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Abstract 
The colon is a complex organ that promotes digestion, extracts nutrients, participates in immune 
surveillance, maintains critical symbiotic relationships with microbiota, and affects overall health. 
To better understand its organization, functions, and its regulation at a single cell level, we 
performed CODEX multiplexed imaging, as well as single nuclear RNA and open chromatin 
assays across eight different intestinal sites of four donors. Through systematic analyses we find 
cell compositions differ dramatically across regions of the intestine, demonstrate the complexity 
of epithelial subtypes, and find that the same cell types are organized into distinct neighborhoods 
and communities highlighting distinct immunological niches present in the intestine. We also map 
gene regulatory differences in these cells suggestive of a regulatory differentiation cascade, and 
associate intestinal disease heritability with specific cell types. These results describe the 
complexity of the cell composition, regulation, and organization for this organ, and serve as an 
important reference map for understanding human biology and disease. 
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Introduction 
The human adult intestinal system is a complex system of organs consisting of approximately 22 
ft of small intestine and 7 ft. of large intestine.  This system completes the digestive process begun 
in the oral cavity and stomach, first absorbing water and small molecule nutrients (e.g. sugars, 
monovalent ions, and amino acids) in the small intestine, then accumulating larger molecules 
such as fiber in the large intestine, which serves as an anaerobic fermentation chamber enabling 
the further breakdown and absorption of these complex molecules and the synthesis, often 
through alimentary gut microbiota, and absorption of others nutrients such as vitamins1.  
 
The small intestine itself is phenotypically heterogeneous, consisting of three morphologically 
distinct regions: the duodenum, the jejunum and the ileum2 . The large intestine can likewise be 
partitioned into regions including the ascending, transverse, descending, and sigmoid regions. 
Each of these anatomical regions contains an immense diversity of phenotypically and 
morphologically distinct cell types. Epithelial, stromal, nerve, and immune cells, each composed 
of multiple cell types, reside throughout the intestine; immune cells are of particular interest, as 
they interact with the microbiome and foreign material present in the gut3. Although these broad 
cell types are common to all portions of the intestinal system, prevalences of specific cell types 
are known to display locational differences: for example Paneth cells are known to populate the 
small intestine and enteroendocrine L cells are found primarily in the ileum and large intestine 4,5. 
Moreover, these cell types are spatially organized into different “neighborhoods” across these 
intestinal regions, with both the composition of these neighborhoods and molecular phenotypes 
of underlying cellular types varying in relatively unknown ways across these anatomical regions. 
These differences in both the composition of functional neighborhoods and molecular identity of 
the cell states that comprise these neighborhoods promise to further reveal the logic by which the 
human intestine is constructed.  
 
Below we map many portions of the intestine at single cell resolution using single nuclear RNA, 
open chromatin, and spatial proteomic imaging technologies. Previous studies have mapped cell 
types using single cell RNA sequencing (scRNA-Seq) and have catalogued cell types across the 
intestine6. We extend this work by the spatial mapping of cells and proteins using CODEX (CO-
Detection by indEXing7–10) to characterize approximately 1.2 million cells spatially as well as the 
mapping of gene regulatory information using single-cell assay of open chromatin using snATAC-
seq11.  We define the relative abundance of distinct cell types across the intestine including the 
enormous complexity of epithelial cells across different regions of the intestine, and the 
organization of cells into different multicellular structural niches. We also map gene regulatory 
differences in these cells suggestive of a regulatory differentiation cascade.  These results provide 
important insights into cell function, regulation, and organization for this complex organ and serve 
as an important reference for understanding human biology and disease. 
  
Results 
Mapping the human intestine at single cell resolution 
We mapped the cell composition, regulatory information, and spatial distribution of single cells 
across the intestine of multiple donors using single nuclear RNA-Seq (snRNA-seq), which 
measures nuclear RNA transcripts in individual nuclei, single nuclear ATAC-Seq (snATAC-seq), 
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which measures open chromatin in single cells, and CODEX, which stains the same tissue section 
with up to 54 antibody probes against different proteins. We analyzed eight sections from four 
individuals: three European-ancestry (one male and two female) and one African American male. 
Age ranges were from 24 to 78 years. The eight regions (in order of trajectory from the stomach) 
were: duodenum, proximal jejunum, mid-jejunum and the ileum from the small intestine, and 
ascending, transverse, descending and sigmoid regions of the large intestine. The organs were 
procured from organ donors and were deemed to be of high quality by RNA quality measures 
(Methods). 
 
CODEX Multiplexed Imaging of the Small Intestine and Colon 
To create a spatial map of the intestine across the eight different regions, we used CODEX 
multiplexed imaging. CODEX data retains spatial coordinates of the cell types, thus enabling 
insight into cellular interactions, composition of multicellular tissue units, and spatial relationships 
to the overall function of the intestine 9,10.  We first validated and optimized CODEX staining, 
imaging, and image processing for fresh frozen samples on one subject (B001). Four different 
regions of the colon and small intestine were combined on the same coverslip to minimize batch 
effects (Fig. 1A). Using a 44 marker antibody panel we stained and detected immune, stromal, 
and epithelial cells and multicellular neighborhoods from approximately 16 mm2 sections 
(Supplemental Fig. 1-3). Three epithelial, six immune, and six stromal cell types were identified—
resulting in two epithelial, three immune, and five stromal multicellular neighborhoods 
characteristic of the intestine (e.g., immune follicle).  
 
Epithelial cell subtypes are known to be spatially restricted and key to overall function of the gut12; 
therefore we expanded our CODEX antibody panel by adding and validating 17 intestine-specific 
markers (Supplemental Information 1). We similarly imaged the eight region samples from the 
three additional donors with this updated 54-antibody panel (Fig. 1B, Supplemental Fig. 4) which 
enabled the identification of an additional 10 cell types, such as Paneth and goblet cells (Fig. 1C, 
Supplemental Fig. 5,6). We propagated these cell type labels to two additional donors using the 
geometric deep learning method STELLAR that we developed for multiplexed spatial data (Brbic 
et. al, co-submitted).  
 
We used this resultant dataset to compare the cellular composition and organization across the 
different tissue regions. Cell types were separated by immune, stromal, and epithelial groupings 
because tissue sections had unequal representation of epithelial or stromal components (Fig. 1D, 
Supplemental Fig. 8). We observed no statistical differences in the representation of cells in the 
stromal compartment, where we would not expect to see major differences in vascularization, 
innervation, or muscle layers within our resolution of cell types. In the immune compartment, we 
observed a decrease in CD8+ T cells from the small intestine to the colon, consistent with previous 
flow cytometry-based observations13. Similarly, we observed a decrease in absorptive 
enterocytes, an increase in secretory enterocytes (goblet and immature goblet cells), and an 
absence of Paneth cells when moving from the small intestine to colon. Cell type compositions 
across the different regions of the small intestine and colon differ more than across donors (for 
the same region), providing confidence in the reproducibility of multiplexed imaging results 
(Supplemental Fig. 9).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.25.469203doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.25.469203


 
Cellular density reflects whether a cell has broad functions over large regions, is spatially 
restricted for specialized functions, or has need for specific cell-cell interactions. Moreover, 
aberrations in cellular density have been associated with disease states such as inflammatory 
bowel disease (IBD). As the intestine is the largest immune organ in the body14, evaluating 
immune cell localization and cellular interactions in the gut is critical for understanding oral 
vaccine design15, interactions regulating the gut microbiota16, regulation of allergic food 
responses17, axes critical for wound repair18, and immune system responses and 
immunotherapies for cancer19–22.  
 
Examination of three immune cell types (CD4+ T, CD8+ T, and plasma cells) revealed gross 
differences in cellular density (Fig. 1E). Visual inspection suggested that plasma cells had the 
highest same-cell type density, followed by CD4+ T cells, then CD8+ T cells, which were most 
diffuse through mucosa areas. We quantified this observation by calculating the average distance 
of a given cell type to its five nearest neighbors of the same cell type and dividing by the distance 
expected if all the same cells were arranged homogeneously across the tissue (Fig. 1F). 
Consequently, scores closer to 1 represent lower same cell density. Quantification confirmed our 
qualitative observations, showing that  plasma cells were most dense  (~0.2), followed by CD4+ 
T cells (~0.3), then CD8+ T cells (~0.37).  Support functions from CD4+ T cells are largely 
restricted to immune cell-cell interactions, whereas for immune surveillance of CD8+ T cells we 
would expect more diffuse distribution. Interestingly, these densities were largely conserved 
across the intestine between similar cell types. These results suggest an important role for spatial 
restriction of immune cell subtypes along the length of the intestine.  
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Figure 1: CODEX multiplexed imaging of 8 regions from the small intestine and colon to 
create a single-cell map of the healthy human intestine. A) Schematic for how CODEX 
multiplexed imaging was performed on arrays of 4 different sections of either colon and small 
intestine from the same donor simultaneously. Image processing steps done to extract single-cell 
spatial data. B) An example CODEX fluorescent image of one region of the small bowel (SB) for 
CODEX with 6/54 markers shown for one donor with C) accompanying cell type map following 
cell segmentation and unsupervised clustering. D) Cell type percentages from CODEX data 
averaged across 3 donors stained with an updated CODEX antibody panel. Cell types are 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.25.469203doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.25.469203


normalized by stromal, immune, and epithelial compartments. Asterix indicates p-value less than 
0.05 difference in cell type percentage from the SB to the colon (CL). E) One representative cell 
type map with only plasma cells, CD4+ T cells, and CD8+ T cells shown. F) Quantification of the 
same-cell density that is measured as an average distance of its 5 nearest same-cell neighbors 
divided by the most diffuse same-cell distance.  
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Multicellular Neighborhood Analysis of the Intestine 
To provide a global view of intercellular interactions, cellular densities, and overall multicellular 
structures of the intestine, we performed cellular neighborhood analysis10. Briefly, this analysis 
involved (i) taking windows of cells across the entire cell type map of a tissue with each cell as 
the center of a window, (ii) calculating the percentage of each cell type within this window, (iii) 
clustering these vectors, and (iv) assigning overall structure based on the average composition 
of the cluster (Fig. 2A). Cellular neighborhood analyses on the CODEX data of the intestine 
revealed 18 significant multicellular structures with major epithelial, stromal, and immune based 
neighborhoods (Fig. 2B, C; see methods).  
 
