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Abstract 
Single cell RNA sequencing (scRNA-seq) methods can profile the transcriptomes of single cells 
but cannot preserve spatial information. Conversely, spatial transcriptomics (ST) assays can 20 
profile spatial regions in tissue sections, but do not have single cell genomic resolution. Here, 
we developed a computational approach called CellTrek that combines these two datasets to 
achieve single cell spatial mapping. We benchmarked CellTrek using a simulation study and two 
in situ datasets. We then applied CellTrek to reconstruct cellular spatial structures in existing 
datasets from normal mouse brain and kidney tissues. We also performed scRNA-seq and ST 25 
experiments on two ductal carcinoma in situ (DCIS) tissues and applied CellTrek to identify 
tumor subclones that were restricted to different ducts, and specific T cell states adjacent to the 
tumor areas. Our data shows that CellTrek can accurately map single cells in diverse tissue 
types to resolve their spatial organization. 

Introduction 30 
Single cell RNA sequencing (scRNA-seq) methods have greatly expanded our understanding of 
the gene expression programs of diverse cell types and their role in development and disease1-

5. However, scRNA-seq inherently loose cellular spatial information during the tissue 
dissociation step, which is critical for understanding cellular microenvironment and cell-cell 
interactions6-8. While spatial sequencing methods, including spatial transcriptomics (ST)9 and 35 
Slide-seq10, can spatially profile gene expression across tissue sections, they are limited to 
measuring small regions with mixtures of cells and cannot easily provide single cell information. 
To address this issue, computational approaches (e.g., cell2location, RCTD) have been 
designed to deconvolute ST spots into proportions of different cell types11-17. However, spatial 
deconvolution methods are limited to inferring only cell type proportions for each spot, and 40 
cannot achieve single cell resolution. Additionally, deconvolution methods have limited ability to 
further resolve cell types into more granular “cell states” (expression programs) that reflect 
different biological functions. Finally, most deconvolution methods can only predict categorical 
labels and cannot infer continuous cell information (e.g., lineage trajectories, gene signatures, 
continuous phenotypes) at a spatial resolution.  45 
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Here we introduce CellTrek, a computational toolkit that can directly map single cells 
back to their spatial coordinates in tissue sections based on scRNA-seq and ST data. This 
method provides a new paradigm that is distinct from ST deconvolution, enabling a more flexible 
and direct investigation of single cell data with spatial topography. The CellTrek toolkit also 
provides two downstream analysis modules, including SColoc for spatial colocalization analysis 50 
and SCoexp for spatial co-expression analysis. We benchmarked CellTrek using simulations 
and in situ datasets. We then applied CellTrek to existing datasets from normal mouse brain18 
and kidney19 tissues as well as data that we generated from two human ductal carcinoma in situ 
(DCIS) samples to study the organization of cell types/states at single cell spatial resolution. 
 55 

Results 
Overview of CellTrek toolkit 
CellTrek first integrates and co-embeds ST and scRNA-seq data into a shared feature space 
(Fig. 1, Methods). Using the ST data, CellTrek trains a multivariate random forests (RF) model20 
to predict the spatial coordinates using shared dimension reduction features. A spatial non-60 
linear interpolation on ST data is introduced to augment the spatial resolution. The trained 
model is then applied to the co-embedded data to derive an RF-distance matrix which measures 
the expression similarities between ST spots and single cells supervised by spatial coordinates. 
Based on the RF-distance matrix, CellTrek produces a sparse spot-cell graph using mutual 
nearest neighbors (MNN) after thresholding. Finally, CellTrek transfers spatial coordinates for 65 
cells from their neighbor spots. To improve the compatibility, CellTrek can accept any cell-
location probability/distance matrix calculated from other methods (e.g., novoSpaRc21) as an 
input for cell spatial charting. Additionally, we provide a graphical user interface (GUI) for 
interactive visualization of the resulted CellTrek map. 

To recapitulate spatial relationships between different cell types, we developed a 70 
downstream computational module, SColoc, which summarizes the CellTrek result into a graph 
abstraction (Supplementary Fig. 1a, Methods). Three approaches, Kullback-Leibler divergence 
(KL), Delaunay triangulation (DT), and K-nearest neighbor distance (KD), are provided to 
calculate spatial dissimilarity between cell types. Based on the dissimilarity matrix, SColoc can 
construct a minimum spanning tree (MST) that represents a simplified spatial cellular proximity. 75 
The above steps will be iteratively executed on bootstrapping samples to generate consensus 
matrices (on dissimilarities or MSTs). Thereafter, a graph will be rendered through a GUI with 
tunable edge thresholding and color mapping functions. Additionally, SColoc provides a K-
distance metric for measuring the spatial distance of cells to a selected reference group.  

To investigate whether different expression programs are distributed across different 80 
topographic areas, we developed SCoexp which leverages the CellTrek coordinates to detect 
co-expression gene modules within the cells of interest (Supplementary Fig. 1b, Methods). First, 
SCoexp calculates a spatial kernel weight matrix based on their spatial distances. Using this 
weight matrix, SCoexp calculates spatial-weighted gene co-expression matrix. Thereafter, 
SCoexp utilizes consensus clustering22 (CC) or weighted correlation network analysis23 85 
(WGCNA) to identify gene modules. For the identified modules, we can calculate module scores 
and investigate their spatial organizations. 

Benchmarking and simulations  
To benchmark the performance of CellTrek, we exploited three spatial datasets, 1) a simulated 
scRNA-seq dataset with customized spatial patterns (Supplementary Fig. 2a, b); 2) a 90 
fluorescence in situ hybridization (FISH)-based single cell dataset of the Drosophila embryo21 
(Supplementary Fig. 2d, e) and 3) a seqFISH dataset of mouse embryo24 (Supplementary Fig. 
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2g, h). We generated three corresponding ST datasets with each spot aggregating the five 
spatially nearest cells (Supplementary Fig. 2c, f, i).  

We applied CellTrek to the scRNA-seq and ST data to reconstruct their spatial cellular 95 
maps. We then compared CellTrek to two additional cell charting methods: 1) NVSP-CellTrek 
which uses a reference-based novoSpaRc21, a spatial reconstruction method, to calculate a cell-
spatial probability matrix, then leverages CellTrek to produce a spatial map, and 2) Seurat25 
coordinate transfer (SrtCT) which uses the data transfer approach to transfer ST coordinates to 
single cells. Both CellTrek and NVSP-CellTrek reconstructed the original spatial pattern of the 100 
simulated data, while SrtCT only reconstructed a rough spatial relationship between cells and 
could not accurately map the cells (Supplementary Fig. 3a). Compared to NVSP-CellTrek, 
CellTrek mapped more cells with higher spatial density. To quantitatively evaluate these 
methods, we compared the spatial density of the cell charting results to the original spatial 
distribution across different cell types using the KL-divergence. Both CellTrek and NVSP-105 
CellTrek achieved good performance with low KL-divergences, while SrtCT showed much 
higher discrepancies to the reference distribution (Supplementary Fig. 3b). In the Drosophila 
embryo data, CellTrek accurately reconstructed the original spatial layout with the lowest KL-
divergences among three approaches (Supplementary Fig. 3c, d). We further investigated 
several known Drosophila embryogenic genes in the CellTrek results and found consistent 110 
spatial patterns to the previous study21(Supplementary Fig. 3e). In the mouse embryo data, we 
found that CellTrek and NVSP-CellTrek accurately reconstructed the original spatial structure, 
while CellTrek showed slightly higher KL-divergences in groups 5, 9 and 17 (Supplementary 
Fig.3 f, g). To investigate if CellTrek could reveal the developing spatial patterns of the mouse 
embryo, we selected a group of gut tube cells and found that there were spatial consistencies in 115 
some marker genes to the previous study24 (Supplementary Fig. 3h). We then performed a 
trajectory analysis using Monocle226, 27 which showed that the pseudotime reflected the spatial 
developing pattern of the gut tube cells along with the anterior-posterior axis24 (Supplementary 
Fig. 3i).  

