Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination

Shreyas Arvindekar ${ }^{1}$, Matthew J. Jackman², Jason K.K. Low ${ }^{3}$, Michael J. Landsberg², *, Joel P. Mackay ${ }^{3, *}$, and Shruthi Viswanath ${ }^{1, *}$
${ }^{1}$ National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
${ }^{2}$ School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
${ }^{3}$ School of Life and Environmental Sciences, University of Sydney, NSW, Australia
*Corresponding authors E-mail: m.landsberg@uq.edu.au
(M.J.L.);
joel.mackay@sydney.edu.au (J.P.M.); shruthiv@ncbs.res.in (S.V.)

Short title: Integrative models of NuRD sub-complexes

Abstract

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information is available on the complex and a detailed understanding of its mechanism is lacking. We investigated the molecular architecture of three NuRD subcomplexes: MTA1-HDAC1-RBBP4 (MHR), MTA1N-HDAC1-MBD3 ${ }^{\text {GATAD2CC }}$ (MHM), and MTA1-HDAC1-RBBP4-MBD3-GATAD2 (NuDe) using Bayesian integrative structure determination with IMP (Integrative Modeling Platform), drawing on information from SEC-MALLS, DIA-MS, XLMS, negative stain EM, X-ray crystallography, NMR spectroscopy, secondary structure and homology predictions. The structures were corroborated by independent cryo-EM maps, biochemical assays, and known cancer-associated mutations. Our integrative structure of the 2:2:2 MHM complex shows asymmetric binding of MBD3, whereas our structure of the NuDe complex shows MBD3 localized precisely to a single position distant from the MTA1 dimerization interface. Our models suggest a possible mechanism by which asymmetry is introduced in NuRD, and indicate three previously unrecognized subunit interfaces in NuDe: HDAC1 ${ }^{\text {C }}$ MTA1 ${ }^{\text {BAH }}$, MTA1 $1^{\text {BAH }}-\mathrm{MBD} 3$, and HDAC1 ${ }^{60-100-M B D 3 . ~ W e ~ o b s e r v e d ~ t h a t ~ a ~ s i g n i f i c a n t ~}$ number of cancer-associated mutations mapped to protein-protein interfaces in NuDe. Our approach also allows us to localize regions of unknown structure, such as HDAC1 and MBD3 ${ }^{I D R}$, thereby resulting in the most complete structural characterization of these NuRD subcomplexes so far.

Introduction

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a multi-protein chromatinmodifying assembly, expressed in most metazoan tissues, and conserved across multi-cellular animals (Basta and Rauchman, 2017; Denslow and Wade, 2007; Lejon et al., 2011; Yoshida et al., 2008). It regulates gene expression and DNA damage repair (Basta and Rauchman, 2017, 2015; Denslow and Wade, 2007; Li and Kumar, 2010; Reynolds et al., 2013; Smeenk et al., 2010; Yoshida et al., 2008). It modulates nucleosome accessibility in enhancers and promoters for transcription factors and RNA polymerases, thereby regulating the expression of target genes (Bornelöv et al., 2018; Burgold et al., 2019). Subunits of NuRD are implicated in human cancers and various congenital defects (Basta and Rauchman, 2015; Toh and Nicolson, 2009). Considerable diversity is observed in subunit isoforms and NuRD-associated factors across tissues (Burgold et al., 2019; Denslow and Wade, 2007; Hoffmann and Spengler, 2019). NuRD comprises two catalytic modules - a histone deacetylase module and ATP-dependent chromatin-remodeling module (Burgold et al., 2019; Denslow and Wade, 2007; Low et al., 2020). The deacetylase module contains metastasis-associated proteins (MTA1/2/3) that form a dimeric scaffold for the histone deacetylases (HDAC1/2). It also contains the chaperones RBBP4/7, which mediate interactions of NuRD with histone tails and transcription factors (Basta and Rauchman, 2017, 2015; Hong et al., 2005). The chromatin-remodeling module contains methyl-CpG DNA binding proteins (MBD2/3) that recruit NuRD to methylated and/or hemimethylated DNA, GATA-type zinc-finger proteins (GATAD2A/B), and an ATP-dependent DNA translocase (CHD3/4/5) (Burgold et al., 2019; Low et al., 2020).

Some structural information is available for the complex. Several attempts made to determine the stoichiometry of the endogenous NuRD complex have returned variable results (Bode et al., 2016; Guo et al., 2019; Kloet et al., 2015; Sharifi Tabar et al., 2019; Smits et al., 2013; Spruijt et al., 2016; Zhang et al., 2016). A recent characterization by quantitative mass spectrometry from (Low et al., 2020) reported a 2:2:4:1:1:1
(MTA1:HDAC1:RBBP4:MBD3:GATAD2A:CHD4) stoichiometry for the full NuRD complex. Atomic structures of parts of the NuRD complex, including the MTA1-HDAC1 dimer, RBBP4 bound to MTA1, the MBD domain of MBD3, and the coiled-coil dimer of MBD2 and GATAD2A have been determined by X-ray crystallography and NMR spectroscopy (Alqarni et al., 2014; Cramer et al., 2014; Gnanapragasam et al., 2011; Millard et al., 2016, 2013). Structures of the 2:2 MTA1-HDAC1 dimer, the 2:2:4 MTA1-HDAC1-RBBP4 complex (MHR), the 2:2:2 MTA1N HDAC1-MBD3 ${ }^{\text {GATAD2CC }}$ (MHM) complex, the 2:2:4:1:1 MTA1-HDAC1-RBBP4-MBD3-GATAD2 (NuDe complex), and CHD4 bound to a nucleosome substrate have also been characterized at various resolutions by negative stain and/or cryo-electron microscopy (Farnung et al., 2020; Low et al., 2020; Millard et al., 2020, 2016).

