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Abstract  18 

Access to higher cognitive functions in real-time remains very challenging, because these 19 

functions are internally driven and their assessment is based onto indirect measures. In 20 

addition, recent finding show that these functions are highly dynamic. Previous studies using 21 

intra-cortical recordings in monkeys, succeed to access the (x,y) position of covert spatial 22 

attention, in real-time, using classification methods applied to monkey prefrontal multi-unit 23 

activity and local field potentials. In contrast, the direct access to attention with non-invasive 24 

methods is limited to predicting the attention localisation based on a quadrant classification. 25 

Here, we demonstrate the feasibility to track covert spatial attention localization using non-26 

invasive fMRI BOLD signals, with an unprecedented spatial resolution. We further show that 27 

the errors produced by the decoder are not randomly distributed but concentrate on the 28 

locations neighbouring the cued location and that behavioral errors correlate with weaker 29 

decoding performance. Last, we also show that the voxels contributing to the decoder 30 

precisely match the visual retinotopic organization of the occipital cortex and that single trial 31 

access to attention is limited by the intrinsic dynamics of spatial attention. Taken together, 32 

these results open the way to the development of remediation and enhancement 33 

neurofeedback protocols targeting the attentional function. 34 

 35 
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Introduction 37 

Accessing information generated by the brain in real-time has been a major challenge these 38 

past years. Indeed, decoding brain activity in real-time can be used to develop 39 

neuroprostheses, or design remediation or brain training protocols using neurofeedback 40 

approaches (Loriette and Ziane, 2021). It can also be used to enhance our understanding of 41 

the neural and network bases of cognition (Loriette et al., 2021). Thanks to advances in 42 

feature detection and machine learning approaches (Abraham et al., 2014), considerable 43 

progress has been made in both animal (Astrand et al., 2016; Branco et al., 2017; Brown et 44 

al., 1998; Padmanaban et al., 2018; Tremblay et al., 2015) and human research fields 45 

(Glaser et al., 2020; Grootswagers et al., 2017; Tong and Pratte, 2012). For example, 46 

sensory and motor brain signals can now be decoded with high accuracy using both invasive 47 

(Bouton et al., 2016; Branco et al., 2017; Hatsopoulos et al., 2004; Ibayashi et al., 2018) and 48 

non-invasive techniques (Kamitani and Tong, 2005; Schwarz et al., 2017; Wen et al., 2018). 49 

In the present study, we focus on real-time spatially resolved access to the spatial locus of 50 

attention -or attentional spotlight- using BOLD fMRI signal approaching what has recently 51 

been achieved using invasive intra-cortical recordings in macaque monkeys (Astrand et al., 52 

2020, 2016; De Sousa et al., 2021; Gaillard et al., 2020). 53 

Visual attention is a cognitive process which allows to select visual stimuli in space for 54 

enhanced processing (Boynton, 2005; Gaillard and Ben Hamed, 2020). Spatial attention can 55 

be divided in two different processes: overt attention, whereby the eyes move towards the 56 

stimulus of interest, and covert attention, which is the process of shifting the focus of 57 

attention towards a visual stimulus while the eyes remain stable (Posner, 1980). More 58 

precisely, covert attention enhances the detection of the attended stimuli as well as reaction 59 

times in response to the stimuli (Carrasco and Yeshurun, 2009). This covert attention is 60 

linked to activation of a well-known brain network which includes, in both humans and non-61 

human primates, the frontal eye field (FEF), Intraparietal sulcus (IPS), and the visual cortex 62 

(Corbetta et al., 2008; Corbetta and Shulman, 2002; Ibos et al., 2013; Simpson et al., 2011). 63 
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While the neural and network bases of covert attention are increasingly understood, 64 

accessing this cognitive function in real-time has remained challenging for multiple reasons. 65 

One reason for this is the fact that the precise informational content of covert functions can 66 

only be assessed indirectly from differed behavioral responses. Another reason pertains to 67 

the fact that recent accounts indicate that spatial attention, rather than being stable in space, 68 

is actually rhythmic, moving from one spatial location to another (Fiebelkorn et al., 2013; 69 

Gaillard et al., 2020; Gaillard and Ben Hamed, 2020; Landau and Fries, 2012). Several 70 

studies have been conducted in order to access covert visual attention in real-time. 71 

Decoding the (x,y) location of attentional locus has been achieved using intra-cortical 72 

electrophysiological recordings in non-human primates (Astrand et al., 2020, 2016; De 73 

Sousa et al., 2021; Gaillard et al., 2020). This real-time access to spatial attention is 74 

demonstrated to be highly predictive of overt perception and is characterized both by a high 75 

temporal (Gaillard et al., 2020) and a high spatial resolution (Di Bello et al., 2021). High 76 

decoding performances have also been demonstrated using EEG-based event related 77 

responses (ERP) (Thiery et al., 2016). However, this approach is incompatible with single 78 

trial level decoding as it depends on the modulation of the response of a visual stimulus by 79 

attention and requires an accumulation of data over a numerous number of trials. As a 80 

result, accessing the attentional spotlight in real-time using non-invasive techniques in 81 

humans remains challenging (Astrand et al., 2014). The decoding of attentional position from 82 

EEG recordings currently allows a classification in 2 positions (left and right) with an average 83 

decoding performance of 62.6% (Trachel et al., 2015). Classification from fMRI signals 84 

achieves 70 to 80% accuracy for 4 quadrant classification (Andersson et al., 2012; 85 

Ekanayake et al., 2018). However, in these latter studies, eye movements have not been 86 

controlled for. This leads to ambiguous results as it remains difficult to prove that achieved 87 

spatial attention decoding is not partly due to eyes movement signals. Moreover, the more 88 

recent study uses very high salience visual stimuli in order to guide participant’s covert 89 

attention, which might also have introduced confounding visual signals to the attentional 90 

signals. 91 
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In the present study, we  aimed to develop an fMRI based, real time method to decode the 92 

locus of covert attention in space in humans with an unprecedented high spatial resolution. 93 