We next assessed the performance of CellTrek on simulated data under three different 120 
simulation settings: 1) read counts, 2) spatial randomness, and 3) tissue densities. We 
evaluated CellTrek performance using KL-divergence and Pearson’s correlation on the cell 
spatial coordinates between the CellTrek map and the reference. Across the three simulations 
(with eight conditions each), CellTrek achieved good spatial reconstruction performances 
(Supplementary Fig. 4a,c,e,g,i) and showed lower KL-divergences and higher correlations 125 
compared to the permutation test (Supplementary Fig. 4b,f,j). However, increasing the spatial 
randomness will affect the performance of CellTrek and decrease the statistical significance 
(Supplementary Fig. 4f) while decreasing the read counts or the spot/cell density will result in 
sparse cellular maps (Supplementary Fig. 4a-b, g-j). Overall, this data suggests that CellTrek is 
a robust method for single cell spatial mapping under different experimental conditions. 130 

Topological organizations of mouse brain cells 
We applied CellTrek to public mouse brain scRNA-seq (Smart-seq2)18 and ST datasets (Visium, 
10X Genomics). We compared CellTrek to NVSP-CellTrek and SrtCT approaches. CellTrek 
reconstructed a clear layer structure of laminar excitatory neuron subtypes, in the order of L2/3 
intratelencephalic (IT), L4, L5 IT, L6 IT, L6 corticothalamic (CT), and L6b, which matched to the 135 
cerebral cortex structure (Fig. 2a, Supplementary Data 1). NVSP-CellTrek showed a similar 
spatial layer trend thus demonstrating the flexibility and consistency of the CellTrek approach 
(Fig. 2a). However, NVSP-CellTrek resulted in a sparse cell mapping in some areas. SrtCT 
failed to accurately project cell locations to the histological image (Fig. 2a). We then employed 
Seurat label transfer (SrtLT) to predict the spatial distribution of each cell type as our 140 
reference28. KL-divergences between cell charting results and the reference suggested that 
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CellTrek successfully recovered spatial cellular structures with the lowest KL-divergences 
among three approaches (Fig. 2b). 

Next, we asked if CellTrek could further uncover topological patterns of cell states within 
the same cell type. For example, L5 IT cells contain five expression states and showed a 145 
continuous trend on the UMAP in the order of Hsd11b1-Endou, Whrn-Tox2, Batf3, Col6a1-Fezf2 
and Col27a1 (Fig. 2c, left). The L5 IT CellTrek map discovered a refined sub-layer architecture 
(Fig. 2c, right) which is consistent with a previous study29. To summarize the cell spatial 
colocalizations, we applied the SColoc to the CellTrek result using KL-based MST consensus 
graph. Glutamatergic neuron cell types constructed a linear backbone of the graph in the order 150 
of the layer structures (Fig. 2d). Spatial K-distance to the L2/3 IT cells showed a significant 
increasing trend in the same order of the graph (Spearman’s rho = 0.91, P < 2.2e-16) (Fig. 2e). 

We then investigated how genes were spatially co-expressed within L5 IT cells using 
SCoexp. Two co-expression modules (K1, K2) were identified and showed different enrichments 
of biological functions (Fig. 2f, Supplementary Fig. 5a, b). The K1 module was highly active in 155 
cell states Hsd11b1-Endou, Whrn-Tox2 and spatially located in the outer layer, while the K2 
module was highly active in Col27a1, Col6a1-Fezf2, and Batf3 (Fig. 2 c, g, h) and mainly 
located in the inner layer (Fig. 2 g, h). These results show that SCoexp is able to identify subtle 
transcriptional differences within the same cell type and infer their topological heterogeneity. 

Spatial cell charting of the mouse hippocampus 160 
We also applied CellTrek to Slide-seq v230 and scRNA-seq data31 from the mouse 
hippocampus. Unsupervised clustering of the Slide-seq data identified 12 clusters (G01-G12) 
with a highly organized spatial structure (Supplementary Fig. 6a). CellTrek mapped single cells 
to their spatial locations (Supplementary Fig. 6b), which is consistent with the Slide-seq clusters. 
Notably, the G06 matched with the Cornu Ammonis (CA) areas (Supplementary Fig. 6c), while 165 
CellTrek revealed a sequential mapping of the CA1, CA2, and CA3 principal cells that were not 
resolved by the Slide-seq clustering alone (Supplementary Fig. 6d). These results show that 
CellTrek can be applied broadly to different spatial genomic platforms, to achieve a more refined 
spatial cellular resolution. 

Spatial reconstruction of a mouse kidney tissue 170 
We applied CellTrek to a public mouse kidney data32 and compared it to NVSP-CellTrek and 
SrtCT. CellTrek accurately reconstructed cellular spatial structures with distinct cell types 
located in different histological zones (e.g., cortex, outer medulla and inner medulla) (Fig. 3a, 
Supplementary Data 2). NVSP-CellTrek showed similar spatial patterns compared to CellTrek 
while SrtCT could not reconstruct accurate spatial organizations of the mouse kidney cells (Fig. 175 
3a). Using SrtLT as a reference, both CellTrek and NVSP-CellTrek achieved overall low KL-
divergence and NVSP-CellTrek showed higher KL-divergence for VSMC and RenaCorp cells 
(Fig. 3b). SrtCT showed the highest KL-divergence to the reference distribution. To further study 
the spatial cell expression dynamics, we inferred the trajectories of ProxTub and DistTub cells 
respectively and spatially mapped their pseudotime based on CellTrek. For ProxTub cells, we 180 
observed a continuous spatial trajectory that started from the outer part of the cortex to the inner 
part (Fig. 3c). This continuous anatomic change of ProxTub cells is consistent with previous 
studies33, 34. Similarly, DistTub cells also showed a continuous trajectory with a clear spatial 
pattern (Fig. 3d). Collectively, these results show that CellTrek can resolve the topological 
arrangements of continuous expression programs of single cells in tissues. 185 

We next summarized a cell spatial graph using SColoc. ProxTub cells were identified as 
the hub and connected to the RenaCorp, DistTub and other cell types (Fig. 3e). The consensus 
heatmap and hierarchical clustering showed similar patterns to the graph abstraction (Fig. 3f). 
Since the scRNA-seq data were collected from different zonal microdissections of the mouse 
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kidneys32, we asked if CellTrek could recapitulate the experimental zonal information without the 190 
prior knowledge. Based on the CellTrek result, we calculated the K-distance for TLLH, DistTub 
and Prin cells to a group of cells from the center region. A consistent trend was observed that K-
distances decreased from cortex to outer medulla then to inner medulla, suggesting that 
CellTrek successfully revealed the zonal structure of the mouse kidney (Fig. 3g). Further, in the 
DistTub cells, we identified two distinct spatial co-expression modules (K1 and K2) using 195 
SCoexp (Fig. 3h). The K1 module was enriched with metabolic pathways, renal system 
development and highly correlated with some distal convoluted tubule (DCT) genes (e.g., Wnk1 
and Slc12a3)35, 36 (Supplementary Fig. 5c). In contrast, K2 was enriched with cell-matrix 
pathways, purine metabolic pathways and correlated with distal straight tubule (DST) canonical 
genes (e.g., Slc12a1 and Umod)36 (Supplementary Fig. 5d). These two modules displayed 200 
distinct patterns on the UMAP and the CellTrek map. K1 was highly active in the cortex area, 
whereas K2 was active in the medulla, which are consistent with the anatomic localizations of 
DCT and DST (Fig. 3i, j). 

We further asked if CellTrek could improve our understanding of cell-cell 
communications by leveraging the spatial information. We conducted a cell-cell interaction 205 
analysis on the scRNA-seq data using CellChat37 and used the SColoc graph (Fig. 3e) to filter 
cell-cell pairs by assuming that colocalized cells will have a higher chance to interact with each 
other. Compared to the raw CellChat results, which predicted many non-specific interactions 
with all cell types interacting with each other (Supplementary Fig. 5e), the spatial filtering 
provided a reduced set of interactions that were more concise and specific (Supplementary Fig. 210 
5f). Importantly, we identified several interactions which have been reported previously, 
including Vegfa which is expressed by the ProxTub interacted with its receptors Flt1 and Kdr 
that are expressed by Vasc (Supplementary Fig. 5g)38-41. 