Pairwise interactions between domains and subunits within the MHR, MHM, NuDe, and the endogenous NuRD complexes have also been characterized by chemical crosslinking and mass spectrometry (XLMS) (Low et al., 2020; Millard et al., 2016). A model of the MHM complex, based on crosslinks-driven rigid-body docking of known atomic structures with a pair of MTA1-RBBP4 structures manually placed, has also been reported (Low et al., 2020). While this represents the most complete model of NuRD architecture, it still only accounts for 30% of residues in the NuRD complex. In fact, only 50\% of residues in NuRD have known or readily modeled atomic structures, and the structures of proteins such as MBD3, CHD4, and GATAD2 are largely uncharacterized. More recent artificial intelligence-based methods such as AlphaFold are also unable to resolve these uncharacterized regions (Jumper et al., 2021). Owing to variability in the paralogue composition as well as significant structural dynamics, the atomic structure of the entire NuRD complex is still undetermined and is likely to remain a challenge for some time to come.

The 2:2:4 MTA1-HDAC1-RBBP4 complex (MHR) forms the deacetylase core of NuRD. MBD3 binds to the N-terminal half of MTA1 to form a 2:2:2 MTA1N-HDAC1-MBD3GATAD2CC (MHM) complex, which contains two copies of MBD3 (Low et al., 2020). However, the 2:2:4:1:1 MTA1-HDAC1-RBBP4-MBD3-GATAD2 (NuDe complex) and the endogenous NuRD complex are asymmetric, both containing a single copy of MBD3 (Low et al., 2020). The mechanism by which this asymmetry is introduced in NuDe/NuRD is not known. The structure of full-length MBD3 is unknown and it contains a significant intrinsically disordered region (IDR; MBD3 ${ }^{71-213}$), which has been shown to be critical for recruiting the deacetylase core in case of MBD2 (Desai et al., 2015). The localization of full-length MBD3 in NuDe/NuRD is also not known.

Here, we investigated the molecular architecture of the MHR, MHM, and NuDe complexes using an integrative approach. Integrative structure determination is a method for investigating structures of large assemblies which are refractory to a single experimental method such as Xray crystallography or cryo-electron microscopy (Alber et al., 2007; Ganesan et al., 2020; Gutierrez et al., 2020; Kim et al., 2018; Rout and Sali, 2019; Russel et al., 2012; Viswanath et al., 2017a; Ward et al., 2013). Using Bayesian integrative modeling with the Integrative Modeling Platform (IMP), we combined data from complementary experiments, physical principles, statistical inference, and prior models. This approach allowed us to combine noisy, sparse, ambiguous, and incoherent data at various resolutions (Alber et al., 2007; Rieping et
al., 2005; Rout and Sali, 2019; Schneidman-Duhovny et al., 2014). It produced an ensemble of models consistent with the input information, allowing us to obtain precise uncertainty bounds on the structure (Saltzberg et al., 2019, 2021; Viswanath et al., 2017b; Webb et al., 2018). We used data from SEC-MALLS, DIA-MS, XLMS, negative stain EM, X-ray crystallography, NMR spectroscopy, secondary structure and homology predictions, and stereochemistry considerations (Alqarni et al., 2014; Connelly et al., 2006; Cramer et al., 2014; Gnanapragasam et al., 2011; Low et al., 2020; Millard et al., 2016, 2013). These integrative structures were corroborated by independent cryo-EM maps, biochemical assays, and known cancerassociated mutations, a significant number of which mapped to protein-protein interfaces in the structures (Desai et al., 2015; Forbes et al., 2006; Millard et al., 2020; Pflum et al., 2001; Zhang et al., 1999). By using all available information, the accuracy, precision, completeness, and efficiency of structure determination was maximized (Alber et al., 2007; Rout and Sali, 2019; Russel et al., 2012).

Results

Fig. 1 Integrative structure determination of NuRD sub-complexes Schematic describing the workflow for integrative structure determination of NuRD sub-complexes. The first row describes the input information. The second-row details how data is used to encode spatial restraints. The third row mentions the sampling method and the last two rows illustrate the analysis and validation protocol. The background colors of the input information indicate the stage of modeling in which the information is used, as shown in the legend at the top.

Integrative modeling workflow

The integrative modeling of the MHR, MHM, and NuDe complexes proceeded in four stages (Fig. 1, Material and Methods) (Alber et al., 2007; Rout and Sali, 2019; Russel et al., 2012). The modeled NuRD proteins (subunits), their domains, their representation, and the number of copies in the modeled complexes are shown (Fig. S1A-S1C). The stoichiometry of the modeled proteins was informed by DIA-MS and SEC-MALLS experiments (Fig. S1C) (Low et al., 2020).

Regarding paralogs, a single representative for each protein was chosen for this work for simplicity, namely MTA1, HDAC1, RBBP4, MBD3 and GATAD2A (Fig. S1A).

We first represented each protein as a series of beads of size that depends on the degree of knowledge of the structure (and can vary throughout the sequence). Protein domains with known atomic structures (such as the MTA1-HDAC1 dimer) were represented at 1 and 10 residues per bead and modeled as rigid bodies, whereas domains without known structure (such as the MBD3 ${ }^{\text {IDR }}$) were coarse-grained at 30 residues per bead and modeled as flexible strings of beads (Fig. S1A-S1B). Data from chemical crosslinking combined with mass spectrometry (XL-MS) were used to restrain the distance between cross-linked residues. Negative-stain EM maps were used to restrain the shape of the complexes (Low et al., 2020).