Specifically, we build a participant specific preprocessing and decoding method which can 94 

be deployed in real-time, while subjects are performing an attentional task. To do so, we 95 

designed a cued target detection attentional task with very low salience visual stimuli so as 96 

to maximize spatial attention processes. This task allows us to achieve reliable decoding at 97 

the single trial level. For any given subject, this decoding is reproducible and remains stable 98 

across sessions recorded several days apart. Our analyses further show that the errors 99 

produced by the decoder are not randomly distributed over all the possible spatial locations 100 

but are mainly concentrated on the locations neighbouring the cued location, indicating that 101 

classification errors are either due to noise in the signal or, to the fact that attention is 102 

intrinsically dynamic, as demonstrated by invasive approaches with non-human primates 103 

(Gaillard et al., 2020). Moreover, we show that decoding performance varies as a function of 104 

the subjects’ attentional behaviour, thus linking attentional engagement in the task to 105 

decoding performance. We also show that the voxels contributing to the decoder precisely 106 

match the visual retinotopic organization of the occipital cortex (Kastner et al., 1998; 107 

Warnking, 2002). These results show that our decoder has been able to target specific 108 

attentional regions at the single subject level, at the single trial level. Last, we address the 109 

reproducibility of these results and generalize our observations to a similar task based on a 110 

different spatial configuration, thus demonstrating the reliability of our method.  Taken 111 

together, this study demonstrates that we can capture stable covert spatial attentional 112 

information at the single trial level using non-invasive fMRI-based brain activity and that 113 

these single trial estimates are predictive of overt behavioural performance. These results 114 

open the way to the development of remediation and enhancement neurofeedback protocols 115 

targeting the attentional function.  116 

  117 
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Materials and Methods 118 

Participants 119 

10 participants (4 females, 2 left handed, mean age: 27.22 years, standard deviation: 7.13 120 

years) participated in the experiment. The experimental procedures were approved by the 121 

French Ethic Committee (Comité de protection des personnes, #2018-72, ID RCB: 2017-122 

A03612-51), and complied with the declaration of Helsinski. Written informed consent was 123 

obtained from all subjects. 124 

Experimental setup  125 

Octave and the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) 126 

were used to generate the visual stimuli and control the experimental procedure within the 127 

scanner environment. The visual stimuli were back projected on a screen outside of the bore 128 

at a viewing distance of 130 cm and subjects were able to see the display through a mirror 129 

placed in front of their eyes. Subjects, lying in the scanner, were instructed to maintain their 130 

gaze fixated on a black cross located at the center of the screen against a gray background. 131 

Monocular right eye movements of the participants were recorded during scanning process 132 

with an EyeLink 1000 fMRI-compatible eye tracker (SR-Research) sampling at 1000 Hz. Eye 133 

calibration was performed before each functional scan. Trials were interrupted if the eyes 134 

moved outside the 2°x2° eye control window. Interrupted trials were canceled and re-played 135 

at the end of the block. 136 

Behavioral tasks  137 

Participants were asked to perform a spatially cued target detection task during which they 138 

should  fixate a central cross all throughout the trial (0.5°x0.5° of visual angle). After an initial 139 

fixation time randomly chosen between 1.5 and 2.5 seconds, a cue (a central black arrow 140 

pointing to one of the possible target locations, 1°x1° of visual angle) was presented for 141 

200ms. Participants were explicitly asked to maintain their attention at the cued location. Six 142 

to 9 seconds from cue onset, two consecutive targets (a low contrast gray rectangle oriented 143 

either vertically -0.5°x1° of visual angle or horizontally -1°x0.5° of visual angle) were 144 
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presented for 200ms each and were separated by 150ms (Figure 1A). They had to report if 145 

the two targets had the same orientation or not by choosing between two push buttons on a 146 

joystick placed in their right hand. Response time was limited to 1 sec after first target onset. 147 

Catch trials (i.e. trials with no targets presented) were randomly played and participants had 148 

to withhold from any button press. At the end of each trial, a green cross indicated success 149 

in the trial, and a red cross indicated error in the trial. Every 5 trials, the participants were 150 

asked to maintain their fixation without any attention during 10 seconds. This served as a 151 

fixation baseline for the analyses. 5 blocks of 24 trials were performed (3 trials per cue 152 

location, presented in a randomized order) per session. Each block lasted about 10 minutes. 153 

Prior to each scanning session, the size of the targets was calibrated to reach a 70% of 154 

correct responses, using a staircase target detection procedure lasting 60 trials. Two 155 

versions of the task were used. Each subject performed 4 sessions of the first behavioral 156 

task (3 participants performed 1 session per week during 4 weeks, 1 performed 4 sessions 157 

in one week and 6 performed 2 sessions per week during 2 weeks). Four subjects performed 158 

4 sessions of the second version of the task. Task 1: 8 polar positions and one eccentricity. 159 

Targets could appear at one amongst eight possible spatial locations organized along a 160 

circle at an eccentricity of 5°, on the vertical and horizontal meridians as well as on the 161 

diagonals. Cues consisted in centrally presented arrows pointing in the expected position of 162 

the targets. To help the subjects to correctly hold their attention on the cued location, 8 163 

different locations, corresponding to the 8 different orientations were materialized by a small 164 

blank in a white circle at 5° of eccentricity from the center of the screen (Figure 1A). Task 2: 165 

4 polar positions and two eccentricities. Targets could be presented at two different 166 

eccentricities (5° or 8°) and four different orientations along the diagonals (figure 1A). Cues 167 

consisted in centrally presented arrows pointing in the expected position of the targets. Short 168 

(1°x1° of visual angle) arrow cues indicated the target would appear on the inner circle while 169 

long (1°x1° of visual angle) arrow cues indicated the target would appear on the outer circle. 170 
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 171 