Congruent with our observation of high same-cell density of plasma cells (Figure 1), we observed 
a plasma cell enriched neighborhood driven by increased density of plasma cells (Fig. 2B). This 
plasma cell enriched neighborhood also exhibits co-enrichment of CD4+ T cells and antigen-
presenting cells such as dendritic cells and macrophages. These observations are consistent with 
recent work suggesting that CD28 engagement on plasma cells from antigen-presenting cells 
within the bone marrow can maintain long-term survival in plasma-specific niches23,24. 
Furthermore, antigen-presenting cells are sources of APRIL, which drives ectopic germinal center 
formation and plasma cell infiltration in cases of inflammation25. Collectively, these observations 
suggest a role for antigen-presenting cells in curating a subepithelial niche for plasma cells in the 
intestine. 
 
Interestingly, despite low same-cell density relative to other cells in the intestine, CD8+ T cells 
were conserved and enriched in two major neighborhoods (Fig. 2B). One of these neighborhoods 
(CD8+ T enriched IEL) exhibits enrichment of both epithelial cell types and CD8+ T cells. These 
CD8+ T cells are commonly referred to as intraepithelial lymphocytes (IELs), which are “soldiers 
on the front lines,” critical for rapid immunological responses, protection against infection (through 
MHCI binding and cytotoxicity26), and maintenance of epithelial integrity (via regulation of 
epithelial cell proliferation27). Dysregulation of these cells is associated with IBD and celiac 
disease. However, due to challenges in isolating these T cells, they have been difficult to study. 
This CD8+ T enriched IEL neighborhood was one of the few neighborhoods to change in 
prevalence from the small intestine (~30%) to the colon (~3%) (Fig. 2C, Supplemental Fig. 9). 
This variation may reflect differences in antigen exposure, as cells in the small intestine have 
increased exposure to dietary antigens, whereas cells in the colon likely experience more 
exposure to  gut microbiota.    
 
CD4+ T cells contributed to 5 diverse multicellular neighborhoods of the intestine, including inner 
follicle, innate immune enriched, plasma cell enriched, adaptive immune enriched, and outer 
follicle (Fig. 2B). This broad neighborhood membership is fitting, given that CD4+ T cells 
coordinate innate and adaptive immune responses. CD4+ T cells, B cells, and DCs (dendritic 
cells) membership defined two different follicle-based structures. The first of these structures, 
which exists in outer regions of the follicle, exhibited higher enrichment of CD4+ T cells, while 
inner regions of the follicle were enriched in B cells (Fig. 2B). The presence of the inner follicle 
(i.e., the germinal center) neighborhood was dependent on a fully mature lymphoid follicle like a 
Peyer’s patch within the image (Fig. 2D). However, the outer follicle neighborhood was constant 
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across the intestine and defined by B cells, DCs, and CD4+ T cells that were enriched in outer 
follicle neighborhoods compared to inner follicle structures. These data agree with previous work 
defining a continuum of lymphoid tissues within the intestine, where smaller structures like 
cryptopatches have the potential to develop into larger follicles28–30 especially in cases of 
inflammation31. 
 
Previous research has also indicated differences in lymphoid follicle development in the small 
intestine vs the colon32,33. By comparing the outer follicle neighborhood cell type compositions in 
the small intestine versus the colon (Fig. 2E, Supplemental Fig. 10A, B), we observed that while 
both are driven by an enrichment of CD4+ T cells, the colon had a higher enrichment of B cells 
and DCs, whereas the small intestine was enriched for CD8+ T cells, nerves, and plasma cells. 
This structural similarity is identified by the neighborhood analysis, but major differences of cell 
compositions within these similar neighborhoods can also be identified.  
 
We next compared the relative fold enrichment of all neighborhood compositions across the small 
intestine and colon, to create a heatmap of neighborhood differences (Fig. 2F). This heatmap is 
ranked both in terms of greatest total difference within both neighborhood and cell type categories, 
indicating neighborhoods with greatest conservation across the intestine, as well as the cell types 
that are most conserved across neighborhoods. Multicellular structural conservation across the 
intestine suggests a required function by a set of cell types, whereas less conservation indicates 
a core functionality as well as a need for compositional flexibility based on anatomical location. 
We found that both inner and outer follicle structures are less conserved, whereas stromal 
neighborhoods are more conserved. We also observe that the early secretory epithelial 
neighborhood, which contains Paneth cells in the small intestine and not in the colon, is the least 
conserved neighborhood—indicating different crypt microenvironments across the intestine (Fig. 
2F, Supplemental Fig. 10C).  
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Figure 2: Multicellular neighborhood analysis of intestine. A) Neighborhood analysis was 
done by taking a window across cell type maps and vectorizing the percentage of cell types in 
each window, clustering windows, and assigning clusters as cellular neighborhoods of the 
intestine. B) 18 unique intestinal multicellular neighborhoods (y axis of heatmap) were defined by 
enriched cell types (x axis of heatmap) as compared to overall percentage of cell types in the 
samples with C) an example of where neighborhoods are mapped back to the tissue to show 
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overall tissue structures. D) Neighborhood percentages from CODEX data averaged across 3 
donors normalized by stromal, immune, and epithelial compartments. Asterix indicates p-value 
less than 0.05 difference in cell type percentage from the small bowel (SB) to the colon (CL). E)  
Heatmap of enriched cell types for just the outer follicle neighborhood compared between SB and 
CL. F) Difference in composition in neighborhood by cell type for all neighborhoods based on 
subtracting the fold enrichment in SB from CL. 
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Hierarchical Structural Analysis of Intestine and Mucosal Epithelial Compartment 
Multicellular neighborhood analysis revealed key differences in structural composition across the 
intestine as well as composition of these neighborhoods. However, this analysis did not reveal 
how these multicellular neighborhoods interact with one another, or how they are spatially 
structured in the tissue. Understanding how multicellular groups are related is key to both defining 
the hierarchy of tissue organization, as well as defining key functional tissue interfaces.  
 
We investigated higher order structural organization using several methods. First, we clustered 
windows of neighborhood compositions in a manner similar to our methods for defining the 
neighborhoods from cell types; this generated communities and major communities of 
neighborhoods (Fig. 3A, Supplemental Fig. 11), and revealed spatial layering of the intestine, 
moving from the smooth muscle, stroma, and within epithelial areas. Interestingly, comparing the 
localization of immune major communities between the small bowel and colon showed differential 
localization localizing to the base of the epithelium compared to the large intestine located towards 
the apex, likely reflective of differential microbial loads.  Moreover, tSNE representations of the 
cell neighborhood vectors recapitulated overall tissue structure; for example, major community 
maps show smooth muscle and stromal neighborhoods in close proximity, abutted by immune 
neighborhoods located between epithelial structures (Fig. 3B). 
 
To relate the various levels of spatial organization to one another we created a hierarchical 
structure network graph (Fig. 3C, Supplemental Fig. 12). Each level of this graph is connected to 
the next by its major contributors to these higher-order structures. Using this intuitive formalism, 
we observe crosstalk between stromal and smooth muscle cell types and structures, which are in 
turn isolated from epithelial and immune components that are more entwined with one another. 
Additionally, major communities of epithelial and immune origin are much more diverse in 
composition across the levels. Using this graph structure, we can also observe multi-level  
relationships between the structures. For example, the adaptive immune enriched community is 
an important intersection of multiple neighborhoods: proliferating transit amplifying zone, 
secretory epithelial, adaptive immune enriched, outer follicle, and innate immune enriched. 
Consequently, this indicates that these important immune enriched neighborhoods, that have yet 
to become larger structured immune follicles, are poised with specialized niches flanking the 
secretory and transit amplifying zones of the intestine.  
 
