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1 Example of linear increase of� -VAE bottleneck capacity during training. (a) Decreasing loss as a
function of training iteration. (b) Linear increase in bottleneck capacity during training (d) Example
images generated by sampling during training, demonstrating the acquisition of �ne details as capacity
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Graded examples of PC0 and PC1.This �gure displays some example cell �uorescence images
that correspond to certain values of PC0 and PC1. For each component valueV = � 4:0; 3:0; :::; 4:0,
twenty images have been shown for whom their associated PC0 or PC1 valuev falls within the range
V � 0:5 < v < V + 0 :5. The sub-�gure below shows the resulting "average image" obtained by taking
the mean of every image in a 100,000-image dataset that corresponds to the aforementioned PC-value
ranges. The number above each average image represents the number of raw images that have been
averaged to obtain it. As can be seen, PC0 correlates strongly with cell type, whereas PC1 correlates
strongly with cell density/nuclear size. The PC1/cell-type correlation can perhaps be explained by the
fact that the nuclei of scribkdcells tend to be larger, therefore there are few scribkdcells at high values of
PC1. Additionally, there are relatively few examples of scribkd cells at very high density, due to the
competition itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Examples of all Principal Components.After PCA was applied to the latent space, it was found that
several of the principal components corresponded to interpretable features of the cell �uorescence
images. This �gure portrays the result of taking the mean of all images from a dataset of 100,000
images whose corresponding value of a particular principal component fell within a speci�c range (the
x-axis value± 0.5). What is obtained is a way of visualising how the images differ with the variation
of any one principal component. This visualisation is shown for all thirty-two principal components
extracted using PCA. It can seen that, for example, PC0 corresponds primarily to cell type, whereas
PC1 corresponds to cell density/nuclear area, PC5 to orientation, PC3 to aspect ratio, and so on. At the
extremities of the plotted range, images may appear to be atypically detailed. This is due to the paucity
of image examples that correspond to very high or low values of a particular principal component. . . 11

4 Correlation of all Principal Components with measureable parameters.This �gure shows the
correlation coef�cients of all the Principal Components with certain calculated variables. These
variables were calculated based on the intensity images of example cell crops and their associated
U-Net segmentations (see Section 1.9 for more details). The results shown here can be cross-referenced
with the results shown in Figure 3 to arrive at an interpretation of the physical features to which the
Principal Components correspond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Example scribkd trajectories. Each trajectory is cropped to� 32 minutes around the cutoff (red
vertical line). The cutoff represents the point after which there are visible changes to the chromatin
morphology which signify either apoptosis or mitosis. . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Generative modeling of “synthetic” trajectories. (a) For each synthetic trajectory we start by encod-
ing a real image as a starting point. Next, we take a random walk in the latent space. These trajectories
in latent space are used as inputs to the TCN. Here, we also use the decoder to generate image sequences
that represent the random walks in latent space. (b) Four example synthetic trajectories. . . . . . . . 14