Figure 1: Behavioral task and analysis pipeline. A) Spatially cued target detection task. Subjects were required to fixate a 172 

central cross all throughout the trial. After an initial fixation time (1.5 to 2.5 s), a cue (a central black arrow pointing to expected 173 

target location) was presented for 200ms. Six to 9 seconds from cue onset, two consecutive targets (a gray rectangle oriented 174 

either vertically or horizontally) were presented for 200ms each and were separated by 150ms. Subjects had to report target 175 

similarity by a button press. Correct trials were followed by a green cross, error trials by a red cross. Two versions of the task 176 

were used. Task1: Targets could appear at one amongst eight possible spatial locations organized along a circle at an 177 

eccentricity of 5°, on the vertical and horizontal meridians as well as on the diagonals. Task 2: Targets could be presented at 178 

two different eccentricities (5° or 8°) and four different orientations along the diagonals. B) Overview of group (Analysis) and 179 

single trial decoding (Analysis 2) pipelines. 180 

fMRI scanning procedure 181 

Neuroimaging data were acquired with a 3T MRI scanner (Siemens Prisma) using a 64-182 

channel head coil. Subjects were lying on their back with their head restrained using foam 183 

head rest. A High-resolution T1 structural image (MPRAGE, 0.875mm3 isotropic voxels, 192 184 

slices, TR/TE =3.5/3.42s, flip angle, 8°) was acquired during the first session. Functional 185 

images were acquired using a multislice T2*-weighted gradient-echo, echo-planar imaging 186 

sequence (TR/TE =2200/30ms; flip angle, 90°; 3mm isotropic voxels, 40 interleaved 187 

ascending slices with no gap) with a 74x74 acquisition matrix and a 518x518 mm 188 

rectangular field of view.  189 
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Preprocessing for standard event-related analyses 190 

Preprocessing of the MRI data was performed with Statistical Parametric Mapping software 191 

(SPM12; Wellcome Department of Cognitive Neurology, University College London, London, 192 

UK; http://www.fil.ion.ucl.ac.uk/spm). The first five volumes of each run were excluded to 193 

remove T1 equilibrium effects. Next, within each session, we realigned all successive 194 

images to the first image of the session. Slice-timing correction was applied with the time 195 

centre of the volume as reference. The subject-mean functional images were co-registered 196 

with the corresponding structural images. Functional and structural images were then 197 

spatially normalized into standard MNI space. Finally, functional images were smoothed 198 

using a 5-mm full-width half-maximum Gaussian kernel. The realignment parameters and 199 

the eye movements were used as covariates in subsequent statistical analyses. In order to 200 

explore the activations elicited by the orientation of spatial attention, a generalized linear 201 

model was designed, by calculating the beta values of the activity elicited by attention 202 

orientation to expected targets on the right of the screen, on the left of the screen, or 203 

activation observed during fixation. These activations were then contrasted as follows: 204 

Attention Right Vs Fixation and Attention Left Vs Fixation. Eye and head movements were 205 

used as variables of non interest. Significant T-values (p<0.05, FEW-corrected) derived from 206 

these contrasts were then displayed on the standard MNI brain. 207 

Decoding pre-processing procedure 208 

For the decoding, and all the following  analyses, the functional images were processed in 209 

real time using the FRIEND toolbox (the institut d’Or, Brazil) (Basilio et al., 2015; Sato et al., 210 

2013). This allowed a simplified version of preprocessing pipeline. During the acquisition the 211 

functional images were transformed in the NIFTI format with the dicom2nii toolbox (Li et al., 212 

2016) and realigned to one reference anatomical image using FSL tools (Jenkinson et al., 213 

2012). No smoothing was implemented as we wanted to keep each vowel as an 214 

independent feature. Voxel activity was extracted for each trial and normalized by its mean 215 

activity recorded during the fixation period preceding the trial. Prior to decoding, voxels of 216 
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interest were chosen based on an ANOVA, testing the significance of the activity of each 217 

voxel to one or several of the cued locations during the cue to target interval. Only the 218 

significant voxels (p<0.05) were selected for decoding using the python neuroimaging 219 

toolbox Nilearn (Abraham et al., 2014).  220 

Decoding procedure  221 

A linear SVM (one versus all) was trained on the voxels selected at the decoding 222 

preprocessing stage, associating voxel activity patterns to the corresponding spatial cueing 223 

condition. Voxel selection and training was performed on all runs except one and trials were 224 

balanced in order to have the same number of training trials per position. Testing was then 225 

performed on the remaining run, on trials which have thus not been used in for training. This 226 

train-test procedure was repeated for each run and a mean decoding performance was then 227 

calculated. For the main decoding experiment, this procedure was repeated for each volume 228 

from 2.2 seconds before cue onset until 6.6 seconds after target onset. Decoding procedure 229 

was performed using the statistical and machine learning toolbox of Matlab (Figure 1B).  230 

Statistics analyses  231 

A permutation test allows to define the chance level and the associated 95% confidence 232 

interval of the decoder. All statistical analyses were based on non-parametric tests: 233 

Friedman test for paired two way analyses of variance and Kruskall-Wallis for paired one-234 

way analysis of variance. Wilcoxon signed ranked test were used for ad hoc tests on non-235 

independent data. All the statistics were performed using Matlab. 236 

Surface and topography analysis 237 

Brain surfaces and flatmaps were reconstructed via the recon-all pipeline of FreeSurfer 6.0 238 

(Fischl, 2012).  239 

  240 
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Results 241 

In this study, our goal was to assess the feasibility of real-time decoding of spatial attention 242 

from fMRI BOLD signal and characterize the stability of this decoding in time, within and 243 

across sessions. We thus had subjects perform a spatial attention centrally cued target 244 

detection task while their brain activity was scanned using a 3T MRI scanner. Attention could 245 

be cued towards one out of 8 possible spatial position (Figure 1). Subjects sat in four 246 

scanning sessions. In each session they performed 5 blocks of 24 trials per block 247 

(performance: Task 1: median=72.2%; s.e.=0.616; Task 2: median=71.1%; s.e.=0.512). 248 

Group-level whole brain spatial attention-related brain activation patterns reproduce prior 249 

observations (Figure 1A, supplementary note 1 and Figure S1, (Corbetta et al., 2008; 250 

Corbetta and Shulman, 2002; Simpson et al., 2011). In the following, we describe single trial 251 

decoding of spatial attention orientation (Figure 1B). 252 

Single trial decoding of the locus of spatial attention 253 

The GLM analysis presented in supplementary note 1 identified the voxels that are 254 

modulated either by attention, irrespective of spatial position (attention vs. fixation contrast), 255 

or by attention to the left vs. attention to the right, irrespective to the precise spatial location 256 

attention was cued to. We reasoned that the decoding of spatial attention location from 257 

single trial fMRI data will rely on voxels in which activation varies between fixation and 258 

attention cued to one or two specific spatial locations. We thus normalized the raw activity of 259 

each voxel in the gray matter in time by its raw activity during fixation task epochs. We did 260 

not convolve BOLD activity with HRF, so as to remain as close as possible to the recorded 261 

signal. We then performed an ANOVA in order to identify the voxels significantly modulated 262 

by the position of attention; irrespective of the spatial attention condition it was activated it. 263 