We leveraged this hierarchical deconstruction of tissue organization to examine interactions in 
multicellular neighborhoods34. We isolated the cells as defined by a major community of epithelial 
and immune organizations (Fig 3A), and used a similar principle to our neighborhood analysis 
(Fig. 2A) to extract interaction information. We quantified the composition of windows across the 
neighborhood maps based on the percentage of neighborhoods in each window. Then instead of 
clustering window composition vectors, we evaluated which combination of neighborhoods made 
up at least 85% of the neighborhoods in each window, summed the unique neighborhood 
combinations, and connected these structural interactions in a network graph structure for both 
small intestine and colon (Fig. 3D).  
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From this analysis, already noted differences in composition are clear, where the mature epithelial 
and CD8+ T enriched IEL neighborhood combination is present in the small intestine but 
nonexistent in the colon (Fig. 3D, green box). In the colon the early secretory epithelial 
neighborhood is enriched combined with several other neighborhoods including the proliferating 
transit amplifying zone and plasma cell enriched (Fig. 3D blue box). In addition, the plasma cell 
enriched neighborhood is connected to many neighborhoods, but it is often co-enriched with the 
adaptive immune enriched neighborhood, which is also shared by both small intestine and colon 
graphs. The interconnectedness of the plasma cell enriched neighborhood can also be seen from 
the order of neighborhoods in the mucosal regions in high resolution images (Fig. 3D, 
black/orange boxes). Early secretory and adaptive immune neighborhoods are enriched at the 
bottom of the crypt followed by secretory and plasma cells enriched through mid-parts of the crypt 
followed by innate immune and mature epithelial neighborhoods. In conclusion, our hierarchical 
mapping data further confirms compositional differences in multicellular structures between small 
intestine and colon but also highlights conserved multicellular structure interactions and an 
important distribution of distinct cell types in subregions of the intestine.   
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Figure 3: Multi-level hierarchical structural description of small intestine and colon. A) 
Representation of multiple levels of hierarchical description: i) cell type, ii) multicellular 
neighborhood, iii) community (based on clustering windows of cell neighborhoods), and iv) major 
community (major types of communities) compared for the small bowel (SB) to the colon (CL). B) 
tSNE of neighborhood vectors with neighborhood, community, and major community labels 
projected. C) Graph of multi-level structure of the tissue as broken down by the different 
structures. Shapes correspond to structural level, colors represent individual categories, size of 
shapes represents the percent contribution to tissue, and the size of connected lines represents 
the overall contribution to the next level of structure as moving down the graph in increasing tissue 
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structural hierarchy. D) Spatial context maps of SB and CL highlighting relationships of 
multicellular neighborhoods. This structure is defined by the number of unique neighborhoods 
required to make up at least 85% in a given window. This graph was constructed from only the 
epithelial and immune regions as defined by the major community labels of cells. Circles represent 
the number of cells represented by a given structure. 
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Single-cell transcriptomic and chromatin analyses reveal cell composition differences 
across regions of the intestine 
CODEX revealed distinct compositions of cells and their arrangement across different intestinal 
regions. However, the CODEX experiments included only 54 probes, potentially limiting both the 
number and complexity of cell types that can be identified and their distribution in different regions 
of the intestine. To overcome these limitations as well as create a gene-regulatory atlas of the 
human intestine, we generated 156,119 snRNA-seq and 153,997 snATAC-seq profiles on the 
eight intestinal regions from the four donors (Figure 4A, Methods, Supplemental Fig. 13A,B). 
 
To examine global differences between regions of the intestine, we first clustered cells from all 
regions of the intestine and found that immune and stromal cells from all regions clustered 
together whereas epithelial cells separated based on whether they were isolated from 1) 
duodenum or jejunum, 2) ileum, or 3) colon (Figure 4B). We next subclustered immune cells, 
stromal cells, and epithelial cells from different regions of the intestine, revealing a total of 7 
immune, 13 stromal, and 18 epithelial cell-types (Figures 4C, 4D, and 4F). Cell-types were 
annotated by examining gene expression levels and gene activity scores of known marker genes 
as well as by labeling the datasets with previously published scRNA-seq data35 (Methods). 
 
Within the immune compartment, we identified clusters of CD4+ and CD8+ T-cells (CD2, CD3E, 
IL7R, CD4, CD8), B-cells (PAX5, MS4A1, CD19), Plasma cells (IGLL5, AMPD1), NK cells 
(SH2D1B), macrophages/monocytes (CD14), and mast cells (HDC, GATA2, TPSAB1) in both the 
snRNA and snATAC datasets (Figures 4C and Supplemental Fig. 13C). NK and T-cells from one 
donor clustered separately from the other T-cells in the snRNA data, likely because this donor 
was much younger (24 years) than other donors in this study (Supplemental Table S1). The 
majority of the immune cell types were identified in both the single-nuclei data and CODEX data, 
with the exception of Mast Cells which were only identified in the single-nuclei data, and dendritic 
cells and neutrophils which were only found in the CODEX data. Similar to the results of the 
CODEX experiments (Figure 2E), some immune cell types were differentially abundant along the 
intestine. For example, T cells were more prevalent in the small intestine, whereas B cells and 
macrophages/monocytes were more frequent in the colon (Figure 4E).  
 
Within the stromal compartment, we annotated eight fibroblast subtypes, glial cells, neurons, and 
endothelial cells (Figure 4D). Cells with high expression of MYH11 and ACTA2 were classified as 
smooth muscle/myofibroblasts. We also identified fibroblasts with high levels of WNT agonists, 
such as RSPO3, which are thought to be present at the crypts, and fibroblasts with high 
expression of WNT5B and BMP transcripts thought to be present at the villi35,36 (Supplemental 
Fig. 13D). Similar to the immune cells, we observed changes in cell type abundance along the 
intestine (Figure 4E). For example, the smooth muscle/myofibroblasts were least abundant in the 
duodenum and jejunum, had intermediate abundance in the Ileum, and were most abundant in 
the colon. Conversely, villus fibroblasts and endothelial cells exhibited the opposite trend; they 
were most abundant in the duodenum and jejunum, less abundant in the Ileum, and least 
abundant in the four regions of the colon (Figure 4E). 
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Given that epithelial cells initially clustered based on location (Figure 4B), we subclustered and 
annotated epithelial cells from different primary locations—duodenum, jejunum, ileum, and 
colon—separately. In annotating the cells, we observed similar cell types within the different 
intestinal regions. For example a differentiation trajectory from stem cells to mature absorptive 
cells (enterocytes) was evident in all regions. We divided this differentiation trajectory into five cell 
types previously defined in other studies (Stem>TA2>TA1>Immature Enterocyte>Enterocyte)35. 
However, we observe that these cells exist along a continuum and therefore the exact number of 
cell types and locations of the divisions between cell types is arbitrary to some extent, and 
changing the resolution during clustering results in more or fewer clusters along this trajectory. In 
addition to the absorptive cells, we also observed Goblet Cells, Best4+ Enterocytes, Tuft Cells, 
and Enteroendocrine Cells in all regions of the intestine, although there was greater diversity in 
the Enteroendocrine Cells observed in the small intestine, where multiple discrete clusters (Figure 
4E; Enteroendocrine 1–3) were observed. As expected and consistent with the CODEX results, 
Paneth cells were observed in all regions of the small intestine, but were not found in the colon. 
Finally, the duodenum contained two additional clusters that were identified in the snRNA and 
one that was identified in the snATAC datasets. These cells clustered separately from the 
absorptive cell types, and we found that the kegg pathway Mucin type O−glycan biosynthesis was 
enriched in the marker genes of one of these cell types (Supplemental Fig. 14A, B). When 
examining specific marker genes in these clusters, we found that one cluster had high expression 
of MUC5B and the other cluster had high expression of MUC6 and TFF2 (Supplemental Fig. 14C), 
suggesting these are likely different types of mucin producing cells, with the MUC6+ cells likely 
representing the cells of the Brunner’s glands 37.  
 
To further explore the diversity of enteroendocrine cells along the human intestine, we 
subclustered enteroendocrine cells from all regions of the intestine (Figure 5A), and annotated 
the clusters based on expression of enteroendocrine marker genes (Figure 5C). We identified 
many known subtypes of enteroendocrine cells including D cells (SST high), I cells (CCK high), 
K cells (GIP high), Mo cells (MLN high), S cells (SCT high), and L cells (PYY high). However, we 
also identified multiple clusters of enterochromaffin cells, which express TPH1, an enzyme 
involved in serotonin synthesis. There was a cluster of enteroendocrine cells that did not express 
any of these specific markers, which we labeled as enteroendocrine in the subclustered dataset. 
L cells formed two distinct clusters, one of which has high expression of INSL5, which we labeled 
as INSL5+ L cells. The absolute number of enteroendocrine and enterochromaffin cells was 
highest in the duodenum followed by the jejunum (Figure 5B). We observe large shifts in the 
fraction of each subtype of enteroendocrine cells along the intestine (Figure 5B). For example, D 
cells, which express SST, were most abundant in the duodenum, as expected from previous 
studies38. In the colon, enterochromaffin and L cells were the most abundant, with some shifts 
observed along the length of colon, including an increase in INSL5+ L cells in the distal colon. 
These results provide exceptional detail on the complexity of enteroendocrine and 
enterochromaffin cells, potentially defining new subtypes of enterochromaffin cells, and describe 
how their populations change along the length of the intestine.  
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Figure 4: Single-cell atlas of gene expression and chromatin accessibility in the human 
intestine. A) Sections of the intestine from which cells were isolated for snRNA-seq and snATAC-
seq. B) UMAP representation of all cells colored by the region of the intestine that they were 
isolated from as indicated in A. C, D) UMAP representation of all stromal (C) and immune (D) 
cells colored by cell type. E) Stacked bar plot representation of the fraction of total immune (top) 
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and stromal (bottom) cells isolated from each region consisting of each cell type. F) UMAP 
representation of epithelial cells in the 4 primary regions of the intestine. Jejunum includes both 
proximal- and mid-jejunum samples. Colon includes samples from ascending, transverse, 
descending, and sigmoid colon. For all UMAP representations, snRNA is on the top and snATAC 
is on the bottom. G) Large colon (CL) and small bowel (SB) show differences in cell-cell co-
localization patterns; annotated cell-pairs are more colocalized in the colon compared to the small 
bowel. H) SEMA4D ligand expression in plasma cells and MET receptor gene expression in TA2 
cells, showing higher expression in colon than small bowel.  
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Nominating Specific Molecular Interactions in Neighboring Cells 

The CODEX data enables the assignment of neighboring cell types and the snRNA-Seq data 
provides a description of the molecules expressed at the RNA levels in these cells. By combining 
both data types we can nominate potential ligand receptor pairs that may facilitate cell-to-cell 
communication for these cell types. 