Spatial subclone heterogeneity in a DCIS breast cancer 
We applied 3’ scRNA-seq (10X Genomics) and ST (Visium, 10X Genomics) to a DCIS sample 215 
(DCIS1) to profile 6,828 single cells and 1,567 ST spots. For the scRNA-seq data, clustering 
and differential expression (DE) analyses identified 5 major cell types, including epithelial, 
endothelial, fibroblast, myeloid and natural killer (NK)/T cells (Supplementary Fig. 7a). We 
applied CopyKAT42 to infer copy number profiles from the scRNA-seq data. We observed some 
clonal copy number alterations (CNAs) across all tumor cells, including gains on chromosomes 220 
3q (PIK3CA), 8q (MYC), and 19p (STK11) and losses on chromosomes 8p (PPP2R2A), 10q 
(PTEN) and 14q (AKT1) (Fig. 4a). UMAP and dbscan clustering of the CNA profiles identified 
three major tumor subclones (clone1-3) with some distinct alterations, including 17q (ERBB2) 
gain and 11q (ATM) loss in clone2 and clone3, 1q (MDM4 and EPHX1) gain in clone2 and 6q 
(FOXO3) loss in clone3 (Fig. 4 a, b). Based on the consensus CNA profiles, we constructed a 225 
phylogenetic tree which showed that clone1 was an earlier subclone that diverged from the 
main lineage, followed by clone2 and clone3 (Fig. 4c). Notably, these three subclones displayed 
transcriptional heterogeneity (Supplementary Fig. 7b). Hallmark gene set enrichment analysis43 
identified several common pathways across all three subclones including MYC targets, oxidative 
phosphorylation and DNA repair (Fig. 4d). We also identified subclonal-specific signatures, 230 
including estrogen response pathways enriched in clone2 and clone3, and interferon 
alpha/gamma response, coagulation and complement pathways enriched in clone2. 

To understand the spatial distribution of three tumor subclones, we applied CellTrek to 
the scRNA-seq and ST data. Most of the tumor cells mapped to the DCIS regions on the H&E 
slide (Fig. 4e, g and Supplementary Data 3). Moreover, different tumor subclones mapped to 235 
different ductal regions, reflecting extensive spatial intratumor heterogeneity44. Specifically, 
clone2 was localized mostly to the middle (M) ducts, while clone3 was located primarily on the 
right (R) ducts and clone1 was spread across many ductal regions (Fig. 4e, g). Unsupervised 
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clustering of the ST tumor spots identified five ST clusters that showed spatial and gene 
expression concordance to the tumor CellTrek map (Supplementary Fig. 7c-e). Based on the 240 
subclonal compositions of each duct, we performed a clustering analysis and calculated 
Shannon index, resulting in four major ductal clusters with different subclone compositions and 
spatial patterns (Fig. 4f). Overall, ducts from the right part of the tissue displayed low clonal 
diversities, while some ducts from the middle and left regions showed higher clonal diversities 
(Fig. 4g).  245 

We further investigated the spatial co-expression patterns of the tumor cells using 
SCoexp and identified three gene modules (K1, K2 and K3). The K1 module was high in Clone1 
and enriched with actin-related pathways (Supplementary Fig. 8a, e, f). CellTrek displayed that 
cells with high K1 scores corresponded to tumor clone1 spatially (Supplementary Fig. 8g). By 
contrast, K2 was high in Clone2 and Clone3 and was enriched with response to estradiol, 250 
mammary gland duct morphogenesis and some catabolic processes (Supplementary Fig. 8h-j). 
Interestingly, the K3 module was highly active in proliferating tumor cells and associated with 
cell cycle related processes (Supplementary Fig. 8b-d, k, l). The spatial mapping of the K3 score 
showed that proliferating tumor cells were mostly located near the peripheral regions of several 
ducts (Supplementary Fig. 8m). Taken together, these data show that the CellTrek toolkit can 255 
delineate topological maps of different tumor subclones and their expression programs in a 
DCIS tissue. 
 

Spatial tumor-immune microenvironment of a DCIS tissue  
In another DCIS sample with synchronous invasive components (DCIS2), we profiled 3,748 260 
single cells (10X Genomics) and 2,063 ST spots (Visium, 10X Genomics). Unsupervised 
clustering and DE analyses identified 10 clusters, including three epithelial clusters, endothelial, 
pericytes, fibroblasts, myeloid, NK/T, B and plasmacytoid dendritic cells (pDC) (Supplementary 
Fig. 9a, b). CopyKAT revealed an aneuploid epithelial cluster with CNAs (epithelial3) 
(Supplementary Fig. 9c). Histopathological analysis of the H&E image identified 11 ductal 265 
regions with tumor cells (T1-T11) and intervening areas that contained stromal and immune 
cells (Fig. 5a). To study the tumor-immune microenvironment, we focused on aneuploid cells 
and immune cells from the scRNA-seq data (Fig. 5b). Using CellTrek, we mapped most of the 
aneuploid cells to the histologically defined DCIS regions and immune cells to areas 
surrounding ducts and stromal regions (Fig. 5c and Supplementary Data 4). Interestingly, we 270 
found that some immune cells, including T, B, myeloid cells and pDC, were aggregated in the 
areas directly outside of the ducts, especially T1, T2, T6 and T7. Combining the CellTrek result 
with the H&E image, we posited the existence of tertiary lymphoid structures (TLS) in these 
regions. To further investigate this question, we calculated ST spot-level TLS scores45, 46 and 
found that spots with high TLS scores often corresponded to the mixed immune cell 275 
aggregations in our CellTrek map (Fig. 5c,d). Furthermore, we found that the ST-level TLS 
scores positively correlated with the charted immune cell counts (Pearson's R = 0.36, P = 1.2e-
10) (Fig. 5e). Together, these results show that CellTrek is capable of reconstructing the spatial 
tumor-immune microenvironment based on the scRNA-seq and ST data. 

Next, we found that some T cells were proximal to and some were distal to the tumor 280 
regions. We further analyzed the T cells and re-clustered them into six cell states, including the 
Naive T (NaiveT), CD4+ T (CD4T), CD8+ T (CD8T), regulatory T cells (Treg), exhausted CD4+ T 
(CD4Te) and exhausted CD8+ T (CD8Te) (Fig. 5g and Supplementary Fig. 9d). We investigated 
the distribution of these T cell states in the CellTrek map. Notably, the Tregs, CD4Te and 
CD8Te cells were mostly proximal to the tumor cells (Fig. 5f). We further constructed a spatial 285 
graph within the T cells and found that cells from the same lineages tended to colocalize 
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spatially (Fig. 5h). We calculated T exhaustion scores and found that T cells with high 
exhaustion scores tended to localize near the tumor areas (Fig. 5i). K-distances of the T cells to 
their 15 nearest tumor cells showed an opposite trend to the T exhaustion scores on the UMAP 
(Fig. 5j, k). As expected, the immunosuppressive T cells (Treg, CD4Te and CD8Te) had higher 290 
exhaustion scores compared to the non-suppressive T cells (Fig. 5l). We binarized T cells to 
tumor distal (TD) and tumor proximal (TP) groups based on their K-distances and found that the 
TP group showed significantly higher exhaustion scores than the TD group (P = 1.1e-4, Fig. 
5m), suggesting the presence of immunosuppressive microenvironment near the DCIS ductal 
regions. We also found a similar trend in which TP had higher exhaustion scores compared to 295 
TD for the CD4T and Treg cells and an opposite trend for the NaiveT cells (Fig. 5n). Importantly, 
the TD groups contained only few immunosuppressive T cells, which is consistent with our 
finding that exhausted T cells tend to colocalize near DCIS regions (Fig. 5n).  