This analysis was performed for each subject independently. As we did not convolve the 264 

activity with the standard HRF, a 4 to 5 seconds delay is expected between the cue onset 265 

and the cue related activations. Activations from 6 seconds from cue onset to target onset 266 

was thus taken as attention orientation activations. During this latter interval, strong 267 
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activations are observed in the parietal and visual cortex (p<0.05, non-corrected) for every 268 

single subject (Figure 2, top panel, representative subject). In comparison, when a similar 269 

analysis is run at estimated target related activations, 4.4 seconds after target onset, thus 270 

indexing visual target perception, reduced activations are observed in the parietal cortex 271 

combined with increased activations in the visual cortex (Figure 2, bottom panel, 272 

representative subject). These observations are replicated in all individual subjects, and both 273 

task versions (data not shown). These voxels were subsequently used to train a decoder. 274 

 275 

Figure 2: Feature selection of attention-related voxels on representative subject: voxels are selected according based on brain 276 

volume recorded before target onset (attention, upper panel) and 4.4 sec after target onset (target detection, bottom panel). 277 

For each subject we performed an ANOVA with the position of the cued location as factor, 278 

on the volumes from 8.8 secs before target onset to 6.6 secs after target presentation. We 279 

then used the significant voxels obtain at each time sample to train and test a linear support 280 

vector machine (SVM, one versus all, linear kernel) decoder in order to determine the 281 

location of the attentional spotlight. This analysis was performed using a one vs n-1 cross-282 

validation across blocks (feature selection and training were being performed on N-1 blocks, 283 

testing was being performed on the remaining block, this procedure being repeated over all 284 

possible combinations, Figure 1B). Figure 3A shows the mean decoding performance in time 285 

for each subject (grey lines) and averaged over all subjects (Figure 3A, red line, mean +/- 286 

s.e.). We observe a significant increase in decoding performance (absolute chance level at 287 

12.5%, dashed lines, the 95% confidence interval calculated with a permutation test in gray) 288 

from 4.4 sec after cue onset up to 4.4 seconds after target onset. Decoding performance 289 

increases until a plateau is reached between 6.6 seconds after cue onset and 2.2 seconds 290 
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after target onset. The mean decoding performance at this plateau is around 40% and can 291 

reach up to 58% for some subjects. This plateau is followed by a slight increase in the 292 

decoding performance at 4.4 sec after target onset.  This observation is reproduced for Task 293 

2 (supplementary figure S2A). On catch trials, i.e. trials in which the target was not 294 

presented, decoding performance is undistinguishable from that obtained on target trials, 295 

expect for the slight increase in decoding performance at 4.4 secs observed on target trials 296 

which is absent in catch trials (Figure3A, blue line, Friedmann: p<0.05 for main effects, and 297 

signed rank test with p<0.05 for ad hoc tests). Thus, the plateau is taken as pure covert 298 

attention orientation decoding performance, while the peak observed at 4.4 secs post-target 299 

on target trials is taken as a signature of target perception. Taken together, these results 300 

show that we can decode covert spatial attention by up to 58% in 8 different locations. This 301 

covert attentional information can be differentiated in time from the visual perception 302 

response component to target onset. 303 

 304 

Figure 3: Linear SVM decoder applied to selected feature modulated voxels allows access to attentional spotlight 305 

location with a high accuracy. A. Decoding performance in time on target present trials (red line, mean+/- s.e.m) or target 306 

absent or catch trials (blue line, mean+/- s.e.m). B. Confusion matrices per expected target position (smaller pie chart) as a 307 

function of cued position (Up -U, up-right –UR, right –R, down-right –DR, down –D, down-left –DL, left –L, upper-left –UL), color 308 

code: decoding performances. C. Decoding performance in time for correct (blue line, mean+/- s.e.m) and miss trials (red line, 309 

mean+/- s.e.m). 310 

Spatial organization of spatial attention decoding errors 311 

In order to understand whether and how decoding errors organized spatially, we computed 312 

the confusion matrices for each cued condition, averaged over all subjects (Figure 3B). 313 

These confusion matrices quantify, for each cued position (portion of the pie chart), the 314 

probability with which the decoder associates brain activity to a given label, either matching 315 
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the cued location or not (smaller pie chart in each portion of the larger pie chart). These 316 

confusion matrices were computed using the decoding accuracy just prior to target 317 

presentation (see Figure 3A at T=0 sec), a time at which attention-related activity is 318 

expected to maximally account for upcoming target detection. Overall, these matrices show 319 

that covert attention decoding accuracy is always highest at the cued location (Figure 3B). 320 

Moreover, decoding errors are mainly associated with a confusion with locations neighboring 321 

the cued location (this is reproduced for Task 2, in supplementary figure S2B). This indicates 322 

that classification errors might either be due to noise in the signal or, most likely, reflect the 323 

fact that attention is intrinsically dynamic, as demonstrated using intra-cortical recordings 324 

approaches (Gaillard et al., 2020). This latter hypothesis predicts a correlation between 325 

decoding performance and behavioral performance. We thus compared decoding 326 

performance in time when training and testing was on correct trials (Figure 3C, blue line) or 327 

when training was on correct trials and testing was on missed trials in which subjects failed 328 

to detect the target (Figure 3C, red line). Compared to misses, correct trials showed highest 329 

decoding performances at time T=0 (last volume before target onset, Friedman test: p<0.01 330 

and signed rank test: p<0.05) and 4.4 sec after target onset (visual response to the target, 331 

Friedman test p<0.01 and signed rank test: p<0.01). Overall, we thus demonstrate that 332 

decoding performance accounts for the subject’s behavior and attention decoding accuracy 333 

is lower on miss trials as compared to correct trials. Taken together, these results indicate 334 

that our decoder reliably tracks how subjects implement spatial attention during individual 335 

trials. 336 

Contribution of parietal and occipital voxels to attention decoding. 337 

Informative voxels as defined by the ANOVA are located both in the parietal and in the 338 

occipital cortex. In order to test whether both cortical regions equally contributed to 339 

attentional processes, we computed decoding performance in time using the voxels coming 340 

from either the parietal cortex, the occipital cortex or both (Figure 4A). To do so, we 341 

segmented the individual brains and we created occipital and parietal masks using 342 