7 Example of a feature saliency heatmaps for a scribkd apoptosis event.Here we calculate the feature
saliency w.r.t. the input pixel data by backpropagating through the TCN and the convolutional encoder
of the � -VAE. The input image data is shown in the left column. The middle column shows pixel
saliency in the GFP channel of the input. The right column shows pixel saliency in the RFP channel of
the input. Each image of the saliency is normalized per time point. Large gradient magnitudes (reds,
yellows) indicate higher feature saliency. White arrows at indicate examples of regions of high saliency
corresponding to nearby dividing cells or changes in the nuclear morphology of the target cell. . . . . 15
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8 Fraction of correct predictions at different timescales for scribkd cells. After being fed a given
number of frames of input, the TCN assigns a �nal-layer logit value to each label (apoptosis, mitosis or
synthetic), which, after application of the softmax activation function, can be taken as the "con�dence"
value of the TCN in any particular label. In general, as the TCN is fed consecutive frames, it becomes
gradually more con�dent in the correct prediction. This �gure is based on a set of trajectories for which
all of the trajectories were classi�ed correctly by the TCN with at least 99% con�dence (a threshold of
T = 0 :99) after the TCN was fed every frame of the trajectory. It shows how the fraction of trajectories
classi�ed correctly with a threshold ofT = 0 :99 increases as the length of input increases. These data
can potentially be used to determine the common length of input required before the TCN becomes
con�dent in any particular cell fate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 PC1 trajectories. This �gure shows the result of collecting all of the scribkdcell trajectories that were
labelled 'apoptosis' or 'mitosis' (by the trajectory-classi�cation network, in the case of the mitoses,
and manually, in the case of the apoptoses) and then �nding the average value over time of PC1,
which correlates strongly with cell size/cell density. This was done for the "Competition", "BIRB" and
"Uninduced" conditions. Some patterns emerge from these plots. The �rst is that there tends to be a
drop in PC1 in the run-up to a mitosis event; this is consistent across all the drug treatments used. The
second is that PC1 tends to be higher for apoptoses throughout the trajectory, in comparison to mitoses.
Interestingly, the mean PC1 values tended to be higher in mitoses from the BIRB and Uninduced
datasets, compared to the Competition dataset. This suggests that in the BIRB and Uninduced datasets,
the scribkdcells displayed a higher tolerance to compaction compared to the Competition dataset (i.e.
they could be subjected to higher levels of compaction and still divide rather than apoptose). This
is consistent with the known role of p38 kinase in stress response pathways activated by mechanical
competition and the lack of competition when scribble knock down is not induced. (Supplementary
Table 3). Similar effects can be observed in the confusion matrices obtained for these conditions (see
main text). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10 Normalized cell counts for MDCKWT cells under various conditions. "Competition" (cell com-
petition between MDCKWT and scribkd cells), "BIRB" (competition in the presence of BIRB796),
"Uninduced" (where the scribkd cells are uninduced and therefore neither knock-down nor competition
occur), and "DMSO" (competition in the presence of dimethyl sulfoxide). Since DMSO was used as
a negative control, it was expected that the "DMSO" and "Competition" conditions would produce
similar cell count plots. The ratio of MDCKWT to scribkd cells at the beginning of the experiments was
prepared to be 50:50. The cell counts have been normalized relative to the initial count at the beginning
of the experiment. This initial level is represented by the "Baseline" plot. . . . . . . . . . . . . . . . . 18

11 Normalized cell counts for scribkd cells under various conditions.In the "Uninduced" plot, where
Scribble knock-down does not occur, the cell count follows a trajectory not too dissimilar to that which
MDCKWT cells would take. However, in the "Competition" plot, the cell count remains close to the
Baseline, re�ecting the inhibition of scribkd population growth as a result of apoptosis induced by
cell competition. The "BIRB" plot shows how scribkd population growth is affected by treatment of
BIRB796, which prevents apoptosis by inhibiting the p38 kinase stress response pathways activated
by competition. The result is that population growth is higher, though not to same extent as when
competition is wholly absent. Finally, the "DMSO" plot follows very closely the trajectory taken by the
"Competition" plot, which is to be expected, since DMSO was used as a negative drug control. . . . . 18

12 Example incorrect predictions of cell fate in the uninduced (scribkd, tet-) dataset. Two example
trajectories are shown, with one sub-�gure for each. At the top of each sub-�gure is placed a collage of
time-points of the trajectory before the "cutoff" point. To the right is the �nal time-point of the trajectory
(after the cutoff point), revealing the cell fate. Below that is shown, in order: the con�dence plot,
showing the TCN's predictions over time; a plot of PC1, the most important principal component for
fate prediction; a saliency heat-map showing which components were most important to the prediction,
and when and; a saliency plot over time for PC1. In both cases, a ground-truth mitosis was classi�ed
by the TCN to be apoptotic; presumably because of the high PC1 recorded (high density) throughout
the trajectory. This error could be interpreted as arising due to the fact that in the Uninduced dataset,
Scribble knock-down does not occur, and therefore, competition does not occur. As a result, scribkdcells
could endure high densities that would have been fatal for them under conditions of competition. . . . 19

4



Supplementary Information

13 Example incorrect predictions of cell fate in the BIRB796 treated dataset.Two example trajec-
tories are shown, with one sub-�gure for each. At the top of each sub-�gure is placed a collage of
time-points of the trajectory before the "cutoff" point. To the right is the �nal time-point of the trajectory
(after the cutoff point), revealing the cell fate. Below that is shown, in order: the con�dence plot,
showing the TCN's predictions over time; a plot of PC1, the most important principal component for
fate prediction; a saliency heat-map showing which components were most important to the prediction,
and when and; a saliency plot over time for PC1. In both cases, a ground-truth mitosis was classi�ed
by the TCN to be apoptotic; presumably because of the high PC1 (high density) recorded throughout
the trajectory. This error could be interpreted as arising due to the fact that BIRB796 inhibits the p38
kinase stress response pathways that trigger apoptosis as a result of competition. With these pathways
inhibited, cells that would otherwise have apoptosed instead divide. . . . . . . . . . . . . . . . . . . 20
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1 Additional methods

