prime} spectra between the first and the last changepoints.

Figure 3: Peak boundaries assigned with our method. The figure graphically depicts the $+/-20$ scores surrounding the top scoring spectrum for a number of target peptides. Peak boundaries (assigned by Supplemental Algorithm 4) are shown with yellow lines.

Figure 4: Pairwise scatterplot with each point representing a single spectrum. In (a), the peptides are identified as significantly correlated. In (b), the peptides are not significantly correlated. If the peptides in (a) share more than 25% of their ions, the lower scoring peptide (y -axis) will be removed.

Figure 5: Plot of q-values when the top k peptides are retained. Here, the top k scoring peptides for each spectrum are retained for FDR control. Although many DIA spectra are chimeric, it is rare that multiple "true" peptides would share the same optimally matching spectrum. Therefore, using a k value of 1 does not seem to eliminate a significant number of peptide matches, rather it increases power presumably by culling some high scoring fake matches. The vertical line represents 1% FDR threshold.

Figure 6: Summary of the number of peptides in EncyclopeDIA runs using alternative libraries. The figure summarizes the results of running EncyclopeDIA on the wide-window yeast DIA data using four different libraries: the first two runs used narrow-window yeast DIA data processed by our novel tool using a q-value cutoff of 0.01 and 0.5 to generate the library, and the third run used EncyclopeDIA's ability to take advantage of the same narrow-window data to significantly reduce the initial Prosit-generated library. The last run used the full-size Prosit library of all possible tryptic peptides.