Re-clustering of the myeloid cells identified four cell states, including conventional 
dendritic cells (cDCs), monocytes and two macrophage subpopulations (Macro1 and Macro2; 300 
Supplementary Figs. 9e and 10a). CellTrek projected most of the cDCs to the tumor proximal 
areas (Supplementary Fig. 10a). The spatial graph showed that the Macro2 cells were 
colocalized with Macro1 and cDC (Supplementary Fig. 10b). We then calculated the K-distance 
of myeloid cells to the tumor cells (Supplementary Fig. 10c) and found that the cDCs displayed 
the lowest K-distances overall, while the Macro1 cells had higher K-distances. The K-distance 305 
density plot showed a similar trend (Supplementary Fig. 10d). We further examined the spatial 
co-expression of the Macro1 cells and identified two major gene modules (K1, K2) and one 
minor module using SCoexp. The K1 module was more active in macrophages from tumor distal 
regions (Supplementary Fig. 10e) and correlated with multiple C1Q genes, HAVCR2, CD74, 
HLA-DRA, etc. (Supplementary Fig. 10g). Conversely, the K2 module showed an opposite 310 
spatial pattern (Supplementary Fig. 10f) and correlated with CHIT1, CSTB, APOC1, MARCO 
and others (Supplementary Fig. 10g).  

To orthogonally validate the spatial distribution of tumor and immune cells inferred by 
CellTrek, we performed immunofluorescence (RNAscope) experiments with targeted probes for 
tissue slides from DCIS2 and another DCIS sample (DCIS3). This data showed that the DCIS 315 
tumor cell areas had high expression of ERBB2, while TAGLN marked the basal epithelial 
layers of the ducts (Supplementary Fig. 11a,b). Furthermore, immune suppressive T cell 
markers, including CTLA4 and FOXP3, had high expression near the DCIS areas in DCIS2 
(Supplementary Fig. 11b,c) which is consistent with the CellTrek results. Similarly, in DCIS3, we 
found immunosuppressive T cells with CTLA4 and FOXP3 near the ducts (Supplementary Fig. 320 
11d-f). Additionally, this data showed that B cells (MS4A1), monocytes/macrophages (CD68) 
and dendritic cells (CD1C) were also near the DCIS ductal regions, suggesting the presence of 
TLS (Supplementary Fig. 11g), and was consistent with the CellTrek results for DCIS2. In 
contrast, fewer immune cells were observed in the normal lobular epithelial areas in the same 
tissue section, particularly for the immune suppressive T cell markers (Supplementary Fig. 325 
11h,i). These data confirmed our findings on the DCIS tumor-immune microenvironment that 
were inferred using CellTrek. 

Discussion 
Here, we report a novel computational tool, CellTrek, for reconstructing a spatial cellular map 
based on scRNA-seq and ST data. In contrast to conventional deconvolution approaches11-14, 330 
CellTrek provides a new paradigm that directly projects single cells to their spatial coordinates in 
tissue sections and therefore takes full advantage of the scRNA-seq data. We also developed 
two downstream computational modules (SColoc and SCoexp) to further analyze the CellTrek 
results. By reconstructing a cellular spatial map, CellTrek provides several advantages. First, it 
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provides a flexible way to investigate any feature of individual cells (e.g., cell types/states, 335 
pseudotime) in a spatial manner, while most ST deconvolution approaches can only decompose 
spots into cell types, and cannot achieve single cell level feature mapping. Second, CellTrek is 
very flexible and can take any cell-location probability/similarity matrix as an input to reconstruct 
a cellular map, thus enabling further downstream analyses. Third, by utilizing a metric learning 
approach and a non-linear interpolation, CellTrek allows more accurate cell charting in a higher 340 
spatial resolution. Finally, with the development of higher spatial-resolution sequencing 
technologies, CellTrek is fully capable of charting single cells to other spatial sequencing data to 
provide even higher spatial granularity. 

We first benchmarked the CellTrek performance using the simulated and in situ datasets 
and then evaluated the accuracy and robustness under different data conditions. By applying 345 
the CellTrek toolkit to two “well-established” datasets from mouse brain and kidney, we 
demonstrated its capability in recovering the topological structures of different cell types. We 
further showed that CellTrek can identify high-resolution substructures by mapping categorical 
(i.e., cell states) and continuous features (i.e., pseudotime) to the tissue sections. SColoc can 
also reconstruct the spatial relationships of different cell types into a graph, which can be further 350 
leveraged for cell-cell communication analysis. Moreover, SCoexp can detect spatial co-
expression modules within multiple cell types, showing topological patterns in the tissue 
sections.  

In our study we performed matched scRNA-seq and ST experiments of two DCIS 
samples and applied the CellTrek toolkit to delineate the spatial distribution of the tumor 355 
subclones in different ductal regions and the topological organization of the tumor-immune 
microenvironment. In DCIS1, we found that three tumor subclones were localized to different 
ducts with different levels of clonal diversity. Although morphological and genomic intratumor 
heterogeneity have previously been observed, here we report spatial heterogeneity within the 
ductal network in the DCIS tissue44, 47-49. In DCIS2, CellTrek accurately mapped tumor and 360 
immune cells, and indicated the presence of TLS enriched with immune cells near the DCIS 
regions. Further analyses of T cells and myeloid cells revealed their spatial localization relative 
to the tumor cells. These findings were orthogonally validated using RNAscope. 

While CellTrek is a powerful tool for analyzing scRNA-seq and ST data, it has several 
notable limitations. First, CellTrek can have sparse cell mapping in some tissue areas as we 365 
showed in the simulation data. To overcome this problem, one can 1) collect tissues with higher 
cellular density for ST analysis; 2) sequence more cells or integrate multiple scRNA-seq 
datasets. Second, CellTrek maps cells to their most similar spots based on a sparse graph, 
which requires ST spots with relative high cell purities. A simulation of increasing spatial 
randomness (decreasing ST spots purities) showed that CellTrek could potentially over-simplify 370 
the spatial complexity for “less-organized” tissue structures. Finally, there is a risk of over-
interpreting the data only based on CellTrek since it is a computational inference tool. Although 
relatively stringent parameters are used as a default to control for false positives, orthogonal 
validation is recommended to confirm biological findings. 

In the future, CellTrek could be improved by including image recognition or deep 375 
learning approaches for cell segmentation and identification. Additionally, epigenetic regulation 
is of great interest in developmental biology and cancer research. Therefore, another future 
direction is to adapt CellTrek for epigenome data (e.g., scATAC-seq) to understand spatial 
epigenetic regulation in the tissue sections. Overall, we expect that CellTrek will have a 
multitude of applications for studying basic biology and human disease in spatial context, as 380 
applying scRNA-seq and ST experiments to the same tissues is becoming ever more 
commonplace. 
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Data and software availability 
The scRNA-seq and ST data were submitted to the Gene Expression Omnibus (GEO):  385 
GSE181254. The CellTrek software toolkit is available at GitHub: 
https://github.com/navinlabcode/CellTrek. 
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Methods 
CellTrek toolkit 
CellTrek Using ST and scRNA-seq data, CellTrek first uses a reference-based co-embedding 
approach from the Seurat package25 with scRNA-seq data as the reference and the ST data as 
the query. From the co-embedded data, CellTrek then trains a multivariate random forest (RF) 410 
model with a default of 1,000 trees on ST data using rfsrc from the randomForestSRC 
package50 with the following formula: 

[X, Y] ~ PCs, 
where X and Y are spatial coordinates of ST spots, and PCs are the top principal components 
(default = 30). Additionally, CellTrek introduces a non-linear 2D interpolation approach from the 415 
akima package to augment the ST spots. The trained RF model is applied to the ST-scRNA co-
embedding data to produce an RF-based distance matrix. RF distance is calculated by  

𝑅𝐹	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	
#	edges	to	the	immediate	shared	ancestor	on	the	tree