FreeSurfer (Fischl, 2012), thus identifying the parietal and the occipital attention-related 343 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469873
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 
 

voxels. The decoding performance when considering the occipital contributing voxels (Figure 344 

4a, purple) is very similar to the decoding performance using the whole brain contributing 345 

voxels (figure 4a, pink), except right before target onset (T=0), where decoding performance 346 

was higher when considering all voxels irrespective of their cortical location. The parietal 347 

voxels decoding performance is consistently below the occipital voxels decoding 348 

performance although it remains well above chance level, with a decoding performance 349 

plateau at around 27%. The parietal decoding performance does not show any decoding 350 

peak at 4.4 sec following target onset, indicating that the target visual perception response is 351 

specific to occipital areas.  352 

 353 

Figure 4: Comparison of Parietal and Occipital SVM voxel based decoding of attention position. A. Decoding 354 

performance in time centred on target onset based on parietal (red) or occipital (blue) or whole brain (purple) significant voxels 355 

(mean +/- s.e.m). B. Confusion matrices of parietal and occipital areas before target onset (all as in figure 3b). C. Percentage of 356 

confusion as a function of angle from cued position (0°). D. Decoding stability in time as a function of brain region. 357 

In order to better characterize attention coding differences between the occipital and the 358 

parietal cortex with this real-time approach, we analyzed the confusion matrices (at time T=0 359 

sec) when decoding from either the parietal or the occipital contributing voxels (Figure 4B left 360 

and right panels respectively). The same trend as described previously was observed, 361 

namely that the cued position is decoded with the highest performance and that decoding 362 

errors are highest closest to the cued location. Notably, the higher decoding performance 363 
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locations differed between the two brain regions. Figure 4C shows the decoding 364 

performance per cued position, per brain region and the proportion of confusion as a 365 

function of the distance between the decoded position and the actual cued position. As 366 

already described in figure 4A (Figure 4C, left panel), occipital decoding performance is 367 

higher than parietal decoding performance. This effect is specifically driven by the fact that 368 

occipital decoding performance is higher for lower relative to upper visual field positions 369 

(figure 4C, middle panel, Friedman test p<0.01, p<0.01 for the targeted position, p<0.05 for 370 

the direct neighbors, blue stars). Complementing this effect, for higher visual field positions, 371 

errors are more spread than for lower visual field positions (Figure 4C, middle panel, p<0.05 372 

for -pi/4 neighbor and +pi/4 neighbors, signed rank test, blue stars). While this asymmetry in 373 

the deployment of spatial attention has already been described by behavioral studies 374 

(Carrasco et al., 2004; Ibos et al., 2009; Montaser-Kouhsari and Carrasco, 2009; Zénon et 375 

al., 2009a), this is the first time this is captured at the single trial level. This spatial bias does 376 

not exist in parietal regions. In contrast, in this region, a decoding performance bias in favor 377 

of diagonal cued locations (i.e. away from the horizontal and vertical meridians) can be seen 378 

with a more restricted spread of the errors to their nearest neighbors as compared to 379 

meridians (Figure 4C, right panel, Friedman test p<0.01, Signed ranks test, p<0.01 for the 380 

targeted position, p<0.05 for the direct neighbors, pinks stars). No such difference can be 381 

seen between meridians and diagonals for the occipital region. 382 

Within trial decoding stability. 383 

The above described observations correspond to a snapshot of attentional processes at 384 

target presentation time. It is however evident from Figure 3A and 4A that attention-related 385 

information builds up with time during the cue to target interval. An important question in this 386 

respect is whether the attention-related code and recruited network are stationary during the 387 

cue to target interval or not. To investigate within trial decoding stability in time, we trained 388 

decoders on different times from 8.8 before to 4.4 seconds after target onset, and we 389 

successively tested each decoder on these successive time bins, thus producing a cross-390 

temporal decoding map (Figure 4D, left: whole brain; middle: parietal; right: occipital). Whole 391 
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brain and occipital cross-temporal decoding maps are very similar, distinguishing a first 392 

stable coding epoch of attention orientation (from 4.4 secs before to 4.4 secs after target 393 

onset) and a second later epoch corresponding to target perception (from 4.4 sec to 6.6 sec 394 

after target onset). The parietal cross-temporal decoding map identifies a unique epoch of 395 

stable coding from 4.4 sec before up to 4.4 sec after target onset. This indicates that both 396 

attention and perception related processes can be captured in real-time from fMRI signal 397 

and that the codes and specific networks underlying these processes are only partially 398 

overlapping. In addition, these observations indicate that the codes and networks subserving 399 

either attention or perception are stable in time.  400 

Within trial attentional spotlight location variability 401 

While average cross-temporal decoding is stable in time, as described in the previous 402 

section, recent behavioral -for review,(Gaillard and Ben Hamed, 2020)- and 403 

electrophysiological accounts (Gaillard et al., 2020) indicate that spatial attention is not a 404 

stationary process but varies rhythmically in time. In order to assess the degree of within 405 

trial-stability of spatial attention signals, we computed the proportion of trials for which the 406 

decoded position of attention matched cue instruction and for which the decoded position of 407 

attention was the same at target presentation and at previous time points. To do so, we 408 

selected those trials for which decoded attention at target presentation time matched the 409 

cued location. We then computed the percentage of angular confusion (relative to the cued 410 

position (0°), at time 2.2 and 4.4 seconds before target onset (supplementary figure S3). We 411 

show that in fMRI data, similarly to what has been reported in the prefrontal cortex of the 412 

macaque (Gaillard et al., 2020), attentional information is dynamic and classification 413 

improves as probability of target presentation increases. Specifically, on trials that end-up 414 

correctly classified at target presentation, 56% of them are correctly classified in the previous 415 

brain volume and only 24% of them are correctly classified in the brain volume before. Thus, 416 

in spite of the low temporal resolution of fMRI signals, fMRI-based decoding of attention 417 

allows to capture the dynamic nature of attention as reported both behaviorally and 418 

electrophysiological measures of higher temporal resolution.  419 
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Cortical topography of attentional processes  420 