We used the colocalization quotient to measure the degree to which cell type A is preferentially 
associated with cell type B. We identified significant pairwise cell-type colocalizations and focused 
on those that were significantly different between small bowel and colon. This analysis identified 
eight cell type pairs that were more colocalized in colon than small bowel (Figure 4G); six pairs 
involved enterocytes, plasma cells, TAs and smooth muscle (Supplemental Table 2). Cell type 
pairs involving plasma cells are more colocalized in the descending-sigmoid colon tissue section 
than in other sections (Supplementary Fig. 15). 

Using snRNA-Seq data from these six cell types we performed differential expression analyses 
of ligands and receptors (see methods) and identified 48 pairs of ligands and receptors that are 
more expressed in colon than small bowel (Supplemental Table 3). As an example, we found the 
ligand SEMA4D and receptor MET upregulated in plasma cells and TA2, respectively, in colon 
tissue (Figure 4H); this was not observed in the small intestine and was only expressed in 4.1% 
across all pairs of cell types (Supplemental Table 3). SEMA4D signaling has been associated 
with a diversity of immunological disorders and plays an important role in cell-cell 
communication39, particularly in B cell aggregation and long-term survival40. Implication of the 
MET receptor on TA2 cells in the colon, compared to TA2 cells in the small intestine, is further 
evidenced by (i) enrichment of downstream responses to MET activation including RAS and 
MAPK signalling (Supplemental Fig. 16, Supplemental Table 4), and (ii) upregulation of plexins 
(Supplemental Fig. 16) known to interact with high affinity to semaphorins and transactivate MET. 
This possible interaction is consistent with the previous characterizations of the CODEX 
multiplexed imaging data of distinct plasma-cell enriched multicellular neighborhoods, 
conservation of plasma-cell enriched neighborhoods across the intestine, and differential 
connections of these neighborhoods comparing the small intestine to the colon (Figure 3D). 
Consequently, this indicates a potential differential survival signal that maintains the plasma-cell 
enriched neighborhood in the colon. Overall, these results nominate potential ligand-receptor 
interactions that mediate specific cell type interactions in distinct regions of the intestine and 
provide a template for other atlas efforts integrating spatial multiplexed imaging data with paired 
snRNAseq assays. 

Integration of snRNA and snATAC data nominates transcription factors regulating gene 
expression in different cell types 
To obtain insights into the factors and events that control intestinal differentiation, we next 
investigated potential transcription factors (TFs) regulating gene expression in different intestinal 
cell types. We first computed ChromVar deviation scores41 for each cell in our dataset, which 
allows us to identify TF motifs that are associated with chromatin accessibility in different cell 
types. Because many TFs share similar motifs, examining TF expression in conjunction with motif 
activity helps identify the specific TFs that are functional in different intestinal cell types. To 
examine TF expression, we integrated the snRNA and snATAC data using canonical correlation 
analysis to align the datasets and assign snRNA data to each snATAC cell (Methods)42,43. We 
next identified the TFs with the highest correlation between their gene expression and the 
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chromatin accessibility activity level of their putative DNA binding motifs44 to nominate TFs directly 
driving accessibility changes. Across the intestine, this analysis revealed 63 TFs with motif activity 
that strongly correlated with expression (r>0.6; Figure 5D). Broadly, we observe TFs that are 
active in the secretory lineage and TFs that are active in the absorptive lineage with a relatively 
small subset of TFs that participate in both (e.g. KLF4 and ELF3 in colon enterocytes and goblet 
cells throughout the intestine; Figure 5D).  
 
This analysis highlights many TFs known to serve important roles in the intestine. For example, 
ASCL2, a master regulator of intestinal stem cells45, exhibited high expression and accessibility 
of its motif in stem-cells. Other TFs with high expression and motif activity in Stem Cells include 
NFIX, NFIA, NFIC, and HNF1B. Within the secretory lineage, POU2F3, a regulator necessary for 
the development of tuft cells in mice46, was highly expressed and had high motif activity in tuft 
cells throughout the human intestine. Along with POU2F3, RUNX1 and RUNX2 also exhibited 
high expression and accessibility in tuft cells throughout the intestine. Among goblet cells, KLF4, 
which is required for terminal differentiation into colonic goblet cells in mice47, exhibited high gene 
expression and motif activity. Surprisingly, expression and motif activity of KLF4 was also high in 
differentiated absorptive epithelial cells (immature enterocytes and enterocytes) in the colon, but 
not in other regions of the intestine indicating location-specific regulation. Within 
enteroendocrine/enterochromaffin cells, LMX1A, LMX1B, RFX2, RFX3, and RFX6, exhibited high 
expression and accessibility. Of these, LMX1A, has been proposed as a regulator of the 
enterochromaffin lineage and is a regulator of TPH1, an enzyme involved in serotonin synthesis48. 
When we examine expression of LMX1A in enteroendocrine and enterochromaffin subtypes, we 
observe that it is expressed only in enterochromaffin cells (Supplemental Fig. S14D). Similarly, 
RFX6 is a proposed regulator of enteroendocrine cell differentiation, and loss of RFX6 impairs 
enteroendocrine cell differentiation in mice49. Together, these results support previous findings 
and nominate additional TFs that may be important regulators of distinct intestinal cell types which 
can vary across the different regions of the intestine (e.g. KLF4).  
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Figure 5: Regulatory transcription factors in the human intestine. 
A) Sub-clustering of enteroendocrine cells from all regions of the intestine. Cells are colored by 
cell types as defined in B. B) Fraction of all enteroendocrine cells in each region of the small 
intestine and colon made up of each enteroendocrine/enterochromaffin subtype. C) Dotplot 
representation of the expression of subtype specific enteroendocrine and enterochromaffin 
marker genes in different enteroendocrine cell types in our datasets. D) Heatmap representation 
of transcription factors whose integrated gene expression was correlated with their motif activity 
in one region of the intestine. Row z-scores of ChromVar deviation scores are shown on the left 
and row z-scores of integrated TF expression are shown on the left.  
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Differentiation trajectories across the intestine reveal distinct gene regulation programs 
Intestinal stem-cells continuously differentiate into mature enterocytes, goblet cells, and other 
specialized cell types such as enteroendocrine, tuft, and paneth cells, renewing the epithelial 
lining approximately every three to seven days50. To map the regulatory and gene expression 
changes that accompany stem-cell differentiation into mature enterocytes, we defined 
differentiation trajectories along this pathway in the single nuclei data from duodenum, jejunum, 
ileum, and colon (Figure 6A, Methods). We then identified regions of variable chromatin 
accessibility (“peaks”) and variable gene expression across any of these four differentiation 
trajectories. This analysis revealed continuous trajectories of relevant gene expression and 
accessibility changes across developmental pseudotime in different regions of the intestine.  For 
example, TMPRSS15, which encodes the protein that converts trypsinogen to trypsin in the 
duodenum, is highly expressed in the duodenum, where its expression gradually increases in 
more differentiated cells (Supplemental Figure 17). We next clustered these variable peaks and 
genes to identify sets with shared behavior (Figure 6B and 6C), revealing sets of peaks and genes 
that are open and expressed early in the differentiation pseudotime (e.g. in stem-cells) in all 
regions of the intestine, which we denote as Early (E). This cluster includes general markers of 
intestinal stem cells, including RGMB, SOX9, SMOC2, and LGR5, which are shared across the 
intestine. Other clusters of genes and peaks include those predominantly found in undifferentiated 
duodenum and jejunum (e.g. REG3A, SCTR), in differentiated small intestine cells (e.g. MTTP, 
APOA4, APOC3, MME), in undifferentiated colon (e.g. ROR2, PTGDR), and in differentiated 
colon (e.g. SCNN1B51, P3H2, MS4A12).   
 
To identify both chromatin drivers of cluster specific regulation, as well as relevant cluster-specific 
gene expression programs, we computed TF motif enrichments in each cluster of peaks (Figure 
6D) and KEGG pathway enrichment in each cluster of genes (Figure 6E). Groups of peaks 
accessible late in the differentiation trajectories were enriched for HNF4 and JUN/FOS motifs. As 
expected, genes primarily expressed late in the differentiation trajectory in the small intestine 
(Late Duodenum Jejunum cluster) were enriched for multiple metabolic KEGG pathways including 
fat digestion and absorption and protein digestion and absorption.  
 
We next identified TFs whose gene expression is correlated with the activity of their motifs by 
computing correlation between TF expression and ChromVar deviation for the cells in each of the 
four differentiation trajectories. We found 68 TFs with expression correlated with their motif activity 
(r>0.7) and plotted the integrated gene expression of these transcription factors (Figure 6F). Many 
of these factors display similar activity along all four differentiation trajectories. For example, 
ASCL2, a master regulator in intestinal stem cells, is highly expressed at the beginning of all four 
trajectories. Other TFs, such as ETV6, exhibit different behaviors in different regions of the 
intestine. ETV6 is a transcription factor with decreased expression in colorectal cancer compared 
to normal colon, and genetic variation in ETV6 may confer colorectal cancer susceptibility 52. We 
found that ETV6 is more highly expressed in the colon than in the small intestine and, unlike the 
small intestine, ETV6 expression increases in more differentiated cells in the colon. 
 