#	edges	to	the	tree	root
 

This distance metric provides a semi-parametric measurement of the similarities between data 
points in their feature space while supervised by the spatial coordinates. Based on the RF 420 
distance matrix, CellTrek further constructs a sparse graph by filtering distances larger than a 
threshold and matching the closest cell-spot pairs using mutual nearest neighbors. This sparse 
graph enables a flexible cell charting scheme with certain degrees of redundancy considering 
that one ST spot contains multiple cells and different ST spots could consist of similar cells. In 
addition to the default machine learning-based distance matrix, CellTrek is designed to be 425 
compatible with any cell-location similarity/probability matrix computed from other methods as 
an input, such as novoSpaRc21, thus extending the compatibility and scalability of CellTrek. 
Using the sparse spot-cell graph, CellTrek assigns the coordinates from ST spots to their 
connected neighboring cells. To avoid the cell clumping problem, CellTrek applies point 
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repulsion algorithm using circleRepelLayout from the packcircles package. Additionally, we also 430 
developed an interactive plotting function (celltrek_vis) for the CellTrek cell map visualization 
which allows mapping any continuous or categorical cell features to the spatial map with 
different colors and shapes provided. This plotting function also allows interactive manual 
selection and annotation of cells. 
 435 
SColoc To recapitulate the colocalization of different cell types on the CellTrek results, we 
developed the SColoc module that provides three different approaches to calculate cell 
closeness, i.e., KL-divergence (KL), Delaunay triangulation (DT) and K-nearest neighbor 
distance (KD) considering different tissue structures or study goals. For the KL-based approach, 
SColoc calculates a 2D grid kernel density for each cell type using kde2d from the MASS 440 
package with default h equals to spatial distance between two neighbor ST spots and n = 25. 
Then, SColoc calculates the KL-divergence on the 2D density between each pair of two cell 
types. KL-based SColoc works well for detecting the global closeness of large spatial structures, 
for example, the neuron layer structure in the brain. For DT-based approach, it first builds a 2D 
Delaunay triangulation network using delaunayn from the geometry package based on the 445 
CellTrek result. To confine the network complexity, SColoc can further filter edges with 
distances larger than a certain threshold. Then, on the cell type level, SColoc calculates 
neighboring cell counts on the DT network. Between any pair of cell types, SColoc calculates a 
log odds ratio that represents the colocalization of these two cell types. This approach shows 
better performances in capturing connections between cell types when local cellular structures 450 
are more of interest (for example, DCIS samples). To further simplify the connections, SColoc 
will also build a minimum spanning tree (MST). The above calculation procedures are 
performed repetitively on bootstrap samples (default 20 iterations). Both bootstrap closeness 
matrix and MST consensus matrix are produced for graph visualization. SColoc also provides 
an interactive visualization function (scoloc_vis) to render a graph representation of cell 455 
colocalization using either MST consensus or bootstrap closeness as input with flexible tuning 
thresholds to simplify the complexity. 
 
SCoexp To identify potential spatial-relevant gene co-expression modules, especially within cell 
types of interest, we developed the SCoexp module based on the CellTrek results. For cell of 460 
interests, SCoexp first calculates a spatial distance matrix between each cell and converts it into 
a spatial kernel matrix W using radial basis function (RBF) with a default sigma equals to the 
distance between two neighbored ST spots. Using this spatial kernel matrix W and a cell gene 
expression matrix X, SCoexp calculates a spatial-weighted gene cross-correlation matrix based 
on the following formula:  465 

𝑊𝐶𝑜𝑟 = 	 ?@A?
BCDEF(?@A?)CDEF(?@A?)@

, 
where diag() is the diagonal vector of a matrix. Based on the spatial-weighted gene cross-
correlation matrix, SCoexp uses two co-expression module detection approaches, i.e., 
consensus clustering (CC)22 and weighted correlation network analysis (WGCNA)23. CC 
approach applies the ConsensusClusterPlus package with a default K through 2 to 8 and default 470 
repetition of 20. Then for the identified gene clusters, a within-cluster filtering step removes low 
consensus and low correlation genes in each module. WGCNA approach identifies co-
expression modules with the normalized WCor matrix as an input. Similarly, a within-module 
filtering can be applied to remove low correlation genes. For the identified gene modules, we 
applied the Seurat AddModuleScore to calculate a cell-level module activity score which can be 475 
investigated on the CellTrek spatial map. 
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Mouse data acquisition and analysis 
Mouse brain data For the mouse brain scRNA-seq (Smart-seq2)18 and ST data (10X Genomics 
Visium), we downloaded the Seurat objects from 480 
https://satijalab.org/seurat/articles/spatial_vignette.html. For the scRNA-seq data, we randomly 
subsampled 8,000 cells from the original dataset and performed a standard data analysis 
procedure including log normalization, scaling, variable genes selection (n = 5,000) using vst, 
dimension reduction using PCA and UMAP. On each cell type, we then applied dbscan (v 1.1-
5)51 with minPts = 20 and eps = 0.5 to filter out outliers in the UMAP. For the ST data, we 485 
performed similar analysis processing (log-normalization, scaling, variable genes identification 
and dimensionality reduction) as the scRNA-seq data.  
 
Mouse hippocampus data The mouse hippocampus scRNA-seq data31 was downloaded from 
the Seurat website (https://satijalab.org/seurat/articles/spatial_vignette.html#slide-seq-1). We 490 
subsampled 20,000 cells from the data and performed SCTransform. Mouse hippocampus 
Slide-seq data30 was installed through the Seurat package. We subsampled 10,000 spots and 
performed SCTransform. For the Slide-seq data, we then conducted dimensionality reduction 
using PCA, UMAP and clustering analysis using Seurat. 
 495 

Mouse kidney data For the mouse kidney 3’ scRNA-seq data (10X Genomics), we downloaded 
the filtered gene count matrices from GEO (GSE129798), and the cell type annotation from the 
original paper32. The data included single cells from three different dissection zones, i.e. cortex, 
outer medulla and inner medulla. We processed the scRNA-seq data following the similar 
procedures as the mouse brain data. We also subsampled 8,000 cells and filtered out outlier 500 
cells using group-wise dbscan. On proximal tubule and distal tubule cells, we conducted 
trajectory analysis using the Monocle2 package (v 2.14.0)27 with raw count data as an input and 
the negative binomial distribution as the expressionFamily argument. Highly variable genes with 
mean expression more than 0.25 were used to perform gene ordering and dimensionality 
reduction based on DDRTree function. A principal graph was generated and cells were ordered 505 
along the pseudotime trajectory. The mouse kidney ST data was downloaded from the 10X 
Genomics website (https://www.10xgenomics.com/resources/datasets/) and analyzed by the 
same procedure as described for the mouse brain ST process workflow. 
 
DCIS tissue collection and sequencing  510 
ScRNA-seq experiments The two DCIS samples were obtained from the MD Anderson Cancer 
Center. The study was approved by the Institutional Review Board (IRB) and tissue was 
procured with informed consent from the patients. The tumors were stained with hematoxylin 
and eosin (H&E) and evaluated by pathology, in which DCIS1 was classified as a pure DCIS 
sample and DCIS2 as a synchronous DCIS-IDC tissue. The estrogen receptor (ER) and 515 
progesterone receptor (PR) status of the samples were determined by immunohistochemistry 
(IHC), which showed that DCIS1 was ER and PR positive, while DCIS2 was ER positive and PR 
negative. We used our previous protocol to prepare viable single cell suspensions42. Briefly, 
fresh tissue samples were dissociated into viable single cell suspensions by enzymatic 
dissociation using collagenase A and trypsin. The fresh tissues were also embedded into 520 
Optimal Cutting Temperature (OCT) and snap-frozen. The viable cell suspensions were used as 
input material for scRNA-seq using the Single-Cell Chromium 3′ protocol by V2 (10X Genomics 
CG00052, PN-120237) and V3 (10X Genomics CG000183, PN-1000075) chemistry reagents. 
The final libraries containing barcoded single-cell transcriptomes were sequenced at 100 cycles 
using the S2 flowcell on the Novoseq 6000 system (Illumina).  525 
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ST Visium experiments Fresh tissues from the two DCIS patients were cut to proper size and 
embedded in cryomold (Fisher #NC9542860) by OCT compound (Fisher #1437365) on dry ice 
and stored in -80oC in sealed bags. Frozen OCT embedded DCIS cryosections were cut to 
12μm in the cryostat (Thermo Scientific Cryostar NX70) with specimen head temperature at -17 530 
oC and blade temperature at -15 oC. The cut sections were placed within a capture area of the 
Visium spatial slide (10X Genomics PN-1000184). The slide was permeabilized for 12 minutes 
according to the Visium Spatial Tissue Optimization protocol (10X Genomics CG000238). 
Imaging of the stained slides was performed on the Nikon Eclipse Ti2 system. Finally, the ST 
libraries were constructed by following the Visium Spatial Gene Expression protocol (10X 535 
Genomics CG000239) and sequenced at 200 cycles by S1 flowcell on the Novoseq 6000 
system (Illumina). 
 