In order to better characterize the relationship between the decoder and the visual and 421 

attentional brain organization, we identified for each attention selective voxel its preferred 422 

coding position and color coded this information on brain flat maps (Figure 5A). To do so, we 423 

performed a t-test with FDR correction on decoding voxels, for each position, against its 424 

fixation activity. For each position, only the significant voxels were considered (p<0.05, FDR 425 

corrected). This procedure was performed on the eight cued positions of the task, on cued 426 

positions grouped per quadrants, or on cued positions grouped per hemifield. Figure 5A 427 

shows the results for one subject. When analyzing as a function of cued hemifield, a clear 428 

contralateral activation in the occipital and parietal cortex can be seen. When analyzing as a 429 

function of cued quadrant or eight cued positions, only in the occipital cortex can we 430 

distinguish a clear topographical organization of voxel selectivity, matching occipital cortex 431 

topographical visual organization (Huang and Sereno, 2013; Wang et al., 2016). No such 432 

organization can be seen for the parietal cortex. This pattern is reproduced across all 433 

subjects. For example, a significant larger contralateral activation (as assessed by % 434 

activated voxels) can be observed compared to ipsilateral activation for parietal and occipital 435 

regions (Figure 5B, Friedman p<0.001, signed-rank for parietal p< 0.001, signed-rank for 436 

occipital, p<0.001). Importantly, a strong correlation was observed between the number of 437 

selective voxels and decoding performance when considering parietal voxels (Spearman, 438 

Rho=0.9, p<0.01). A trend towards this was also observed in the occipital cortex (Spearman, 439 

Rho=0.7, p<0.054). This indicates a link between the strength of the attentional information 440 

available for decoding during attention orientation and parietal attention-related control 441 

signals. These observations are reproduced in a second version of the attentional task with a 442 

different spatial configuration (4 orientations, 2 eccentricities, rather than 8 orientations and 1 443 

eccentricity, Figure 5D). Taken together, these results confirm that spatial covert attention is 444 

associated with a topographically organized functional gating of BOLD activations by spatial 445 

attention orientation in the visual cortex. Most importantly, this demonstrates that this 446 
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information can be precisely recovered at the single trial level, at the time resolution of fMRI 447 

TR.  448 

 449 

Figure 5: Topographical organization of attentional decoding voxels. A. Topography of voxels used for decoding (single 450 

subject). B. Proportion of selected voxels per brain region and per position (ipsilateral and contralateral), data represented as 451 

mean +/- s.e.m, Ranksum test across all subjects (***, p<0.001). C. Decoding performance as a function of contralateral 452 

hemisphere activation per position, Spearman correlation.  D. Topography of voxels used for decoding during the 4 orientations 453 

and 2 eccentricities task (Task 2 of Figure 1, single subject, same as in A).  454 

Decoding stability across scanning blocks and sessions 455 

In the perspective of applying single trial access to spatial decoding for neurofeedback 456 

protocols run on sessions independent from those on which the decoder was estimated, an 457 

important question is that of the reliability of our decoding across blocks and sessions. We 458 

thus first assessed reliability as a function of the number of blocks used for training (training 459 

on N blocks, testing on the remaining blocks, at time T=0, just before target onset – Figure 460 

6A). Most of the subjects reach a decoding plateau after 10 blocks, i.e. two sessions on 461 

average (Figure 6A, red line). After that, the decoding performance does not necessarily 462 

increase with additional training blocks. This plateau ceils at around 50% of decoding 463 

accuracy. This can reflect a methodological limit in accessing to spatial attention from BOLD 464 
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fMRI signals. Alternatively, this reflects the intrinsic difficulty of subjects to sustain a precise 465 

attentional orientation in this task, as reflected by the spatial organization embedded in our 466 

confusion matrices (Figures 3B and 4B), the within trial decoding variability described in the 467 

previous section (supplementary figure S3) as well as recent behavioral (Gaillard and Ben 468 

Hamed, 2020) and electrophysiological accounts on rhythmic attention (Gaillard et al., 2020).  469 

 470 

Figure 6: Voxel activation-based decoding of attentional position is reliable across subjects and sessions. A. Decoding 471 

performance before target onset as a function of the number of blocks used for training, grey line, individual subjects decoding 472 

performances across blocks, red line, mean +/- s.e.m). B. Decoding performance before target onset, while training on all 473 

except one session and testing on the remaining session (mean +/- s.e.m). 474 

We then tested the stability of decoding across sessions (training on N-1 sessions, testing 475 

on the remaining session -Figure 6B). We show that decoding performance remains stable 476 

across sessions (no significant difference, Wilcoxon test p=0.3), even though these sessions 477 

have been recorded on different days (ranging from intervals of 1 day to 1 week). Given that 478 

we are able to perform real time fMRI preprocessing in less than 1 second per volume with 479 

the FRIEND toolbox (Basilio et al., 2015) (TR at 2.2sec), this thus opens the possibility of 480 

accumulating trials from different days to get a reliable decoder and developing covert 481 

attention-based neurofeedback protocols.  482 

Discussion 483 

Contrary to sensory or motor cognition, decoding covert cognitive states at high temporal 484 

resolution is still challenging due to the fact that precise informational cognitive content can 485 

only be inferred by overt behavior and cannot be probed directly. This is rendered even more 486 

challenging due the fact that covert cognitive functions have recently been shown to be non-487 

stationary and may vary rhythmically in time -for review,(Gaillard et al., 2020; Gaillard and 488 
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Ben Hamed, 2020)-. In the present study we achieve real-time single trial decoding of spatial 489 

attention orientation from non-invasive fMRI BOLD signals. In the following, we compare our 490 

results to prior literature and we discuss how decoding of spatial attention at the single trial 491 

level both reveals a refined understanding of how brain functions account for behavior 492 

(Loriette et al., 2021) and hold strong potential for the development of neurofeedback 493 

closed-loop applications (Loriette and Ziane, 2021).  494 

Improved spatial resolution of single trial attention decoding 495 

relative to state of the art 496 

In this study, we show that it is possible to infer to locus of covert attention on a single trial 497 

basis using fMRI with a decoding accuracy significantly above chance level (12.5%), when 498 

classifying spatial attention in eight different locations. Mean accuracy reaches 40% across 499 

participants, but can reach up to 58% in some subjects. Prior fMRI studies only achieve a 500 

four-class single trial classification of attention to one of the four visual quadrants (chance at 501 