The simulations started with randomized configurations for the rigid bodies and flexible beads. Over 40 million models per complex were sampled using a Monte Carlo approach (Replica Exchange Gibbs Sampling MCMC; Materials and Methods). The models were scored based on agreement with XL-MS and EM data, together with additional stereochemistry restraints such as connectivity and excluded volume. For each complex, about 20,000 models that sufficiently satisfied the input information were selected for further analysis (Saltzberg et al., 2021).

These models were clustered based on structural similarity and the precision of the clusters was estimated (Fig. S3-S5) (Saltzberg et al., 2019, 2021; Viswanath et al., 2017b). The quality of the models was assessed by fit to input data (Fig. S6-S8), as well as data not used in modeling, such as independent cryo-EM maps (Millard et al., 2020), published biochemical data (Desai et al., 2015; Millard et al., 2020; Pflum et al., 2001; Zhang et al., 1999) and human cancer-associated mutations (COSMIC) (Table S1) (Forbes et al., 2006). The resulting integrative models were visualized in two ways - a representative bead model and a localization probability density map, and represented in UCSF Chimera and ChimeraX (Pettersen et al., 2021, 2004). The bead model represents the centroid of the major cluster, whereas the localization probability density map represents all models in the major cluster, by specifying the probability of a voxel (3D volume unit) being occupied by a bead in the set of superposed cluster models.

MHR

First, to support the integrative modeling of the MHR complex, an ab initio 3D EM map for the MHR complex was produced by further analysis of the MHR 2D class averages reported in a previous study (Low et al., 2020). Integrative modeling of the 2:2:4 MHR complex produced effectively a single cluster of models (85% of a total of 15200 models) with a model precision of $27 \AA$; model precision is the average RMSD between the cluster centroid and models in the cluster (Fig. S3). The models fit very well to the input data as measured by the EM and crosslink scores. 98% of the input crosslinks were satisfied within their uncertainty (Fig. S6). An adipic acid dihydrazide (ADH) / bis(sulfosuccinimidyl)suberate - disuccinimidyl suberate (BS3DSS) / dimethoxy triazinyl methyl-morpholinium chloride (DMTMM) crosslink is violated if the corresponding cross-linked beads are greater than 35 / 35 / $25 \AA$ apart in all models in the cluster. The cross-correlation between the localization probability density map for the models in the major cluster and the input EM map was 0.74 , indicating the fit to EM is reasonable but not too high. This could partly be due to unoccupied density in the lobes of the experimental EM map.

Surprisingly, the representative bead model from the dominant cluster (cluster centroid model) shows the C-terminal half of the two MTA subunits (MTA1432-715) crossing over (brown and orange MTAs, Fig. 2A, Movie M1). Integrative models of the MHR complex created in the absence of the EM map also showed the MTAs crossing over (Fig. S9).

The MTA1 ${ }^{\text {BAH }}$ domain (MTA11-164) is positioned distal to the MTA1 dimerization interface (MTA1 ${ }^{200-290}$, MTA1 ${ }^{\text {dimer) }}$, consistent with its position in an independent EM map (Fig. 2B, Fig. 2C) (Millard et al., 2020). It is proximal to the HDAC1 active site and may potentially regulate HDAC1 activity (Fig. 2A). This conclusion is consistent with histone deacetylation assays in which MTA1 was shown to modulate HDAC1 deacetylase activity in NuRD (Zhang et al., 1999). Further, for one of the MTAs, the MTA1 ${ }^{\text {BAH }}$ is located near an RBBP4 (Fig. 2A, Fig. 2B); MTA1 ${ }^{\text {BAH }}$ proximity to RBBP4 was also indicated in an independent cryo-EM map (Millard et al., 2020). Finally, MTA1 ${ }^{\text {BAH }}$ is also proximal to the MTA1 mid region (MTA1 ${ }^{334-431}$) containing the predicted helix (H) and zinc finger regions (ZF) (Fig. 2B, Fig. 2C).

The MTA1 ${ }^{\text {mid }}$ region is juxtaposed between MTA1 dimer and the MTA1 ${ }^{\text {BAH }}$ domain (Fig. 2B). In contrast, in a previous crosslink-based MHR model (Low et al., 2020), MTA1 ${ }^{\text {mid }}$ was proximal to the MTA1 ${ }^{\text {BAH }}$ domain and distal from the MTA1 dimer. The MTA1 C-terminus (MTA1 ${ }^{\text {c; i.e., }}$ MTA1 ${ }^{692-715}$) shows considerable conformational heterogeneity and is co-located with MTA1 USR (MTA1547-669), the MTA1 disordered region between the R1 and R2 RBBP4 binding regions (Fig. 2B, Movie M1). Overall, many MTA1 domains in the MHR model, such as MTA1 ${ }^{\text {BAH }}$ domain, MTA1 mid, and MTA1¹, are exposed and could possibly interact with nucleosomal DNA and/or other proteins.