RNAscope experiments RNAscope probes were ordered from Advanced Cell Diagnostics 
(ACD) for the following genes: ERBB2, ACTG2, TAGLN, CTLA4, FOXP3, CD3D, CD4, CD8A, 540 
MA4A1, CD1C and CD68. Cryosections of two snap-frozen DCIS samples (OCT embedded) 
were cut at a thickness of 10um and used to performed RNA in situ hybridization assay with the 
RNAscope Multiplex Fluorescent v2 kit according to the manufacturer’s instructions (Cat# 
323110 and 323120) with following modifications: tissue sections were fixed in 10% NBF for 1hr 
at 4oC, all washing steps were increased to 3 times (3-5min each wash), areas enclosed by 545 
hydrophobic barrier were 0.75”x0.75”, for all reagent steps 150ul were dispensed, tissues were 
treated with Protease III for 15min at RT, Opal dyes were used at 1/750-1/2250 (Akoya 
Biosciences FP1487001KT, FP1488001KT, FP1495001KT FP1497001KTP), kit DAPI stain was 
replaced by a 1/2000 working stock in PBS (Invitrogen D1306 in DMF, 5mg/ml), and slides were 
mounted in Prolong diamond (Invitrogen #P36970). Fluorescent Images were scanned using a 550 
motorized stage on the Nikon Eclipse Ti2 microscope with 20X objective and analyzed with the 
Nikon NIS-Elements AR software (5.30.04). 
 
DCIS scRNA-seq data analysis 
FASTQ files were first preprocessed using the Cell Ranger 3.1.0 pipeline (10X Genomics) with 555 
default arguments and mapped to the GRCh38 reference genome to construct count matrices. 
Unique molecular identifier (UMI) counts were then processed using the Seurat package (v 
3.2)25. For the two DCIS samples, cells with less than 700 unique feature counts were filtered. 
We also filtered cells that had the percentage of mitochondrial counts more than 15%. Counts 
were then normalized using the NormalizeData with default LogNormalize method. Afterwards, 560 
normalized counts were scaled and centered using ScaleData function. 2,000 variable genes 
were found using FindVariableFeatures function and principal component analysis (PCA) was 
conducted using RunPCA with default parameters. ElbowPlot was used to determine the 
number of PCs for the downstream analyses. 10 neighbor cells and the top 20 PCs were used 
for neighbor finding using FindNeighbors. Cell clusters were identified using Louvain algorithm 565 
of FindCluster function with the top 20 PCs and a resolution of 0.6. We ran RunUMAP to 
visualize cell manifold in a 2D space. Differentially expressed (DE) genes were identified using 
FindAllMarkers. Cell identities were annotated based on a combination of two strategies: 1) Top 
markers for each cluster based on the DE gene analysis; 2) Canonical cell type specific marker 
expression using FeaturePlot. We used dbscan with minPts = 5 and eps = 0.5 to remove 570 
outliers for each cell type based on the UMAP. Then, we utilized CopyKAT (v17) to infer the 
copy number for each cell42. For DCIS1, the inferred copy number profiles were plotted using 
ComplexHeatmap (v 2.2.0)52 and used to generate copy number alterations (CNA)-based 
UMAP using the uwot package (v 0.1.8) on the Manhattan distance matrix. We then applied 
dbscan to identify tumor subclones in a CNA-based UMAP space. Consensus copy number 575 
profiles for the tumor subclones and normal cells were then used to construct a phylogenetic 
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tree based on neighbor joining tree in the ape package (v 5.4)53 and the normal cell was chosen 
as root. Gene set enrichment analysis was performed on three tumor subclones using the fgsea 
package43. Cell cycle scores for cells were calculated using the CellCycleScore module from 
Seurat and assigned as in G1, G2/M or S phase. For DCIS2, to further define NK/T and myeloid 580 
cell subtypes, these cells were extracted and re-analyzed using the similar workflow. DE 
analysis was performed and cell subtypes were annotated based on the top gene expression 
and canonical maker expression. To characterize T cell exhaustion, we used an exhaustion 
gene signature including PDCD1, CTLA4, LAG3, HAVCR2, CD244, CD160 and TIGIT. 
 585 
DCIS ST data analysis 
Sequencing data were first preprocessed with Space Ranger v1.0.0 and mapped to the 
GRCh38 reference genome. Similar to the scRNA-seq data analysis workflow, the ST data were 
subsequently processed using Seurat. We filtered out spots with UMI counts less than 100. The 
UMI counts were normalized using NormalizeData function with LogNormalize followed by 590 
ScaleData. 2,000 variable genes were found using FindVariableFeatures function and PCA was 
performed using RunPCA. For DCIS1, to study tumor spots, we selected the ST spots covering 
the ductal areas based on histopathology and conducted an unsupervised clustering using the 
top 20 PCs at resolution of 0.5. For DCIS2, we cropped out the damaged areas of the original 
tissue slide which resulted in a total of 965 spots left. The downstream analyses were based on 595 
the cropped tissue section. For ST spots, the TLS score was calculated based on a 12-gene 
signature46 using AddModuleScore function in Seurat. 

Benchmarking and simulations 
Simulation data We used R package Splatter54 to generate the simulation scRNA-seq data 
with 6,000 cells, 5,000 genes and 5 cell groups. We set lib.loc = 8.5, lin.scale = 0.4 and 600 
dropout.type = ’group’. We used the function splatSimulatePaths to simulate a sequential 
manifold with path.skew = 0.1, de.facLoc = 0.1 and de.facScale = 0.8 for all groups. We then 
generated a customized spatial area and assigned cells to the locations using optimal transport 
between the top 2 principal components and spatial locations using the transport package55. ST 
spots were generated using a 30 by 20 grid and spots outside the spatial area were then 605 
dropped. Each ST spot aggregated the gene expression from its 5 nearest cells. A final ST data 
with 394 spots was used. 
Drosophila embryo data This data is from the Berkeley Drosophila Transcription Network 
Project (BDTNP) (https://www.fruitfly.org/)21. Based on the FISH data of Drosophila embryo, 
they generated 3,309 cells with the expression level of 84 landmark genes. We filtered 5 outlier 610 
cells and applied the Seurat analysis pipeline to identify 7 cell groups at resolution = 0.25. 
Similarly, we generated the ST data with a final of 483 spots. 
Mouse embryo data We downloaded the seqFISH data of mouse embryo 1 from 
https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/24. We downsampled 6,000 cells and 
removed the low-quality group and groups with less than 50 cells. We finally used a single cell 615 
data of 5,852 cells and 351 genes for test. ST data was correspondingly generated with a final 
of 779 spots. We sub-selected a group of foregut cells and ran Monocle2 for trajectory analysis. 
Different conditions of simulation Based on the original scRNA-seq simulation data, we 
further simulated different data conditions to test the robustness of CellTrek. In simulation-1, we 
simulated different read counts for both scRNA-seq and ST data by dropping a certain number 620 
of reads from a proportion of cells and spots. The detailed dropout parameters were described 
in Supplementary Table 1. This simulation will not only produce data with different library size 
and read depth but also introduce batch effects between scRNA-seq and ST data since the 
dropouts were conducted independently on these two data sets. In simulation-2, we simulated 
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spatial randomness by swapping cells in a spatially manner. Specifically, we first added a 625 
Gaussian noise with a customized deviation to the original cell coordinates and then assigned 
the cells with spatial noise back to the original tissue structure (Supplementary Table 2, 
Supplementary Fig. 4c). The increasing Gaussian noise deviation will increase the spatial 
randomness compared to the raw reference structure (Supplementary Fig. 4d, left). 
Corresponding ST data was then generated at each condition. This simulation also produced a 630 
decrease of cell type purities within ST spots (Supplementary Fig. 4d, right). In simulation-3, we 
simulated different tissue densities by spatially down-sampling cells. We first set-up some 
spatial marker points (Supplementary Table 3 and Supplementary Fig. 4g), and then calculated 
cell distances to the marker points and converted into RBF kernel densities. We then down-
sampled cells based on their kernel densities. This simulation can generate different spatial 635 
sparseness in different areas. ST data was then generated correspondingly. To quantitatively 
evaluate the CellTrek performance, we compared the CellTrek results to their spatial cellular 
reference under different conditions using cell type-level KL-divergences and correlation 
analysis on spatial coordinates. Permutation tests of 100 times were performed to generate null 
distributions.  640 