25%) (Andersson et al., 2012; Ekanayake et al., 2018), albite with a higher reported average 502 

decoding accuracy (80%). In addition, relative to previous studies, the present study has 503 

several methodological strengths. A real-time monitoring of eye movements is achieved, 504 

interrupting trials in which subjects make eye movements, and thus preventing signal 505 

contamination by saccadic information or saccadic visual after effects. In addition, the task 506 

uses central low contrast cues thus preventing attentional signal contamination by visual 507 

cueing information. Overall, this is a major advance in the field as covert attention decoding 508 

has never been performed with this level of spatial precision with non-invasive approaches. 509 

It is worth noting that although we report an average decoding performance for an eight-510 

class classification of spatial attention, individual subject performance varied between 28 511 

and 58%, indicating a large inter-individual variability. Decoding accuracy correlated with the 512 

proportion of parietal (and to a lesser extent occipital) voxels that were selected during the 513 

feature selection step, but not with overt behavioral performance (R=0.11, p=0.64). In other 514 

words, decoding accuracy correlated with the number of brain voxels that showed a 515 

specificity for one of the cued locations, i.e. with how spatial attention was topographically 516 
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implemented in each subject, irrespective of behavioral accuracy. This criterion might serve 517 

as an objective measure to identify subjects best suited for real-time decoding of their 518 

attentional function -e.g. for neurofeedback closed-loop applications. 519 

Decoding reveals the dynamic feature of the attentional function 520 

Behavioral performance of subjects is predictive of spatial attention decoding performance. 521 

In fact, decoding is lower when performed on incorrect trials (in which subjects missed the 522 

target)  as compared to when decoding is performed on correct trials. This is thus in 523 

agreement with what has already been reported in non-human primate invasive real-time 524 

access to spatial attention studies, whereby decoding accuracy is higher on correct than on 525 

missed trials (Astrand et al., 2016, 2015; De Sousa et al., 2021). Overall, decoding thus 526 

shows that attention-related information is less accurate on missed trials than on correct 527 

trials, accounting for behavioral failure. 528 

Invasive animal studies actually demonstrate that the precise spatial locus of attention also 529 

varies, on correct trials, just prior to target presentation, such that on some trials, attention is 530 

decoded close to the expected location of the target, while on others, attention is decoded 531 

far away (Astrand et al., 2016, 2015; De Sousa et al., 2021). While it can be tempting to 532 

consider this as noise in the signal, these studies show that the closer the decoded 533 

attentional spotlight to expected target location, the higher the probability of detecting the 534 

trial, thus indicating that rather than reflecting noise in the signal, this variability in the locus 535 

of the attentional spotlight reflects noise in the attentional function itself. Accordingly, training 536 

a classifier on trials for which attention was initially decoded closest to expected target 537 

position enhances the correlation between decoding accuracy and behavior (De Sousa et 538 

al., 2021). In addition, tracking the attentional spotlight at a high temporal resolution reveals 539 

that it is not stable but rather, it moves around at a frequency of 8 to 12 Hz (Gaillard et al., 540 

2021). Extending these observations to the current non-invasive decoding of attention, we 541 

would like to suggest that the specific structure of the confusion matrices described in figures 542 

3B and 4B, does not reflect decoding performance on noisy signal. Rather, it captures the 543 

dynamic nature of spatial attention, such that subjects, while trying hard to focus their 544 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469873
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 
 

attentional spotlight at the cued location cannot prevent it to explore space at close by 545 

locations (Gaillard et al., 2021). All this taken together strongly suggests that due to the 546 

dynamic nature of spatial attention function, the quest for ever improved decoding accuracy 547 

is an unreachable Grail. Rather than seeking that goal, research should seek to characterize 548 

the behavioural source of variability in the single trial decoding (Amengual and Ben Hamed, 549 

2021; Loriette et al., 2021). 550 

Decoding reveals the cortical topography of attentional control and 551 

gating 552 

We show that the parietal and the occipital cortex have distinct contributions to overall 553 

decoding performance, such that while maximal decoding accuracy is achieved using voxels 554 

from both cortical regions, occipital voxels have a higher attention-related informational 555 

content than parietal voxels. This is probably due to the fact that the spatially resolved 556 

topographical organization of the occipital cortex allows for enhanced spatial discrimination 557 

than that achieved in the parietal cortex. As a result, there is no strong correlation between 558 

the number of informative voxels in the occipital cortex and occipital decoding accuracy, 559 

indicating that fewer voxels suffice for the decoding. In contrast, the larger the number of 560 

parietal informative voxels, the higher the parietal decoding performance. This suggests an 561 

inter-individual difference accounted for by the specific parietal spatial map implemented in 562 

each subject.  563 

Feature selected voxels reveal the topographical organization of the occipital cortex albeit 564 

this feature selection is based on attention information rather than on visual information. This 565 

attentional occipital topographical organization of the visual cortex is very similar to the 566 

visual retinotopic occipital maps reported in fMRI studies (Arcaro et al., 2009; Warnking, 567 

2002). This topographic organization of attentional top-down biasing signals in the visual 568 

cortex in the absence of visual information reveals attentional gating in the occipital cortex, 569 

as already demonstrated by others (Datta and DeYoe, 2009; Kastner et al., 1998; Tootell et 570 

al., 1998; Ungerleider, 2000). This spatially resolved attentional gating thus supports the 571 

high-performance single trial decoding that we report here. 572 
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On top of this general attentional occipital gating, we show that occipital decoding accuracy 573 

is biased for low visual field compared to high visual field. This bias is consistent with 574 

previous behavioral work. Indeed, a very strong bias of visuospatial attention and visual 575 

perception toward the low visual field is described such that behavioral attentional 576 

performance is higher when implemented in the lower visual field (Carrasco et al., 2004; 577 