As an example of examining how genes with unique expression patterns may be controlled, we 
next tested which regulatory elements may be responsible for this variable expression of ETV6 in 
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different regions of the intestine. We identified peaks with accessibility correlated to expression 
of ETV6 in any region of the intestine and then plotted how accessibility of these peaks changes 
along the differentiation pseudotime in each region (Figure 6G). For the seven most correlated 
peaks, accessibility tended to be highest in the colon, where expression is the greatest. The peak 
most accessible in the other regions of the intestine (Intronic 3) became less accessible along the 
differentiation trajectory, consistent with the decreased expression along the differentiation 
pseudotime in these regions. Similar behavior was also observed in the colon, where the Intronic 
3 peak became less accessible along the differentiation trajectory despite expression of ETV6 
increasing in the colon. However, multiple other peaks, both distal and intronic, exhibited 
increasing accessibility in more differentiated cells only in the colon, and we speculate that these 
regulatory elements may drive the increased expression of ETV6 in differentiated colon cells. The 
same logic can be applied to identify regulatory elements that may drive changes in gene 
expression throughout the intestine. For example, we identified 4 peaks that are highly correlated 
with expression of TMPRSS15 and may drive its increased expression in the duodenum 
(Supplemental Fig. 17). Taken together, this analysis provides a reference for the regulation of 
stem cell to enterocyte differentiation across the intestine. 
 
We next tested if disease heritability is enriched in cell-type specific marker peaks in intestine cell-
types using linkage disequilibrium (LD) score regression (Figure 6H, Methods). We identified a 
significant increase in heritability for Crohn's disease and coeliac disease in T-cell marker peaks, 
consistent with the importance of T-cells in their pathogenesis53. We observed the most significant 
enrichment of heritability for BMI in enteroendocrine cells, suggesting that genetic variation may 
have an impact on enteroendocrine cells leading to effects on BMI. As a control, we also tested if 
heritability of GWAS SNPs was enriched in an unrelated trait (dental caries) and found no cell 
type specific enrichment. These results map important disease traits to specific cell types in the 
intestine. 
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Figure 6: Regulation of differentiation in the human intestine 
A) UMAPs depicting the cells in the four primary regions of the intestine (duodenum, jejunum, 
ileum, and colon), labeled by cell type (left) and differentiation pseudotime (right). B, C) Variable 
peaks (B) and genes (C) identified along the absorptive differentiation trajectories. The rows 
represent the row z-scores of accessibility for each peak or expression for each gene. Columns 
represent the position in the pseudotime from start to end for each section of the intestine. Peaks 
and genes are k-means clustered and the clusters are labeled based on the dominant time and 
location where they are most accessible/expressed. D) Hypergeometric enrichment of motifs in 
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the clusters of peaks identified in B. E) Enrichment of KEGG pathways in the clusters of genes 
identified in C. F) Integrated gene expression of TFs whose gene expression is correlated with 
ChromVar motif activity along the differentiation trajectory. G) Accessibility at peaks correlated 
with the expression of ETV6 along the differentiation trajectory in each region is plotted on the 
left. Each peak is normalized to the maximum accessibility along any of the trajectories. Integrated 
gene expression of ETV6 along the differentiation trajectory in each region is plotted on the right. 
H) LD Score Regression to identify enrichment of GWAS SNPs in cell-type specific marker peaks. 
Unadjusted p-values are plotted in the heatmap. Significance is indicated by an asterisk in each 
box, as determined by a Bonferroni-corrected p-value of less than 0.05. P-values for determining 
significance were adjusted for the number of cell classes tested.  
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Discussion 
Using a variety of different single cell (CODEX, snRNA-Seq, snATAC-Seq) technologies we 
analyzed many different regions of the intestine at high resolution. Our work greatly extends 
previous single cell studies by combining both spatial proteomic data sets (CODEX imaging) and 
snRNA and snATAC technologies. We demonstrated the extensive cellular complexity of the 
small intestine including considerable epithelial heterogeneity and novel secretory cell subtypes, 
that the different regions of the intestine have different cell compositions, and that cells are 
organized into different neighborhoods that also form communities. We also show conservation 
as well as heterogeneity of these neighborhoods and communities across the intestine. Finally, 
the open chromatin regulatory program was also mapped, defining key regulators and 
differentiation pathways utilized in the different regions of the intestine.  
 
We generated a spatially hierarchical description of the intestine that is derived from the cell type 
labels we generate in our CODEX multiplexed imaging data. The first layer we computed was the 
immediate cellular neighborhoods within the tissues by examining conserved cell type 
composition within ten nearest neighbors of cells10. These represented and identified 
microstructures found within the intestine such as the vasculature or immune follicles. We further 
built upon the neighborhood concept to understand how neighborhoods of cells are interacting 
with each other and tend to colocalize. We quantitatively characterized these within communities 
of multicellular structures which can be further categorized into major community types. While the 
same major communities were shared between the small intestine and colon we observed 
differential localization of the immune communities localized to the apex in the colon and the base 
of the epithelium in the small intestine, likely reflective on differential microbial loads. This 
categorization isolated mucosal areas of the tissue enriched with immune and epithelial cells and 
defined overall structures and interactions of multicellular neighborhoods in comparing the colon 
and small intestine. This hierarchical view of multiplexed spatial data can serve as a template 
reference for other spatial atlasing efforts.   
 
We focused our spatial analyses on immune cell organization within the intestine because plasma 
cells, CD4+ T cells, and CD8+ T cells all play critical roles in the intestinal immune response. 
Plasma cells play an important role in immunity by secreting IgA antibodies, the most abundantly 
produced antibody, critical for maintaining a homeostatic relationship with microbiota and food 
antigens54,55. Interestingly, plasma cells had the highest same-cell density and were also found to 
co-localize with antigen-presenting cells in this multicellular neighborhood that was found in all 
areas of the intestine. By merging the snRNAseq data and CODEX data we also found that 
plasma cells and transit amplifying epithelial cells were one of the pairs of cells that co-localized 
more in the colon than the small intestine and differentially expressed SEMAD-MET ligand pair 
known to induce B cell clustering. Plasma cells require a special niche for survival in the bone 
marrow56 with survival factors such as CD44, a proliferation-inducing ligand (APRIL), IL-6, and 
SDF-156,57. Localization of plasma cells is critical in gut-associated lymphoid tissue (GALT) in the 
subepithelial space for transcytosis of IgA through the epithelium, and we found the plasma cell 
enriched neighborhood form an important crossroads of several other immune and epithelial 
neighborhoods within the mucosa. Consequently, our data suggests that antigen presenting cells 
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and transit amplifying cells from the colon play critical roles in maintaining the rich plasma-cell 
zones of the mucosa that connect other multicellular immune and epithelial structures.  
 
CD4+ T cells are involved both in CD4+ T cell support of B cell and CD8+ T cell activation. We 
found that CD4+ T cells were broadly distributed and enriched in all immune-rich multicellular 
structures (innate immune enriched, inner follicle, outer follicle, adaptive immune enriched, and 
plasma cell enriched) characteristic of their supportive functions. In particular, CD4+ T cells are 
the most enriched cell type in the outer follicle multicellular neighborhood, which was present in 
all sites of the intestine regardless of the presence of fully developed follicle structures. This 
observation suggests that the immune system appears structurally poised along the intestine to 
generate germinal center focused immune responses locally as needed. Follicle-type multicellular 
structures were among the least conserved structures when comparing the small intestine to the 
colon. Further understanding these differences will be important to clarify functional differences, 
development, and maintenance, as follicles are associated with beneficial cancer outcomes, 
increased autoimmunity, and clearance of infection10,58. Moreover, the  broad involvement of 
CD4+ T cells in diverse immune multicellular structures suggests their modulation might be akey 
therapeutic target for regulating immune responses in the intestine.  
 
CD8+ T cells are critical for antiviral cytotoxic function and were one of the few cell types defined 
within the CODEX data shown to decrease from the small intestine to the colon. This 
compositional change likely reflects differences in antigen availability from both initial exposure 
as well as greater access to food antigens and foreign material with less mucus-secreting cells 
as compared to the colon26,59. These differences were segregated into two neighborhoods CD8+ 
T enriched IEL and adaptive immune, where the CD8+ T enriched IEL neighborhood became 
nearly depleted in the colon. This structural difference further confirms the phenotypic distinction 
of IEL CD8+ T cells from the rest of CD8+ T cells within the intestine and merits additional study 
to understand maintenance, regulation, and renewal60 of these cells.  Indeed, CD8+ T cells 
presence and density correlate with beneficial anti-cancer outcomes61 and cancer rates are 
increased within the colon as compared to the small intestine62,63. It will be interesting to explore 
this correlation in the future and understand if intraepithelial immune cells help prune out defective 
epithelial cells.  
 