The HDAC1 C-terminus (HDAC1 ${ }^{\text {c }}$; i.e., HDAC1 ${ }^{377-482}$) interacts with the MTA1 ${ }^{\text {BAH }}$ domain (Fig. 2B). Although it has been shown that the MTA1-HDAC1 dimer can form in the absence of MTA1 ${ }^{\text {BAH }}$ (Millard et al., 2013), this additional interaction between MTA1 and HDAC1 could be functionally important. Consistent with this possibility, mutations in HDAC1 ${ }^{\text {C }}$ ($\triangle 391-482$, S421A, S423A, E426A) have been known to disrupt binding to NuRD subunits (Pflum et al., 2001). There are also post-translational modifications in the HDAC1 tail that might modulate its interaction with MTA1 (Pflum et al., 2001; Rathert et al., 2008).

Both the MTA1R1-RBBP4 units are located between the two lobes in the EM map, with one complex in the front and the other at the back (dark blue beads and densities, Fig. 2A-2C). On the other hand, the MTA1 ${ }^{\text {R2 }}$-RBBP4 complexes are located in separate lobes (light blue beads and densities, Fig. 2A-2C). The densities of RBBP4 are spread out, indicating its localization in MHR is imprecise (Fig. 2B, Movie M1). This is consistent with the structural heterogeneity observed in 2D class averages of the MHR EM data (Low et al., 2020). This flexibility could facilitate RBBP4 interactions with transcription factors and histones.

Fig. 2 Integrative model of the MTA1-HDAC1-RBBP4 (MHR) complex A. Representative bead model from the most populated cluster of integrative models for the MHR complex, shown with the MHR EM map. The model is colored by subunit. For MTA1, the two copies are shown in different colors (brown and orange) in panels A and C, to illustrate the crossover. The HDAC1 active site is shown in red. B. Localization probability density maps showing the position of different domains/subunits in the cluster. The map specifies the probability of any volume element being occupied by a domain in the ensemble of superposed models from the cluster. The domain densities are colored according to Fig S1. These maps are contoured at $\sim 10 \%$ of their respective maximum voxel values. C. Schematic representation of the integrative model of the MHR complex. See also Figs. S1, S3, S6, and Movie M1.

MHM

Integrative modeling of the 2:2:2 MHM complex resulted in a major cluster containing 60\% of 21960 models. The model precision was $24 \AA$ and 99% of the input crosslinks were satisfied (Fig. S4, Fig. S7). The cross-correlation between the localization probability density map for the models in the major cluster and the input EM map was 0.90 .

First, in a control run, where MHM was modeled as a 2:2:1 complex with a single copy of MBD3, we observed two symmetric MBD3 binding sites (Fig. S10). However, our 2:2:2 MHM model shows that the two copies of MBD3 bind asymmetrically on the MTA1-HDAC1 dimer (Fig. 3A3C, Movie M2). One MBD3 localizes exclusively to one end of the MTA1-HDAC1 dimer, making contacts predominantly with a single MTA1 and HDAC1 (pink MBD3, Fig. 3C), whereas the other MBD3 is more spread out and interacts with both copies of MTA1 and HDAC1 (green MBD3, Fig. 3C).

In our models, both the copies of MBD3 ${ }^{\text {MBD }}$ localize close to the MTA1 ${ }^{\text {BAH }}$ domain, which is similar to the location observed for MBD2 ${ }^{\text {MBD }}$ in an independent cryo-EM map of a 2:2:1 MTA1:HDAC1:MBD2 complex (Fig. 3A-3C) (Millard et al., 2020). Although there are two MBD3s in our models, only a single MBD3 ${ }^{\text {DR }}$ localizes to the MTA1 dimerization interface, MTA1dimer (green MBD3, Fig. 3D-3E). This localization of MBD3IDR is consistent with its previously predicted localization from the crosslinks-based model (Low et al., 2020) and the localization of MBD2 ${ }^{1 D R}$ based on cryo-electron microscopy (Millard et al., 2020). It is also supported by two separate mutagenesis and co-immunoprecipitation studies, one of which showed that MBD2 ${ }^{\text {DR }}$ was essential for binding to the MTA1-HDAC1 dimer (Desai et al., 2015), while the other showed that MTA1 ${ }^{\text {dimer }}$ was essential for its interaction with MBD2 (Millard et al., 2020). It is known that MBD3 binding in NuDe/NuRD is asymmetric; although there are two symmetric MBD3 binding sites, there is a single MBD3 in these complexes (Low et al., 2020). It is possible that a single MBD3 is present in NuDe/NuRD since a single MBD3 ${ }^{\text {IDR }}$ can bind to the MTA1 ${ }^{\text {dimer }}$ (see also Discussion).

For both MBDs, the MBD3 ${ }^{\text {MBD }}$ domain is proximal to the MTA1 $1^{\text {BAH }}$ domain and the MBD3 ${ }^{1 D R}$ is close to the MTA1 ${ }^{\text {mid }}$ region (Fig. 3B, Fig. 3E). The MBD3 ${ }^{\text {CC }}$-GATAD2 ${ }^{\text {cc }}$ coiled-coil domain is exposed. Finally, in a small minority of models, both MBDs are localized together on the same side of the MTA1dimer; however, we believe this latter configuration is possibly due to a large number of intra-MBD3 crosslinks (Movie M2).