CellTrek and downstream analyses 
Simulation and benchmarking data For the simulated scRNA-seq and ST data, we first ran 
traint to co-embed the data into a shared feature space with default parameters. We tested the 
RF-distance distribution between ST and scRNA-seq data and determined a threshold around 
1% quantile which is 0.35 (350 out of 1,000). Using this threshold, we ran celltrek on the co-645 
embedded traint data with following parameters: intp_pnt = 2,000 spots, nPCs = 20, ntree = 
1,000, top_spot = 4, spot_n = 5 and repel_r = 10 with 10 iterations. For NVSP-CellTrek, we first 
ran novoSpaRc using reference-guided mode using the same default parameters following the 
protocol from https://github.com/rajewsky-
lab/novosparc/blob/master/reconstruct_drosophila_embryo_tutorial.ipynb. On the gw matrix 650 
from novoSpaRc, we ran a negative log transformation and determined a threshold of 13 
(around 1% quantile of the distance). We then ran celltrek_from_dist with following parameters: 
top_spot = 4, spot_n = 5, dist_cut = 13, and reprel_r = 20. For SrtCT, we ran 
FindTransferAnchors from Seurat with ST data as the reference and scRNA-seq data as the 
query and reduction of “cca”. We then applied TransferData to transfer the ST coordinates from 655 
ST data to single cells with default parameters. For Drosophila and mouse embryo data, similar 
to the simulation data, we performed CellTrek, NVSP-CellTrek and SrtCT to analyze the single 
cell and generated ST data using similar parameter settings. For CellTrek simulation analysis of 
different data conditions, we first filtered low quality ST and scRNA-seq data using nFeature > 
10. We set intp = FALSE due to the running time and repel_r was set to 20 considering no 660 
spatial interpolation here. All parameters were fixed across different simulations and conditions. 

 
Mouse brain We subset the frontal cortex region in the ST data for single cell spatial charting. 
For the normalized ST and scRNA-seq data, we first ran traint to co-embed the data into a 
shared feature space with default parameters. We tested the RF-distance distribution between 665 
ST and scRNA-seq data and determined a threshold close to 1% quantile which is 0.5 (500 out 
of 1,000). Using this threshold, we ran celltrek on the co-embedded traint data with following 
parameters: intp_pnt = 10,000 spots, nPCs = 20, ntree = 1,000, top_spot = 5, spot_n = 10 and 
repel_r = 20 with 10 iterations. For NVSP-CellTrek, we ran novoSpaRc using reference-guided 
mode. Similarly, we ran a negative log transformation on the gw matrix and determined a 670 
threshold of 14 by testing the distribution (1% quantile). We then ran celltrek_from_dist with 
following parameters: top_spot = 5, spot_n = 10, dist_cut = 14, and reprel_r = 20. SrtCT was 
performed with the same parameters as the simulation study. To evaluate different cell charting 
approaches, we benchmarked SrtLT as our reference. Specifically, we used 
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SelectIntegrationFeatures to select 2,000 features between ST and scRNA-seq data. Then we 675 
used FindTransferAnchors with scRNA-seq data as the reference, ST data as the query data 
and reduction of “cca”. Then we applied TransferData to transfer the cell type labels from 
scRNA-seq data to the ST spots. For comparison, for each cell type, we converted all charting 
results (CellTrek, NVSP-CellTrek and SrtCT) to a spatial grid density with h = 10, n = 50 and 
coordinates limits fixed to the range of ST spots coordinates. For SrtLT, we first applied a 680 
customized function that generates pseudo-points based on probabilities and used the same 
approach to calculate a spatial grid density for each cell type. We then focused on cell types 
that had 1) more than 10 spots with label transfer probability > 0.5 and 2) more than 20 cells in 
the scRNA-seq data. For each cell type, we used total normalization and calculated the KL-
divergence between any cell chart density and the SrtLT reference density. To calculate the cell 685 
spatial colocalization, we applied scoloc on the CellTrek results using “KL” approach with 
cell_min = 15, eps = 1e-50 and boot_n = 20. We calculated the mean of bootstrap KL matrices 
and converted it into a similarity matrix. This matrix was then used for heatmap with ward.D2 
clustering. For the graph visualization, we used the MST consensus matrix as input while setting 
a consensus cutoff at 0.3. For the glutamatergic neurons, we calculated spatial K-distance by 690 
setting the L2/3 IT cell type as the reference and k = 10. K-distance was then normalized by the 
maximum values. For L5 IT cells, we performed the spatial co-expression analysis. We first 
filtered mitochondria, ribosomal, and highly sparse (non-zero proportion less than 20%) genes 
and calculated highly variable genes which resulting in a total of 2,000 genes. We then used a 
consensus clustering based spatial co-expression analysis using scoexp with following 695 
parameters: sigm = 140, avg_con_min = 0.5, avg_cor_min = 0.4, zero_cutoff = 3, min_gen = 50, 
max_gen = 400 and maxK = 8. After gene modules were identified, we applied 
AddModuleScore from Seurat to calculate the cell module activity score with nbin = 10 and ctrl = 
20. We performed Gene Ontolgy (GO) enrichment analysis for the two modules using the 
clusterProfiler package56. To identify genes correlated with the co-expression modules, we used 700 
a customized FindCorMarkers function in CellTrek based on the Spearman correlation. 
 
Mouse hippocampus For the Slide-seq and scRNA-seq on mouse hippocampus, traint and 
celltrek were consequentially conducted with norm = “SCT”, nPCs = 50, dist_thresh = 0.65, 
top_spot = 5, spot_n = 2, and repel_r = 10. 705 
 
Mouse kidney Similar to the mouse brain data, we performed three different cell charting 
approaches for comparison, i.e., CellTrek, NVSP-CellTrek, and SrtCT to analyze this scRNA-
seq and ST data. For CellTrek, the dist_thresh was set to 0.6 considering the distance 
distribution. For NVSP-CellTrek, we selected a distance cutoff of 13.5. We also benchmarked 710 
SrtLT and compared these cell charting results using KL-divergence on the spatial grid density 
at h = 20 and n = 40. For the spatial colocalization analysis, we used scoloc with “DT” approach 
on the CellTrek results. The diagonal of the mean matrix was replaced with NA to emphasize 
only the colocalization between different cell types. The MST consensus matrix was employed 
for graph visualization at a cutoff of 0.2. Similarly, the similarity matrix was used for heatmap 715 
with the ward.D2 clustering. We applied scoexp with avg_cor_min = 0.3 on the distal tubule 
cells to identify the spatial co-expression modules. We also performed GO enrichment analysis 
for these gene modules. To evaluate cellular interactions between different cell types of mouse 
kidney, we applied CellChat (v 1.1.3)37 to infer ligand-receptor interactions from the scRNA-seq 
data. We used the normalized count data as an input and followed the CellChat tutorial with 720 
default parameters and CellChatDB.mouse as the interaction database. Cellular interactions 
were visualized using netVisual_circle function. Next, in order to obtain a more specific 
interaction results, we leveraged our spatial SColoc graph. We binarized the MST consensus 
matrix at 0.2 as a spatial weight matrix. We calculated the element-wise product of CellChat 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469915


 16 

cellular interaction matrix and the weight matrix. Ligand-receptors interaction examples were 725 
then plotted using netVisual_chord_gene function.  
 