We also calculated the similarity of multicellular structures from the small intestine to the colon 
and generated a conservation score to describe the compositional similarity. From this analysis it 
was apparent that all multicellular structures detected shared core features of the structure such 
as a high enrichment of CD4+ T cells for outer follicle structures, but varied on compositional 
enrichment of other cell types. The most varied structure was the early secretory epithelial 
multicellular neighborhood. This further substantiates the crypt structure as key regulators of 
differential function between the small intestine and colon12 and agrees with differences observed 
from RNA and ATAC datasets.  
 
Leveraging paired transcriptome and chromatin accessibility data, we achieved further granularity 
to define the diversity of cell types in the intestine. Overall, different regions of the colon exhibited 
highly concordant cell type abundances. However, the cell type compositions of the small intestine 
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regions were more diverse as compared to the colon, with the ileum often exhibiting immune and 
stromal cell type fractions shared between the small intestine regions and the colon. We observe 
greater diversity of specialized epithelial cells, including enteroendocrine and mucin-secreting 
cells in the small intestine. Within all regions, we identified goblet cells with high expression of 
MUC2. However, in the duodenum we identified two additional clusters containing cells 
characterized by high expression of the gel forming mucins, MUC5B and MUC6. The MUC6 
cluster may represent cells of the duodenal Brunner’s glands, which have been shown to express 
high levels of MUC637. The MUC5B cluster was more surprising as MUC5B is known to be 
expressed in goblet cells in the lung64 and gallbladder65, and at low levels in colon goblet cells65 
but not in the duodenum, where MUC2 and MUC6 are the primary mucins.  
 
While previous scRNA datasets have examined the diversity of cell types in the human intestine, 
our integrated snRNA and snATAC dataset provides a detailed single cell regulatory map of the 
intestine. We used this dataset to identify transcription factors in different cell types whose gene 
expression is highly correlated with the accessibility of the motif to which they bind. This identified 
TFs known to be master regulators of different cell types, including POU2F3 in Tuft cells, ASCL2 
in stem cells, and RFX6 in enteroendocrine cells, while also nominating many additional 
transcription factors that are likely important regulators in their respective cell types. This includes 
RUNX1 and RUNX2 in Tuft cells, FOXA3 and ATOH1 in goblet cells, and ZBTB18 in Paneth cells.  
 
Within all regions of the intestine, intestinal stem cells differentiate into mature absorptive 
enterocytes. By integrating gene expression and chromatin accessibility data along the 
differentiation trajectories in different regions of the intestine, we nominate TFs that exhibit 
consistent behavior across absorptive differentiation in all regions of the intestine. Among these 
are known intestinal stem cell regulators such as SOX9 and ASCL2, which are highly expressed 
and have high chromatin activity of their binding motif in cells at the beginning of the differentiation 
trajectory in all regions of the intestine. We also observe a number of differences in TF dynamics 
between the trajectories in different regions. One such example is ETV6, which is highly 
expressed in differentiated absorptive cells in the colon, but not other regions of the intestine. 
Interestingly, ETV6 expression is decreased in CRC and genetic variation in ETV6 may confer 
CRC risk52. Our data allow us to speculate on why this may be the case, as ETV6 is important for 
normal colon differentiation and thus loss of ETV6 may prevent differentiation of colon stem cells. 
Examining these data also allows us to link specific regulatory elements with the expression of 
transcription factors along the trajectory. For the case of ETV6, this analysis identifies one distal 
and three intronic regulatory elements with similar activity that are most likely responsible for 
driving expression of ETV6 along the absorptive differentiation trajectory in the colon. 
 
Chromatin accessibility data also allow assessment of the cell-type specific enrichment with 
regulatory elements of common genetic variation linked to prevalent intestinal diseases (e.g. 
GWAS hits) such as Celiac, ulcerative colitis, and Crohn’s disease. This analysis can nominate 
the specific cell types through which these GWAS hits may be functioning, as well as the cell 
types that may be driving disease etiology. We find that T cells are most enriched in the 
autoimmune conditions, Celiac disease, ulcerative colitis, and Crohn’s. We also find that 
heritability of BMI is enriched in enteroendocrine cells, suggesting that variation in BMI is likely 
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partially driven by genetic variation in regions that are functional in intestine enteroendocrine cells. 
We noted that hypertension is linked to endothelial cells which might represent a more general 
effect of endothelial cells; however, it would be interesting to explore if individuals with 
hypertension also have intestinal issues. Regardless, overall we can assign heritability of specific 
diseases to specific intestinal cell types. 
 
There are several limitations to our study. First, for each patient, we typically analyzed a single 
sample from each intestinal region. Since the CODEX and the single cell data are largely in 
agreement and the variance across subjects is less than that across regions it is likely that these 
patterns are representative of these regions. It is also important to note that three of the four 
adults analyzed were older and three were male. The patterns across a wide range of ages and 
ethnicities remain to be elucidated. We are also underpowered to ascertain sex differences, which 
likely will be important given differences in disease risk for males and females66. These limitations 
can be addressed in the future with the acquisition of more samples and data.  
 
In summary, we present a detailed map of the human intestine, and in particular the first 
multiplexed imaging reference for healthy small intestine and colon. In addition to biological 
insights this can serve as an important reference for intestinal diseases (e.g. IBD) as well as 
comparisons with other organisms. 
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Methods 
Array Creation  
Imaging data was collected from four human donors, each of whom constitutes a dataset. Each 
dataset includes two arrays of tissues that were imaged together on the same coverslip with four 
tissues per array: colon (sigmoid, descending, transverse, and ascending), and small intestine 
(ileum, mid-jejunum, proximal jejunum, duodenum). Arrays were constructed on the cryostat and 
sectioned at a width of 7 um.  
 
CODEX Antibody Conjugation and Panel Creation 
CODEX multiplexed imaging was executed according to the CODEX staining and imaging 
protocol previously described8. Antibody panels were chosen to include targets that identify 
subtypes of intestinal epithelium and stromal cells, and cells of the innate and adaptive immune 
system. Detailed panel information can be found in supplementary table 5. Each antibody was 
conjugated to a unique oligonucleotide barcode, after which the tissues were stained with the 
antibody-oligonucleotide conjugates and validated that staining patterns matched expected 
patterns already established for IHC within positive control tissues of the intestine or tonsil. 
Similarly, Hematoxylin and Eosin morphology staining were used to confirm location of marker 
staining. First, antibody-oligonucleotide conjugates were tested in low-plex fluorescence assays 
and signal-to-noise ratio was also evaluated at this step, then they were tested all together in a 
single CODEX multicycle.  
 
CODEX Multiplexed Imaging 
The tissue arrays were then stained with the complete validated panel of CODEX antibodies and 
imaged8. Briefly, this entails cyclic stripping, annealing, and imaging of fluorescently labeled 
oligonucleotides complementary to the oligonucleotide on the conjugate. After validation of the 
antibody-oligonucleotide conjugate panel, a test CODEX multiplexed assay was run, during which 
signal-to-noise ratio was again evaluated, and the optimal dilution, exposure time, and appropriate 
imagine cycle was evaluated for each conjugate (see supplementary table 5). Finally, each array 
underwent CODEX multiplexed imaging. Metadata from each CODEX run can be found in 
supplementary table 6.  
 
CODEX Data Processing 
Raw imaging data were then processed using the CODEX Uploader for image stitching, drift 
compensation, deconvolution, and cycle concatenation. Processed data were then segmented 
using the CODEX Segmenter or CellVisionSegmenter, a watershed-based single-cell 
segmentation algorithm and a neural network R-CNN-based single-cell segmentation algorithm 
respectively. Both the CODEX Uploader and Segmenter software can be downloaded from our 
GitHub site (https://github.com/nolanlab/CODEX), and the CellVisionSegmenter software can be 
downloaded at https://github.com/bmyury/CellVisionSegmenter or 
https://github.com/michaellee1/CellSeg. After the upload, the images were again evaluated for 
specific signal: any markers that produced an untenable pattern or a low signal-to-noise ratio were 
excluded from the ensuing analysis. Uploaded images were visualized in ImageJ 
(https://imagej.nih.gov/ij/).  
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Cell Type Analysis 
B001 and B004 cell type identification were done following the methods developed previously67.  
Briefly, nucleated cells were selected by gating DRAQ5, Hoechst double-positive cells, followed 
by z-normalization of protein markers used for clustering (some phenotypic markers were not 
used in the unsupervised clustering). Then the data were overclustered with X-shift 
(https://github.com/nolanlab/vortex) or leiden-based clustering with the scanpy Python package. 
Clusters were assigned a cell type based on average cluster protein expression and location 
within image. Impure clusters were split or reclustered following mapping back to original 
fluorescent images.  
 
Cell Type Annotation using STELLAR  
CODEX cell type labels were transferred to other donors (B005 & B006) using STELLAR as 
previously described (see companion Nature Methods manuscript submitted Brbic et. al). Briefly, 
STELLAR,a geometric deep learning method, utilized the spatial and molecular cell information 
to transfer cell type labels from B004 to normalized B005 and B006 datasets from other donors. 
Cell type labels were further refined with phenotypic markers such as M1 vs. M2 macrophages.  
 
CODEX Cell Density Analysis 
CODEX same-cell density was analyzed by taking the average distance of the 5 nearest 
neighbors of the same cell type for each individual cell in each imaged region. This average 
distance was divided by the most diffuse distance for same cell types. The most diffuse same cell 
distance was calculated by taking the number of total cells of a given cell type divided by the total 
area of the region. Thus, numbers that are closer to one are least dense and numbers closer to 
0 are more dense with cells of the same cell type.  
 