Fig. 3 Integrative model of the MTA1 ${ }^{\text {N}-H D A C 1-M B D 3 ~}{ }^{\text {GATAD2CC }}$ (MHM) complex A. Representative bead model from the major cluster of analyzed integrative models for the MHM complex, with the corresponding EM map (EMD-21382) (Low et al., 2020), colored by subunit. The domains of the two MBD3s are shown in shades of pink and green respectively. B. Localization probability density maps showing the position of different domains in the ensemble of models from the cluster. The domain densities are colored according to Fig S1. C. The same density maps as B (front view), showing the two MBDs in pink and green respectively, illustrating that they localize differently on the MTA1-HDAC1 dimer. The density maps of MTA1 ${ }^{\text {mid }}$ and GATAD2 ${ }^{\text {cc }}$ were omitted for clarity. D. The density maps of the two MBD3 ${ }^{\text {IDR }}$ domains on the MTA1-HDAC1 dimer. Almost all the maps are contoured at 20% of their respective maximum voxel values (GATAD2 maps are contoured at 27% whereas MBD3 ${ }^{\text {IDR }}$ maps are contoured at 10%). E. Schematic representation of the integrative model of the MHM complex. Note that MTA 1 mid in this model corresponds to MTA1 ${ }^{334-431}$. See also Figs. S1, S4, S7, and Movie M2.

NuDe

Although the NuDe complex contains full-length GATAD2, due to the lack of information on fulllength GATAD2, we modeled only the GATAD2 region that forms a coiled-coil with MBD3. Integrative modeling of the NuDe complex resulted in effectively a single cluster (99\% of 21632 models). The model precision was $35 \AA$ and 99% of the input crosslinks were satisfied (Fig. S5, Fig. S8). The cross-correlation between the localization probability density map for the models in the major cluster and the input EM map was 0.88 .

In contrast to our MHM model where one MBD3 was proximal to the MTA1 ${ }^{\text {SANT }}$ domain, MBD3 in NuDe localizes precisely to one end of the MTA1-HDAC1 dimer, away from the MTA1SANT domain. It is juxtaposed next to the MTA1 ${ }^{\text {BAH }}$ and MTA1 ${ }^{\text {mid }}$ domains, as well as HDAC1 (Fig. 4A-4C, Movie M3). An independent cryo-EM map of MTA11-546-HDAC1-MBD2-RBBP4 also showed that MBD3 was proximal to MTA1 ${ }^{\text {BAH }}$ and MTA1dimer (Millard et al., 2020). It is possible that the presence of GATAD2 sterically precludes MBD3 from occupying the MTA1 dimerization interface (see also Discussion).

From protein-protein distance maps of the cluster, HDAC1 ${ }^{60-100}$ and MTA1 ${ }^{\text {BAH }}$ are most proximal to MBD3 (Fig. S11A, S11B). MBD3CC-GATAD2 ${ }^{\mathrm{CC}}$ is exposed. The MBD3 ${ }^{\mathrm{MBD}}$ domain is buried, consistent with the failure of MBD3 to bind DNA in NuRD noted in immuno-precipitation experiments (Fig. 4A-4C) (Zhang et al., 1999). Interestingly, several nucleosome-interacting domains such as MTA1 ${ }^{\text {BAH }}$ and MTA1 ${ }^{\mathrm{ZF}}$ are co-localized in the NuDe model (Fig. 4A-4C).

Similar to the MHR models, the HDAC1 ${ }^{C}$ domain is proximal to MTA1 ${ }^{\text {BAH }}$ (Fig. S11C). Mutagenesis and co-immunoprecipitation studies have shown that HDAC1ㄷ makes critical interactions with NuRD subunits (Pflum et al., 2001). In contrast to the MHR models which showed crossover of MTAs, the two MTAs are well-separated in NuDe (Fig. 4A-4C). The localization of RBBPs is also more precise in NuDe than in MHR (Fig. S12).

Fig. 4 Integrative model of the nucleosome deacetylase (NuDe) complex A. Representative bead model from the dominant cluster of integrative models for the NuDe complex, with the corresponding EM map (EMD-22904) (Low et al., 2020), colored by subunit. B. Localization probability density maps showing the position of different domains in the ensemble of models from the cluster. The domain densities are colored according to Fig S1. Maps are contoured at $\sim 10 \%$ of their respective maximum voxel values. C. Schematic representation of the integrative model of the NuDe complex. See also Figs. S1, S5, S8, S11, and Movie M3.

Mapping COSMIC mutations

We next consulted the COSMIC (Catalogue of Somatic Mutations in Cancer) database for somatic, confirmed pathogenic, point mutations of the NuRD subunits, MTA1, HDAC1, RBBP4, and MBD3 (Forbes et al., 2006). In total, 356 point mutations were identified and mapped onto the cluster of NuDe integrative models (Methods, 4.5 COSMIC data analysis). Analysis of these mutations revealed that 74% of mutations mapped to protein-protein interfaces within NuDe; for the purpose of this analysis, a mutation was considered to be at an interface if the average distance of the corresponding residue to a residue in an interacting protein is less than $10 \AA$. 29% of the mapped mutations were located in previously uncharacterized binding interfaces predicted by our model, such as MBD3-MTA1 ${ }^{\text {BAH }}$, MBD3-HDAC1 ${ }^{60-100}$, and HDAC1 ${ }^{\text {C-MTA1 }}{ }^{\text {BAH }}$, consistent with the idea that these interfaces are important for NuRD function (Fig. 5, Fig. S13,

Table S1). Mutations at protein-protein interfaces could alter protein-protein interactions, reducing the stability of the complex, thereby leading to pathogenicity. Moreover, 19% of all mutations mapped to exposed regions that are known to bind to nucleosomes and transcription factors, such as the HDAC1 active site and RBBP4 H3 interaction site (Fig. 5, Fig. S13, Table S1). These mutations could impair NuRD binding to partners such as nucleosomes or transcription factors, contributing to the pathogenesis of disease. Of the 19% that map to exposed regions, more than half (57%) of the mutations map to regions of unknown structure (regions for which no experimental structure or reliable model is available), such as MTA1 USR and MBD3 ${ }^{1 D R}$ (Fig. 5, Table S1). The functional significance of these mutations is therefore difficult to predict, but could indicate that these regions of unknown structure also have important roles in protein stability, regulating interactions between NuRD subunits, or interactions with binding partners of NuRD. An important consideration for all these diseasecausing mutations is that many of the NuRD subunits function in cellular contexts independent of other NuRD subunits, and so in some cases these mutations may be rationalised in the context of other functional roles.