DCIS1 We applied traint followed by celltrek with dist_thresh = 0.5, top_spot = 5, spot_n = 10, 
and repel_r = 5 to construct a spatial cell map. To calculate the diversities of different ducts, we 
assigned the tumor cells to their closest ducts with spatial distances less than 60. Then 730 
Shannon index was calculated using entropy.empirical from the entropy package and rescaled 
to 0~1. To identify the similarity between the ST spots of the annotated ducts and the tumor 
subclones identified from the scRNA-seq data, we conducted DE analyses for the ST clusters 
and tumor subclones, respectively. Genes with adjusted P values (Bonferroni correction) less 
than 0.1 were selected to perform Pearson’s correlation between these two modalities on 735 
average log fold-change values. Spatial co-expression was conducted using the scoexp “cc” 
approach with sigm = 60, avg_cor_min = 0.4, zero_cutoff = 3, min_gen = 50 and max_gen = 
400. Similarly, GO enrichment analysis was also performed for three spatial gene modules.  
 
DCIS2 We used the same CellTrek procedure as described for DCIS1. To test the association 740 
between ST-TLS scores and CellTrek immune cell numbers (i.e., NK/T, B, Myeloid and pDC), 
we first assigned the immune cells to their closest ST spots and counted the cell numbers. Next, 
we calculated Spearman correlation between spot-level TLS scores and the corresponding 
immune cell counts. Within the T cell group, we applied scoloc with “DT” approach to 
summarize cell colocalization. MST consensus was used for graph visualization. We calculated 745 
K-distance of T cells to the tumor cells with K = 15. The K-distance of the T cells were then 
binarized to TD and TP groups based on a Gaussian mixture model57. For myeloid cells, we 
applied the same analysis procedure as T cells for the cell colocalization and K-distance 
analysis. For macrophages, we also conducted a spatial co-expression analysis using scoexp 
and identified highly associated genes using FindCorMarkers.  750 
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Fig. 1 | Overview of the CellTrek workflow. CellTrek first co-embeds scRNA-seq and ST 880 
datasets into a shared latent space. Using the ST data, CellTrek trains a multivariate random 
forests (RF) model with spatial coordinates as the outcome and latent features as the 
predictors. A 2D spatial interpolation on the ST data is introduced to augment the ST spots. The 
trained RF model is then applied to the co-embedded data (ST interpolated) to derive an RF-
distance matrix which will be converted into a sparse graph using mutual nearest neighbors 885 
(MNN). Based on the sparse graph, CellTrek transfers the coordinates to single cells from their 
neighboring ST spots.   
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Fig. 2 | CellTrek reconstructs spatial organization in a mouse brain tissue. a, Comparison 890 
of CellTrek, NVSP-CellTrek and SrtCT results for single cell spatial charting in a mouse brain 
tissue. b, KL-divergence of spatial cell charting methods for each cell type using SrtLT as a 
reference. c, UMAP (left) and CellTrek map (right) of scRNA-seq data of L5 IT cell states. d, 
Spatial colocalization graph of glutamatergic neurons using SColoc. e, CellTrek-based spatial K-
distance of glutamatergic neurons to L2/3 IT cells. Boxplots show the median with interquartile 895 
ranges (25–75%); whiskers extend to 1.5X the interquartile range from the box. f, Spatial co-
expression modules (K1 and K2) identified in L5 IT cells using SCoexp. g-h, UMAPs of L5 IT 
cells showing the K1 module activity scores (g) and the K2 module activity scores (h) and their 
corresponding CellTrek maps.  
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Fig. 3 | CellTrek reconstructs spatial organization in a mouse kidney tissue. a, 
Comparison of CellTrek, NVSP-CellTrek and SrtCT results for single cell spatial charting in a 
mouse kidney tissue. (DistTub: distal tubule cells, T: T cells, ProxTub: proximal tubule cells, 
VSMC: vascular smooth muscle cells, Inter: intercalated cells, Prin: principal cells, TLLH: the 
loop of Henle, Vasc: vascular cells, Macro: macrophages, RenaCorp: renal corpuscle cells) b, 910 
KL-divergence of spatial cell charting methods for each cell type using SrtLT as a reference. c, 
Trajectory analysis for proximal tubule cells (left) and spatial mapping of the pseudotime values 
in the tissue section (right). d, Trajectory analysis for distal tubule cells (left) and spatial 
mapping of the pseudotime values in the tissue section (right). e, Spatial colocalization graph of 
different renal cell types using SColoc. f, Spatial consensus matrix of different renal cell types. 915 
g, CellTrek-based spatial K-distance of TLLH, DistTub and Prin cells to the tissue center cells 
across experimental zonal dissections (left). Center cells as reference are shown on the right 
panel. *** indicates P < 0.001. Boxplots show the median with interquartile ranges (25–75%); 
whiskers extend to 1.5X the interquartile range from the box. h, Spatial co-expression modules 
(K1 and K2) identified in distal tubule cells using SCoexp. i-j, UMAPs of distal tubule cells 920 
showing the K1 module activity scores (i) and the K2 module activity scores (j) and their 
corresponding CellTrek maps.  
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Fig. 4 | CellTrek identifies the spatial subclone heterogeneity in DCIS1.  925 
a, A heatmap of copy number (CN) profiles inferred by CopyKAT on the scRNA-seq data in 
DCIS1. The lower part represents a consensus CN profile of each cluster with some breast 
cancer-related genes annotated. b, CN-based UMAP of DCIS1. c, Phylogenetic tree based on 
the consensus CN profiles. d, Hallmark GSEA analysis of the expression data from three tumor 
subclones. e, Spatial cell charting of three tumor subclones using CellTrek. f, Tumor subclonal 930 
compositions within different ducts. The diamond symbol in each bar represents the Shannon 
index which measures the diversity of tumor subclones. g, H&E image of the DCIS tissue 
section with Shannon diversity index for each duct.  
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Fig. 5 | CellTrek displays the spatial tumor-immune microenvironment in DCIS2.  
a, H&E image of the tissue section from the DCIS2 patient. Histopathological annotations of 940 
tumor regions are highlighted in red circles with labels from T1 to T11. b, UMAP of DCIS2 
scRNA-seq data (tumor cells, B cells, NK/T cells, myeloid and pDC cells). c, CellTrek spatial 
mapping of tumor cells, B cells, NK/T cells, myeloid and pDC cells. Yellow boxes highlight 
potential locations of tertiary lymphoid structures (TLS) with aggregation of mixed immune cells. 
d, ST spot-level TLS signature scores. e, Boxplot showing the association between CellTrek-945 
based immune cell counts and ST spot TLS score quantiles. f, CellTrek spatial mapping of 
different T cell states. The contour plot represents the tumor cell densities. g, UMAP of scRNA-
seq data showing different T cell states. h, Spatial colocalization graph of T cell states using 
SColoc. i, CellTrek spatial mapping of the T exhaustion scores. j, UMAP of T cells showing the 
exhaustion scores. k, UMAP of T cells showing the spatial K-distances to their 15 nearest tumor 950 
cells. l, Boxplot comparing the T cell exhaustion scores between different T cell states. m, 
Boxplot comparing the T cell exhaustion scores between T cells proximal to tumor cells (TP) 
and T cells distal to tumor cells (TD). n, Boxplot comparing the T cell exhaustion scores 
between TP and TD within each T cell state. In l, m and n, * indicates P < 0.05, *** indicates P < 
0.01, *** indicates P < 0.001 using Wilcoxon rank-sum test. Boxplots show the median with 955 
interquartile ranges (25–75%); whiskers extend to 1.5X the interquartile range from the box. 
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