Neighborhood Identification Analysis 
Neighborhood analysis was performed as described previously10. Briefly a window size of 10 
nearest neighbors was taken across the tissue cell type maps and overclustered to 30 clusters. 
These clusters were mapped back to the tissue and evaluated for cell type enrichments to 
determine overall structure and merged down into 18 unique structures.   
 
Neighborhood Conservation Analysis 
To determine neighborhood compositional (cell type) conservation across the small bowel and 
colon, neighborhood enrichment scores were found separately for both the small bowel and colon 
samples across all donors. This enrichment score is the average cell type percentage within the 
average of the neighborhood cluster divided by the average cell type percentage for all cells. The 
colon scores were subtracted from the small bowel scores to provide the heatmap that was 
ordered both in terms of greatest absolute sum of differences for both neighborhood and cell type 
in conservation.  
 
Community and Major Community Identification Analysis 
Communities were determined similar to how multicellular neighborhoods were determined with 
some minor differences. Briefly, the cells in the neighborhood tissue maps were taken with a 
larger window size of 100 nearest neighbors. These windows were taken across the entirety of 
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the tissue and the vectors then clustered with k-means clustering and overclustering with 20 total 
clusters. These clusters were mapped back to the tissue and evaluated for neighborhood 
composition and enrichment to determine overall community type. Communities were categorized 
into one of four major communities: epithelial, immune, stroma, or smooth muscle.  
 
Hierarchical Intestine Structural Graphs 
Each hierarchical level was connected to the next by either what it contributed to the largest in 
the next level, or what made up at least 15% of this next hierarchy. The percentage of each feature 
in the level was represented by size of the shape. The shape and color combination correspond 
to the level and feature respectively. The size of the connecting line represents the amount a 
feature contributes to the next feature.  
 
Spatial Context Maps 
Spatial context maps were created as previously described34. Briefly, first only cells which made 
up either epithelial or immune major cell types were selected for further analysis. Then, windows 
were taken again with the neighborhood types captured from the 100 nearest neighbors. 
Individual square combinations were selected by what combination of neighborhoods were 
needed to make up at least 85% of the total composition of the windows. Combinations were then 
counted and represented in size by the size of the black circle underneath the square 
neighborhood combination.  
 
Single-nuclei Experimental Methods: Tissue Dissociation and Nuclei Isolation 
Nuclei were isolated using the OmniATAC protocol68. Isolation of nuclei was carried out on wet 
ice. 40-60mg of flash-frozen tissue was gently triturated and thawed in 1ml HB (Lysis) Buffer 
(1.0341x HB Stable solution, 1M DTT, 500 mM Spermidine, 150mM Spermine, 10% NP40, 
cOmplete Protease Inhibitor, Ribolock) for 5 minutes. Tissue was then dounced 10 times with 
pestle A and 20 times with pestle B, or until there was no resistance from either pestle. The 
samples were then filtered through a 40um cell strainer (Falcon; 352340) and the resulting 
homogenate was transferred to a pre-chilled 2ml LoBind tube. Samples were spun in a 4°C fixed 
angle centrifuge for 5 minutes at 350 RCF to pellet nuclei. After spinning, all but 50ul of 
supernatant was removed. 350ul HB was added to the nuclei pellet for a total volume of 400ul 
and nuclei were gently resuspended with a wide bore pipet. One volume of 50% Iodixanol (60% 
OptiPrep [Sigma Aldrich; D1556], Diluent Buffer [2M KCl, 1M MgCl2, 0.75M Tricine-KOH pH 7.8], 
Water) was added and the resulting solution was gently triturated. Next, 600ul of 30% Iodixanol 
was carefully layered under the 25% mixture. Finally, 600ul of 40% Iodixanol was layered under 
the 30% mixture. Sample was then spun for 20 min at 3,000 RCF in a 4°C swinging bucket 
centrifuge, resulting in a visible band of nuclei. Supernatant was aspirated down to within 200–
300ul of the nuclei band. The nuclei band was then collected at 200ul and transferred to a fresh 
1.5ml tube. Sample was diluted with one volume (200ul) Resuspension Buffer (1x PBS, 1% BSA, 
0.2u/uL Ribolock). Nuclei concentration was determined using the Countess II FL Automated Cell 
Counter (ThermoFisher; AMQAF1000).  
 
Single-nuclei Experimental Methods: Single-nuclei assay for transposase-accessible chromatin 
using sequencing (snATAC-seq)  
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snATAC-seq targeting 9,000 nuclei per sample was performed using Chromium Next GEM Single 
Cell ATAC Library & Gel Bead Kit v1.1 (10x Genomics, 1000175) and Chromium Next GEM Chip 
H (10x Genomics, 1000161) or Chromium Single Cell ATAC Library & Gel Bead Kit (10x 
Genomics, 1000110). Libraries were sequenced on an Illumina NovaSeq 6000 (1.4 pM loading 
concentration, 50 × 8 × 16 × 49 bp read configuration) targeting an average of 25,000 reads per 
nuclei. 
 
Single-nuclei Experimental Methods: Single-nuclei transcriptome sequencing (snRNA-seq)  
snRNA-seq targeting 9,000 nuclei per sample was performed using Chromium Next GEM Single 
Cell 3’ Reagent Kits v3.1 (10x Genomics, 1000121) and Chromium Next GEM Chip G Single Cell 
Kit (10x Genomics, 1000120). Libraries were pooled and sequenced on an Illumina NovaSeq 
6000 (Read 1 = 28bp, i7 index=8bp, i5 index=0bp, Read 2=91bp read configuration) targeting an 
average of 20,000 reads per nuclei.  
 
Single-nuclei Experimental Methods: Single-nuclei multiome experiments  
snMultiome experiments targeting 9,000 nuclei per sample were performed using Chromium 
Chromium Next GEM Single Cell Multiome ATAC + Gene Expression (10x Genomics, 1000283). 
ATAC (Read 1 = 50bp, i7 index=8bp, i5 index=24bp, Read 2=49bp read configuration) and RNA 
(Read 1 = 28bp, i7 index=10bp, i5 index=10bp, Read 2=90bp read configuration) libraries were 
sequenced separately on an Illumina NovaSeq 6000.  
 
Single-nuclei Analytical Methods: Initial processing of single-nuclei data 
Initial processing of scATAC-seq data was performed using the Cell Ranger ATAC Pipeline 
(go.10xgenomics.com/scATAC/cell-ranger-ATAC) by first running cellranger-atac mkfastq to 
demultiplex the bcl files and then running cellranger-atac count to generate scATAC fragments 
files. Initial processing of snRNA-seq data was done with the Cell Ranger Pipeline 
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-
cell-ranger) by first running cellranger mkfastq to demultiplex the bcl files and then running 
cellranger count. Since nuclear RNA was sequenced, data were aligned to a pre-mRNA 
reference. Initial processing of the mutiome data, including alignment and generation of fragments 
files and expression matrices, was performed with the Cell Ranger ARC Pipeline.  
 
Colocalization Analyses 

The CODEX data was used to compute and compare the colocalization quotient (CLQ) between 
all cell-type pairs in the small bowel versus the colon. The colocalization quotient between cell 
type A and cell type B was calculated using the expression 𝐶𝐿𝑄!→# =

$!→#/&!
&#/(&())

 69, where CA�B is 
the number of cells of cell type A among the defined nearest neighbors of cell type B. N is the 
total number of cells and NA and NB are the numbers of cells for cell type A and cell type B. The 
student’s t-test, adjusted for multiple hypothesis testing,  was to identity statistically significant 
different CLQs between small bowel and colon. 

Ligand and Receptor Analyses 

The FANTOM5 database70 and 12 more literature-supported experimentally-validated ligand and 
receptor pairs were used to obtain the final list of validated ligand receptor pairs (Yu et al., 2021).  
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Non-parametric Wilcoxon rank-sum test was used to identify differentially expressed ligands and 
receptors in the small bowel versus the colon (adjusted  p-value cutoff = 0.05).  

 
Single-nuclei Analytical Methods: Quality control, dimensionality reduction, and clustering of  
snATAC data 
The snATAC fragments files were loaded into R (v4.0.2) using the createArrowFiles function in 
ArchR43. Quality control metrics were computed for each cell and any cells with TSS enrichments 
less than 4 were removed. Cells were also filtered based on the number of unique fragments 
sequenced using a unique fragment cutoff that was defined for each individual sample. The 
sample-specific cutoffs enabled us to account for differences in sequencing depth between 
samples and ranged from 1,000 to 5,000, with the most common cutoff being 3000 fragments/cell. 
After quality control and filtering, doublet scores were computed with the ArchR function 
addDoubletScores with k=10, knnMethod = “UMAP”, and LSIMethod = 1. An ArchR project was 
then created and doublets were filtered with filterDoublets with a filter ratio of 1.2. An IterativeLSI 
dimensionality reduction was then generated on all cells using addIterativeLSI, with iterations = 3 
and varFeatures = 15000. Next, clusters were added with addClusters with resolution = 2 and the 
resulting clusters were divided into groups based on if the cells exhibited high gene activity 
scores43, a measure of accessibility within and around a gene body, for known immune, stromal, 
or epithelial marker genes. 
 