Fig. 5 COSMIC mutations mapped onto the NuDe integrative model. Somatic pathogenic point mutations from the COSMIC database (Forbes et al., 2006) mapped onto the representative bead model of the NuDe complex (Fig. 4A). A. Mutations of residues that map to previously undescribed protein-protein interfaces within our model. Residues from two proteins are at an interface if the average distance between their corresponding bead surfaces is less than $10 \AA$ in the cluster of NuDe integrative models. B. Mutations on residues that map to exposed binding sites between modeled proteins and known binding partners. A bead is colored according to the maximum number of mutations on any residue in the bead, according to the legend. Representative mutations are labeled in both A. and B. See also Table S1 and Fig. S13.

Docking the nucleosome

We next attempted to dock the CHD4-nucleosome structure (Farnung et al., 2020) into the cleft in the NuDe structure between the MTA1 C-terminal arms (Fig. 6). Although there are limitations to this docking (for example, it is a coarse placement, lacks histone tail densities, and binding sites for the nucleosome outside the cleft might also exist), this positioning of the nucleosome
indicates its size complementarity to the integrative model, further corroborating the latter. This placement allows for the histone H 3 and H 4 tails to be located towards the HDAC1 active site. It also accommodates the known interactions between the RBBPs and the histone H3 (Fig. 6). The partial CHD4 structure is exposed. MTA1 ${ }^{\text {mid }}$, which contains the zinc finger, can also potentially interact with the nucleosome in this position. Finally, MBD3 does not interact with the nucleosome, since MBD3 ${ }^{\text {MBD }}$ is buried in NuDe (Fig. 4A-4C), consistent with MBD3 in NuRD failing to bind DNA in immuno-precipitation experiments (Zhang et al., 1999).

Fig. 6 Integrative model of NuDe complex with the nucleosome The CHD4- nucleosome structure (Farnung et al., 2020) is placed in the cleft of the NuDe integrative model. The regions with known atomic structure are shown in the NuDe integrative model from Fig. 4A. Nucleosome proteins/DNA and the corresponding NuDe subunit residues they are known to bind to, are depicted in the same color, as given by the legend.

Discussion

Here, we obtained structural models of the MTA1-HDAC1-RBBP4 (MHR), MTA1N-HDAC1MBD3 (MHM), and MTA1-HDAC1-RBBP4-MBD3-GATAD2 (NuDe) complexes using Bayesian integrative modeling. The approach allowed us to combine all available structural information, including data from SEC-MALLS, DIA-MS, chemical crosslinking mass spectrometry (XLMS), negative stain EM, X-ray crystallography, NMR spectroscopy, secondary structure, and homology predictions (Methods, Fig. 1) (Alqarni et al., 2014; Connelly et al., 2006; Cramer et al., 2014; Gnanapragasam et al., 2011; Low et al., 2020; Millard et al., 2016, 2013; Söding et al., 2005; Tjandra et al., 1997). The models were corroborated by independent cryo-EM maps, enzyme assays, mutagenesis, co-immunoprecipitation studies, and the mapping of cancer mutations (Fig. 5, Fig. S13, Table S1) (Desai et al., 2015; Forbes et al., 2006; Millard et al., 2020; Pflum et al., 2001; Zhang et al., 1999). Importantly, our approach allowed us to localize regions of unknown structure, for e.g., HDAC1 ${ }^{\text {c }}$ and MBD3 ${ }^{\text {IDR }}$, in context of regions of known structure, for e.g., the MTA1-HDAC1 dimer, resulting in the most complete structural characterization of these NuRD sub-complexes so far.

NuDe complex is more ordered than MHR

A comparison of MTA1 and RBBP4 in the MHR and NuDe models suggests that these subunits are more conformationally heterogenous in MHR, as shown by the broader localization probability densities for the C-terminal half of MTA1 and RBBPs in MHR (volume enclosed by the corresponding maps = 1120 nm 3) compared to NuDe (volume enclosed = 883.6 nm 3) (Fig.

S12). Also, the cross-correlation of the MHR localization probability density to the corresponding EM map is lower than that of NuDe, indicating higher heterogeneity for the former. This indicates that the MHR is initially dynamic and the presence of MBD3-GATAD2 possibly makes it less dynamic.

MBD3 ${ }^{\text {IDR }}$ - MTA1 ${ }^{\text {dimer }}$ interaction

In our MHM models, one MBD3 ${ }^{1 D R}$ is near the MTA1 dimer, consistent with the previously predicted localization of MBD3 ${ }^{1 D R}$ based on chemical crosslinks (Low et al., 2020) and MBD2 ${ }^{1 D R}$ based on a cryo-electron density map (Fig. 3C-3E) (Millard et al., 2020). Two separate mutagenesis and co-immunoprecipitation studies have shown that the MBD ${ }^{I R R}$ and the MTA1 dimerization interface are each essential for MBD2 interaction with the MTA1-HDAC1 dimer (Desai et al., 2015; Millard et al., 2020). Despite the corresponding region of MBD2 being disordered in solution (Desai et al., 2015), MBD3 ${ }^{125-175}$ is predicted to be ordered based on PONDR ${ }^{\circledR}$ analysis (Fig. S14) (http://www.pondr.com) (Romero et al., 2001, 1997). Because this region is well conserved across species (Cramer et al., 2017), it is likely that it becomes ordered upon binding, similar to the region of MTA1 that winds irregularly across the surface of HDAC1 (MTA1 ${ }^{165-226}$). Further, the crosslinks between MBD3IDR and MTA1 involve a loop (MTA1 ${ }^{229-236}$) of the MTA1 dimer that is not visible in the MTA1-HDAC1 crystal structure. It is possible that this region of MTA1 may also become ordered upon binding MBD3.