1.1 Cell culture

The MDCK cell lines used for this study scribkd were a kind gift from Prof Yasuyuki Fujita (University of Kyoto,
Japan) and described in [1].To enable visualisation of nucleic acid organisation during the cell cycle, we established
cell lines stably expressing �uorescently tagged histone markers. Use of different �uorescent proteins enabled us to
distinguish the two competing cell types and allowed for accurate segmentation. MDCKWT and scribkd cells expressing
H2B-GFP and -RFP nuclear markers were described in [Bove et al, 2017]. All cell lines used in this publication have
been tested for mycoplasma infection and were found to be negative (MycoAlert Plus Detection Kit, Lonza, LT07-710).
MDCK cells were grown in DMEM (Thermo-Fisher) supplemented with 10% fetal bovine serum (FBS, Sigma-Aldrich),
Hepes buffer (Sigma-Aldrich), and 1% Penicillin/Streptomycin in a humidi�ed incubator at 37� C with 5% CO2. The
scribkd cells were cultured as wild-type cells, except that we used tetracycline-free bovine serum (Clontech, 631106) to
supplement the culture medium. For inducing expression of scribble shRNA, doxycycline (Sigma-Aldrich, D9891-1G)
was added to the medium at a �nal concentration of 1� g/ml.

1.2 Automated Wide�eld Microscopy

A custom-built automated epi�uorescence microscope was built inside a standard CO2 incubator (Heraeus BL20) which
maintained the temperature at 37� C and 5% CO2. The microscope utilised an 20� air objective (Olympus Plan Fluorite,
0.5 NA, 2.1mm WD), high performance encoded motorized XY and focus motor stages (Prior H117E2IX, FB203E and
ProScan III controller) and a 9.1MP CCD camera (Point Grey GS3-U3-91S6M). Bright�eld illumination was provided
by a �bre-coupled green LED (Thorlabs, 530nm). GFP and mCherry/RFP �uorescence excitation was provided by
a LED light engine (Bluebox Optics niji). Cameras and light sources were synchronised using TTL pulses from an
external D/A converter (Data Translation DT9834). Sample humidity was maintained using a custom built chamber
humidi�er. The microscope was controlled using MICRO-MANAGER [2] and our own software OCTOPUSL ITE2.

1.3 Cell competition assay

Cell competition assays were carried out in 24-well imaging plates (ibidi). At the start of each experiment, cells were
seeded at an initial density of1 � 10� 3 cells/�m 2. MDCKWT cells expressing H2B-GFP were mixed with scribkd

H2B-RFP cells at a ratio of 90:10, 50:50 or 10:90. In some experiments, the expression of scribble shRNA was
been induced in scribkd cells by exposure to 1ug/mL doxycycline for 70 hours before seeding. In other experiments,
the cells were maintained in tetracycline free medium to prevent scribble shRNA induction. Imaging was started
2–3 h after seeding. Imaging medium used during the assay was phenol red free DMEM (Thermo Fisher Scienti�c,
31053) supplemented with tetracycline-free bovine serum, Hepes, antibiotics and, for experiments involving induction,
doxycycline at the dose indicated above. Multi-location imaging was performed inside the incubator-scope acquiring
Bbright�eld, GFP and RFP �uorescence images with a frequency of 1 frame every 4 minutes for each position for 80
hours (1200 frames).

1.4 Image alignment and normalization

Image stacks were aligned using StackReg [3]. All images used in the analysis were normalized to have a mean value
of zero and unit variance.

1.5 Single cell tracking

Instance segmentation of individual cells in timelapse microscopy sequences was performed using a residual U-Net as
previously described. We used a Bayesian cell tracking approach3 to assemble single-cell cell trajectories from the data
[4, 5].