Montaser-Kouhsari and Carrasco, 2009; Zénon et al., 2009a). Our results suggest that the 578 

occipital decoding bias reported here most probably accounts for the behavioral biases 579 

reported in the literature, reflecting how efficiently attentional gating is implemented onto the 580 

occipital topographical map (Brefczynski and DeYoe, 1999; Kastner et al., 1999; Tootell et 581 

al., 1998). In addition to this upper vs lower visual field bias, we also describe an enhanced 582 

parietal decoding performance along the diagonals as compared to the horizontal and 583 

vertical meridians. Behavioral studies describe a performance bias in favor of the horizontal 584 

meridian compared to the vertical meridian and to the diagonals (Carrasco and Yeshurun, 585 

2009; Corbett and Carrasco, 2011; Zénon et al., 2008; Zénon et al., 2009b, 2009a). It is thus 586 

unclear how the decoding bias reported here relates to the behavioral biases in previous 587 

studies. The decoding bias might actually reflect the topographical organization of attentional 588 

information in the parietal cortex, impacting its accessibility through decoding, rather than a 589 

functional bias. This will have to be confirmed experimentally. 590 

Real-time decoding of spatial attention for neurofeedback closed-591 

loop applications 592 

Importantly, we show that this single trial access to spatial attention is stable not only across 593 

blocks within the same session but also across sessions that are several days apart. In 594 

addition, we show that decoding ceils after only two sessions. Overall, this thus opens wide 595 

opportunities in term of fMRI-based attentional training, neurofeedback and closed-loop 596 

experimental designs (Weiskopf, 2012). Indeed, as the decoding is remarkably stable across 597 

sessions, we can ask our participants to come one two sessions to form the decoder and 598 

detect whether they are good candidates for real-time neurofeedback experiments (based on 599 

their overall decoding performance) and then come in several times and to perform fMRI-600 
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based neurofeedback driven by this single trial decoding of attention. fMRI neurofeedback 601 

has already been achieved on cognitive functions such as categorical attention or 602 

confidence, and was associated with strong behavioral and functional effects (Cortese et al., 603 

2017; deBettencourt et al., 2015; Loriette et al., 2021; Loriette and Ziane, 2021). While, until 604 

now, fMRI neurofeedback on higher order cognitive functions has been mainly performed on 605 

a binary basis (category 1 versus category 2 or focused/not focused), our work opens the 606 

way to perform a precise neurofeedback based on decoding the spatial position of attention 607 

in order to enhance or restore the attentional function. In the long term, this should allow 608 

attentional training in healthy participants, or perform attentional remediation for ADHD 609 

patient (attention brain deficit disorder) or brain damaged participants.  610 
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Supplementary material 819 

Supplementary note 1: whole brain attention-related brain 820 

activations 821 

 822 

Figure S1: Contrast analysis reveals modulation of visual and parietal activity associated with spatial attentional orientation 823 

SPM group analysis; Left panel: Contrast between Attention and Fixation (FWE-corrected, p<0.05). Right panel: Contrast 824 

between Attention Left and Attention Right conditions.  825 

In order to reproduce prior observations on whole brain spatial attention-related brain 826 

activation patterns at the group level, we contrasted Attention vs. Fixation conditions, where 827 

the Attention condition is sampled from 4secs following cue onset (in order to exclude 828 

potential cue evoked visual activations) up to target onset, and Fixation condition was 829 

sampled during the 10secs of fixation that the subjects had to perform every 5 trials (Figure 830 

S1). This spatially non-specific contrast revealed activations (p<0.01, non-corrected) in the 831 

right parietal area, which is reported to be involved in covert several spatial attention 832 

processes (Corbetta et al., 2008; Corbetta and Shulman, 2002). The Attention Left vs. 833 

Attention Right conditions contrast resulted in significant activations in the right occipital area 834 

(p<0.01, non-corrected, figure S1), i.e. an activation in visuals areas prior to target onset, 835 

illustrating an attentional gating, similarly to what has been reported by previous studies 836 

(Corbetta et al., 2008; Corbetta and Shulman, 2002; Simpson et al., 2011). The opposite 837 

contrast activated the left occipital cortex at mirror positions (data not shown). Taken 838 

together, this indicates that the task, in spite of its visual (low salience) and spatial (8 839 

positions) characteristics, activated the expected covert spatial attention network. Activations 840 

do not reach FEW-corrected level due to the relatively small number of subjects as well as 841 

due to the fact that for the Attention Left vs. Attention right contrast, we are pooling, for each 842 
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condition, trials in which attention is oriented to three distinct spatial positions although all 843 

positions were oriented to the left or to the right.  844 

Supplementary note 2: covert attention decoding performance in 845 

task 2 846 

 847 

 848 

Figure S2: Linear SVM decoder applied to selected feature modulated voxels allows access to attentional spotlight 849 

location with a high accuracy in the second task, in which the target can appear at four possible orientations and two 850 

possible eccentricities (5° and 8°). A. Decoding performance in time on target present trials (red line, mean+/- s.e.m, gray 851 

lines: individual subjects). B. Confusion matrices per expected target position (smaller pie chart) as a function of cued position 852 

(up-right –UR, right –R, down-right –DR, down-left –DL, left –L, upper-left –UL), color code inside the small charts: decoding 853 

performances. Color code inside the bigger chart: eccentricity of the expected position.  854 

The decoding performance and the evolution of decoding in time at the trial level for task 2 855 

show a similar profile compared to what we found with task 1. In addition, while in task 1, 856 

confusions were spread across the direct neighbors of the cued position (in angle), the 857 

confusions for task 2 are more concentrated on the non-cued position with the same 858 

orientation but a different eccentricity. In other words, confusion is more marked along the 859 

eccentricity dimension than along the orientation dimension. Taken together, these results 860 

shown that the results obtained for both task are consistent, showing the reproducibility and 861 

thus, the strength of the results exposed in this article. 862 

 863 
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Supplementary figure 3: reliability of decoding in time 864 

 865 

Figure S3: Percentage of confusion relative to cued position 2.2 (dark red) and 4.4 seconds (pink) before target onset, 866 

for trials correctly classified at time 0 seconds from target onset.  For each correctly classified trial at target onset, we 867 

decode the position of attention one (2.2 seconds, dark red) and two volumes (4.4 seconds, lights red) before the target onset. 868 

This allows to investigate the stability of attention and decoding of each trial in time at the trial level. 869 

 870 
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