Fig. 7 Bind-and-shift model of MBD3 binding to MHR The figure shows two stages of MBD3 assembly in NuRD. A. In the first stage, the MTA1 dimerization interface is accessible for MBD3 ${ }^{I D R}$ to bind. B. In the second stage, upon binding, MBD3 recruits GATAD2 and the chromatin remodeling module and shifts to one end of the MTA1HDAC1 dimer. GATAD2 localizes near MTA1dimer, precluding a second MBD3 from binding to it.

Bind-and-shift model of MBD3 binding to MHR

The stoichiometry of MBD3 in NuRD is intriguing. The MHM complex has two copies of MBD3, while a single MBD3 is seen in the NuDe and NuRD complexes (Low et al., 2020). Based on our integrative models, we propose a two-stage mechanism to explain the asymmetric binding of MBD3 in NuRD (Fig. 7).

In the first stage (Fig. 7A), the C-terminal arms of MTA1 in MHR are heterogenous and adopt a range of configurations including an extended, open state (Millard et al., 2020) and crossedover state (Fig. 2, MHR models). In the open state, the MTA1 dimerization interface is accessible for MBD3 ${ }^{I D R}$ to bind. This interaction of MBD3 ${ }^{I D R}$ with the MTA1 ${ }^{\text {dimer }}$ is also observed in a cryo-EM study on MTA1:HDAC1:MBD2 and is known to be critical for MBD recruitment to the deacetylase module (Fig. 3, MHM models) (Desai et al., 2015; Millard et al., 2020).

In the second stage (Fig. 7B), upon binding to MTA1dimer, MBD3 recruits GATAD2 and the chromatin remodeling module and shifts to one end of the MTA1-HDAC1 dimer (Fig. 4, NuDe models). In this state, GATAD2 localizes near MTA1dimer, precluding a second MBD3 from binding to it. Although we did not model full GATAD2 in NuDe due to unavailability of structures and crosslinks involving the protein, the proximity of CHD4, and hence GATAD2, to the MTA1 dimer in our coarse nucleosome docking supports this idea (Fig. 6). This possibly explains how GATAD2 introduces asymmetry of MBD3 binding in NuRD. Moreover, upon binding the chromatin remodeling module, the C-terminal arms of MTA1 with the RBBPs are less heterogenous and adopt a closed configuration (Fig. 4, Fig. S12).

The novel NuRD protein interfaces predicted by our model need to be confirmed by future experiments. High-resolution structures of regions such as MBD3IDR will delineate their roles in NuRD. Ultimately, a complete atomic characterization of the NuRD complex will aid in understanding NuRD-mediated regulation of gene expression.

Materials and Methods

Integrative modeling

The integrative structure determination of the NuRD sub-complexes proceeded through four stages (Fig. 1) (Alber et al., 2007; Rout and Sali, 2019; Russel et al., 2012). The modeling protocol (i.e., stages 2, 3, and 4) was scripted using the Python Modeling Interface (PMI) package, a library for modeling macromolecular complexes based on open-source Integrative Modeling Platform (IMP) package, version 2.13 .0 (https://integrativemodeling.org) (Russel et al., 2012). The current procedure is an updated version of previously described protocols (Ganesan et al., 2020; Gutierrez et al., 2020; Kim et al., 2018; Saltzberg et al., 2019, 2021; Viswanath et al., 2017a; Webb et al., 2018).

Stage 1: Gathering data

The stoichiometry and isoforms of subunits was based on DIA-MS and SEC-MALLS experiments (Fig. S1) (Low et al., 2020). Known atomic structures were used for the MTA1HDAC1 dimer, MTA1 ${ }^{\text {R1 }}$ and MTA1 ${ }^{\text {R2 }}$ domains in complex with RBBP4, and MBD domain of MBD3 (Fig. S1) (Alqarni et al., 2014; Cramer et al., 2014; Millard et al., 2016, 2013). The MTA1 ${ }^{\text {BAH }}$ domain, MTA1 ${ }^{\mathrm{H}}$, MTA1 ${ }^{\mathrm{ZF}}$, and MBD3CC-GATAD2ACC structures were homology-
modeled based on the structures of related templates (Fig. S1A) (Connelly et al., 2006; Gnanapragasam et al., 2011; Tjandra et al., 1997).

The shapes of the complexes were based on 3D negative-stain EM maps; MHR: to be deposited (24.56 Å), MHM: EMD-21382 (20 Å), and NuDe: EMD-22904 (20 Å) (Low et al., 2020). The negative-stained EM map for the MHR complex was produced by further analysis of data reported in a previous study (Fig. S2) (Low et al., 2020). 25,155 particle images were subjected to multiple rounds of 2D classification in CryoSparc (Punjani et al., 2017), following which an ab initio 3D reconstruction was obtained and refined by homogenous 3D refinement. The final map was produced from 13,299 particles and had an estimated resolution of $\sim 25 \AA$ according to the FSCO. 143 criterion.