Single-nuclei Analytical Methods: Quality control, dimensionality reduction, and clustering of 
snRNA data 
After running Cell Ranger, the filtered_feature_bc_matrix produced by Cell Ranger was read into 
R with the Seurat71 function Read10X. The data was filtered to remove nuclei with fewer than 400 
unique genes per nuclei or greater than 4000 genes per nuclei. DoubletFinder72 was run for each 
sample using PCs 1-20. nExp was set to 0.08*nCells2/10000, pN to 0.25, and pK to 0.09, and 
cells classified as doublets were removed prior to downstream analysis.  
 
The remaining cells from all samples were merged into a single seurat object, and nuclei with 
greater than 10,000 counts/nuclei or greater than 10% mitochondrial RNA were removed. The 
data was then processed with Seurat’s standard pipeline71. First, NormalizeData was run using 
the method LogNormalize and scale.factor of 10,000. Variable features were identified with 
Seurat's findVariableFeatures using the vst method and 2,000 features. ScaleData was then run 
on all genes and PCs were computed with RunPCA. To account for batch effects between 
different donors in clustering, the RunHarmony73 function was run with the data being grouped by 
Donor (e.g. B001, B004, B005, and B006). RunUMAP was then used to generate a umap 
dimensionality reduction from the harmony reduction and the cells were clustered by first using 
FindNeighbors with reduction = “harmony” and dims = 1:20 and then FindClusters with a 
resolution of 1. Expression of marker genes in the resulting clusters were then used to label 
clusters as epithelial, stromal, or immune for downstream analysis. 
 
Single-nuclei Analytical Methods: Annotation of single-nuclei data 
The snATAC and snRNA data were annotated in the following groups: epithelial duodenum, 
epithelial jejunum, epithelial ileum, epithelial colon, stromal, and immune. For the ATAC data, the 
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cells in each of these compartments were subset into a new ArchR project. addIterativeLSI was 
then run for each compartment. addHarmony was then run using the LSI dimensions as input. 
Following computation of the harmony dimensions, the cells were clustered using addClusters 
and a UMAP was computed based on the harmony coordinates with addUMAP. Clusters were 
annotated by examining gene activity scores of known marker genes. Marker genes were used 
for initial annotation of cell types including Best4+ Enterocytes (BEST4, OTOP2), Goblet (MUC2, 
TFF1, SYTL2), Immature Goblet (KLK1, RETNLB, CLCA1), Stem (RGMB, SMOC2, LGR5, 
ASCL2), Tuft (SH2D6, TRPM5, BMX, LRMP, HCK), Enteroendocrine (SCGN, FEV, CHGA, PYY, 
GCG), CyclingTA (TICRR, CDC25C), Paneth (LYZ, DEFA5), CD4+ and CD8+ T-cells (CD2, 
CD3E, IL7R, CD4, CD8), B-cells (PAX5, MS4A1, CD19), Plasma cells (IGLL5, AMPD1), NK cells 
(SH2D1B), macrophages/monocytes (CD14), and mast cells (HDC, GATA2, TPSAB1). Smooth 
muscle/myofibroblast clusters exhibited high expression of ACTA2, MTH11, and TAGLN. Villus 
fibroblasts exhibited high expression of WNT5B and some crypt fibroblasts exhibited high 
expression of RSPO3. For the snRNA cells, cells were divided into 6 Seurat objects from the 
compartments listed above. Cells from each compartment were run through the same pipeline 
listed above (NormalizeData, ScaleData, RunHarmony, FindNeighbors, and FindClusters). For 
the immune and stromal compartments, we also labeled the scATAC datasets with previously 
published scRNA datasets using addGeneIntegrationMatrix, and the annotations were generally 
consistent with the manual annotations. Notably the smooth muscle/myofibroblast 1 cluster 
separated into multiple clusters in RNA space. In annotating these clusters, we labeled all clusters 
as smooth muscle/myofibroblast 1 to match the snATAC data, but they could have been divided 
into additional clusters. We also found that some nuclei that clustered with epithelial cells did not 
have clear expression of marker genes and generally were slightly lower quality in terms of 
genes/nuclei. We labeled these cells as “Epithelial” but did not give them more detailed 
annotations. We also note that a small number of nuclei that were thought to be doublet clusters 
were also removed during annotation. Following initial annotation of epithelial cells, 
enteroendocrine cells in the snRNA data were subclustered, and known subtypes of 
enteroendocrine cells were annotated based on expression of marker genes (Figure 5C).  
 
Single-nuclei Analytical Methods: Integration of snRNA and snATAC data and nomination of 
regulatory TFs 
The snRNA and snATAC datasets from the four primary regions of the intestine (duodenum, 
jejunum, ileum, and colon) were integrated separately using the ArchR function 
addGeneIntegrationMatrix with reducedDims = "Harmony" and useMatrix = "GeneScoreMatrix". 
We then identified TF regulators following the ArchR manual for identifying TF regulators for each 
region, with a correlation cutoff of 0.6. TFs that met the criteria for regulators in any of the four 
primary regions of the intestine are plotted in Figure 5.  
 
Single-nuclei Analytical Methods: Annotation of single-nuclei data: Analysis of absorptive 
differentiation trajectories 
Absorptive differentiation trajectories for each main section of the colon (duodenum, jejunum, 
ileum, and colon) were inferred by running the ArchR function addTrajectory with trajectory = 
c("Stem", "TA2", "TA1", "Immature Enterocytes", "Enterocytes"), reducedDims set to the harmony 
dimensions, and groupBy set to “CellType.” To identify variable peaks along the trajectory, a 
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matrix of accessibility in all peaks along the trajectory was first generated with getTrajectory with 
useMatrix = "PeakMatrix" and log2Norm = TRUE. Peaks with variance>0.9 in any of the four 
regions were then identified with the function plotTrajectoryHeatmap with varCutOff = 0.9,  
returnMatrix = TRUE, scaleRows = FALSE, and maxFeatures = 100000. The four matrices 
returned by getTrajectory were then concatenated into a single matrix and the matrix was subset 
to include only peaks that met the variance criteria of 0.9 in at least one of the four regions and 
had an absolute difference in magnitude of at least 0.2. Row z-scores for the resulting matrix were 
computed with the ArchR function .rowZscore. The resulting row z-scores were kmeans clustered 
using the function kmeans with the number of clusters set to 7 and iter.max = 500. One cluster of 
peaks did not show a characteristic pattern and was not included in Figure 6. Hypergeometric 
enrichment of motifs in marker peaks was computed with peakAnnoEnrichment and the resulting 
p values are plotted in Figure 6D. Variable genes along the trajectory were identified with an 
analogous method, using GeneIntegrationMatrix instead of PeakMatrix when running 
getTrajectory and plotTrajectoryHeatmap, and the row z-scores were again kmeans clustered 
using the function kmeans with the number of clusters set to 7 and iter.max = 500. Enrichment of 
kegg pathways in these clusters of genes was determined with the limma function kegga74, and 
the resulting unadjusted p values are plotted in Figure 6E. Plots of integrated gene expression 
versus pseudotime were generated with the ArchR function plotTrajectory with default 
parameters. TFs with correlated motif activity and RNA expression were identified with 
correlateTrajectories as outlined in the ArchR manual. TFs that were correlated with expression 
in any of the four trajectories were included in the heatmap in Figure 6F. Plots of integrated gene 
expression along each trajectory were generated with plotTrajectory. Peaks correlated with gene 
expression were identified with addPeak2GeneLinks. To identify possible peaks linked to genes 
changing along the differentiation trajectory. In Figure 6G, the set of peaks that were correlated 
with ETV6 expression with a correlation of at least 0.65 in one of the four main intestinal regions 
was determined. The smoothed trajectory peak accessibility for each of these peaks was then 
plotted along the differentiation trajectory.  
 
Cell-type specific linkage disequilibrium (LD) score regression 
To run cell type specific LD score regression, we first computed marker peaks for course cell 
types in our dataset. To do this we added cell type annotations to the full ArchR project will all 
cells and then defined a peak set for this object by running addGroupCoverages with groupBy = 
"CellType" followed by addReproduciblePeakSet and addPeakMatrix. We then defined less 
granular cell types by merging all myofibroblast clusters and pericytes into a single group, all 
fibroblast clusters into a single group, all non-stem absorptive epithelial cells into a single group, 
all enteroendocrine cells into a single group, CD4+ and CD8+ T cells into a single group, and 
lymphatic endothelial and endothelial cells into a single group. We determined marker peaks for 
the resulting groups of cells with getMarkerFeatures and ten selected peaks with getMarkers with 
cutOff = "FDR <= 0.1 & Log2FC >= 0.5". The resulting peaks were then lifted over to hg19 from 
hg38. We then followed the LD score regression tutorial (https://github.com/bulik/ldsc/wiki) for 
cell-type specific analysis75–77. We used summary statistics from a number of UKBB traits 
(http://www.nealelab.is/uk-biobank/) related to the intestine, including Non-cancer illness 
code;self-reported: diverticular disease/diverticulitis, Non-cancer illness code;self-reported: 
crohns disease, Non-cancer illness code;self-reported: ulcerative colitis, Non-cancer illness 
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code;self-reported: malabsorption/coeliac disease, Body mass index (BMI) as well as traits less 
clearly related to the intestine including Non-cancer illness code;self-reported: hypertension and 
Diagnoses - main ICD10: K02 Dental caries. Coefficient p-values from ldsc are plotted in the 
heatmap in Figure 6. Significance was determined by correcting the coefficient p-values for the 
number of cell-types tested with bonferroni correction with the R function p.adjust. 
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