1.6 Glimpse extraction, cell fate classi�cation and determination of cutoff

Glimpses are extracted at64� 64, 128� 128and256� 256pixels, centred on the cell of interest at each time point,
and downsampled to64� 64pixels. We use the �rst scale as input to the trajectory classi�cation network, reasoning
that the morphology of the nucleus is suf�cient to classify the fate of the cell. We trained a combined CNN-LSTM

2https://www.github.com/quantumjot/octopuslite
3https://www.github.com/quantumjot/bayesiantracker
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neural network to classify each trajectory as containing either a mitotic or an apoptotic event. This network was trained
using 7,922 manually labelled trajectories: 4,401 mitoses, 828 apoptoses and 2,693 "unknown" trajectories. The latter
refers to trajectories in which neither a mitosis nor an apoptosis occurs. The CNN and the LSTM [6] were trained
separately. The CNN was trained to classify individual �uorescence images according to the morphological state of
the nucleus ("interphase", "metaphase", "prometaphase", "anaphase" or "apoptotic") [4, 5]. The LSTM was trained to
integrate the time-speci�c state classi�cations in a trajectory to arrive at a classi�cation of the trajectory as a whole
("mitotic", "apoptotic" or "unknown"). Trajectories terminating with an unknown classi�cation arise when a cell exits
the microscope's �eld of view (FOV) or the movie terminates before an event can occur.

Various augmentation techniques were used to train both the CNN and the LSTM. For the CNN, we used random
�ipping, cropping, rotation, translation, noise addition, brightness adjustment, and aspect ratio adjustment on the
training images. For the LSTM, we used frame-swapping, random-frame-deletion and noise addition on the training
trajectories. After all of the labelled trajectories were obtained, an automated procedure was applied to shorten the
duration of the glimpses so as to leave out the portion of each time-series that contains the fate event (the mitosis or
apoptosis event) (Fig S4). This pruning procedure ensured that the prediction network could not use morphological
changes arising as a consequence of cell fate.

1.7 Confusion matrices

To assess the classi�cation performance of our networks, we computed a confusion matrix. In a confusion matrix, the
number in rowi and columni represents the number of data instances in the testing set that are of ground-truth class
i yet are classi�ed as belonging to classj by the model. We often used a normalized confusion matrix, where each
element in rowi is written as a proportion of the sum of elements in rowj (i.e. the number of ground-truth examples of
classj).

1.8 Cell masking procedure

We performed cell masking as follows. First, we used the U-Net segmentation of our glimpse images to �nd the regions
in each image that corresponded to cells, and conversely, the regions that corresponded to the background. Next, we
identi�ed the cell-regions that corresponded to either the central cell, or the cells in the neighbourhood, depending
on which we wished to mask. In the "Mid-View, Central Cell Only" framework, we masked the neighbourhood cells,
whereas in the "Mid-View, Neighbour Cells Only" framework we masked the central cell. Finally, we calculated the
mean and standard deviation of pixel values in the background region, and then used these values to replace the masked
region with Gaussian noise, such that this region appears similar to the background.

1.9 Calculation of image properties and correlation with principal components

To calculate image properties, we used scikit-image regionprops. We calculated the following properties for the central
cell of each glimpse using the intensity images and the U-Net segmentation:

• area

• eccentricity

• orientation

• solidity

• intensity_mean

Separately, we also calculated the number of cells by counting the number of unique connected components in the
U-Net binary segmentation of the glimpse, using thelabel function from themorphology module of scikit-image.
The aspect ratio of the cells was calculated by �nding the ratio between the maximum horizontal and vertical spans of
the cells as given by their U-Net segmentations.

1.10 Computational hardware

All code was implemented in Python and C/C++ using CVXOPT, GLPK, Numpy, Scipy, Scikit-Image, Scikit-Learn,
TensorFlow, Keras and JAX libraries. Microscopy image visualisation was performed usingNAPARI[7]. All image
processing was performed on a ASUS ESC4000 G3 server (RackServers.com) running Ubuntu 18.04 LTS with 256Gb
RAM and NVIDIA GTX1080 Ti or V100 GPUs.
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2 Supplementary �gures

Figure 1:Example of linear increase of� -VAE bottleneck capacity during training. (a) Decreasing loss as a function of training
iteration. (b) Linear increase in bottleneck capacity during training (d) Example images generated by sampling during training,
demonstrating the acquisition of �ne details as capacity increases.
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