Chemical crosslinks informed the relative localization of the NuRD subunits. A total of 936 crosslinks, including 877 BS3DSS (bis(sulfosuccinimidyl)suberate - disuccinimidyl suberate), 40 DMTMM (dimethoxy triazinyl methyl-morpholinium chloride), and 19 ADH (adipic acid dihydrazide) crosslinks were used (Low et al., 2020). The models were validated by independent EM maps (Millard et al., 2020), biochemical assays (Desai et al., 2015; Pflum et al., 2001; Zhang et al., 1999), and human cancer-associated mutations on NuRD proteins (Forbes et al., 2006).

Stage 2: Representing the system and translating data into spatial restraints

The stoichiometry and representation of subunits is shown (Fig. S1). The domains with known atomic structures were represented in a multi-scale manner with 1 and 10 residues per bead to maximize computational efficiency. These domains were modeled as rigid bodies where the relative distances between beads is constrained during sampling. In contrast, domains without known structure were coarse-grained at 30 residues per bead and modeled as flexible strings of beads.

We next encoded the spatial restraints into a scoring function based on the information gathered in Stage 1, as follows:
(1) Cross-link restraints: The Bayesian cross-links restraint (Rieping et al., 2005) was used to restrain the distances spanned by the cross-linked residues (Shi et al., 2014).
(2) EM restraints: The Bayesian EM density restraint was used to restrain the shape of the modeled complexes and was based on the cross-correlation between the Gaussian Mixture Model (GMM) representations of the NuRD subunits and the GMM representation of the corresponding negative-stain EM density maps (Bonomi et al., 2019).
(3) Excluded volume restraints: The excluded volume restraints were applied to each bead, using the statistical relationship between the volume and the number of residues that it covered (Alber et al., 2007).
(4) Sequence connectivity restraints: We applied the sequence connectivity restraints, using a harmonic upper distance bound on the distance between consecutive beads in a subunit, with a threshold distance equal to twice the sum of the radii of the two connected beads. The bead radius was calculated from the excluded volume of the corresponding bead, assuming standard protein density (Shi et al., 2014).

Stage 3: Structural sampling to produce an ensemble of structures that satisfies the restraints

We aimed to maximize the precision at which the sampling of good-scoring solutions was exhaustive (Stage 4). The sampling runs relied on Gibbs sampling, based on the Replica Exchange Monte Carlo algorithm (Saltzberg et al., 2019, 2021). The positions of the rigid bodies (domains with known structure) and flexible beads (domains with unknown structure) were sampled.

The initial positions of the flexible beads and rigid bodies in all complexes were randomized, with one exception. For MHR, we were able to unambiguously dock the structure of the MTA1HDAC1 core in the EM map, with the help of the previous EM map (EMD-3399) (Millard et al., 2016). Hence the position of the corresponding rigid body was fixed throughout.

The Monte Carlo moves included random translations of individual beads in the flexible segments and rigid bodies (around $3.7 \AA$ and $1.3 \AA$ respectively). A model was saved every 10 Gibbs sampling steps, each consisting of a cycle of Monte Carlo steps that moved every bead and rigid body once.

The sampling produced a total of 40 million MHR, 48 million MHM, and 80 million NuDe integrative models.

Stage 4: Analysing and validating the ensemble of structures and data

The sampled models were analysed to assess sampling exhaustiveness and estimate the precision of the structure, its consistency with input data and consistency with data not used in modeling. The structure was further validated by experiments based on the predictions from the models. We used the analysis and validation protocol published earlier (Rout and Sali, 2019; Saltzberg et al., 2019, 2021; Viswanath et al., 2017b). Assessment began with a test of the thoroughness of structural sampling, including structural clustering of the models, estimating model precision, and visualizing the variability in the ensemble of structures using localization probability density maps (Viswanath et al., 2017b). The precision of a domain refers to its positional variation in an ensemble of superposed models. It can also be visualized by the localization probability density map for the domain. A localization probability density map specifies the probability of a voxel (3D volume unit) being occupied by a bead in a set of superposed models. The models and densities were visualized with UCSF Chimera and ChimeraX (Pettersen et al., 2021, 2004).
(1) Determining good-scoring models

Starting from the millions of sampled models, first, we selected models obtained after score equilibration and clustered them based on the restraint scores (Saltzberg et al., 2021). For further analysis, we considered 15200 MHR, 21960 MHM, and 21632 NuDe good-scoring models that satisfy the data restraints sufficiently well.

(2) Clustering and structure precision

We next assessed the sampling exhaustiveness and performed structural clustering (Saltzberg et al., 2019, 2021; Viswanath et al., 2017b). Integrative structure determination resulted in effectively a single cluster for all complexes, at a precision of $26.8 \AA(\mathrm{MHR}), 23.8 \AA(\mathrm{MHM})$, and $34.6 \AA(\mathrm{NuDe})$. The cluster precision is the bead RMSD from the cluster centroid model averaged over all models in the cluster (Viswanath et al., 2017b).
(3) Fit to input information

The dominant clusters from each modeled NuRD sub-complex satisfied over 95% of all the BS3DSS, ADH, and DMTMM crosslinks used; a crosslink is satisfied by a cluster of models if the corresponding C α-Ca distance in any model in the cluster is less than $35 \AA, 35 \AA, 25 \AA$ for BS3DSS, ADH, and DMTMM crosslinks respectively. The agreement between the models and the corresponding EM maps was computed by calculating the cross-correlation of the combined localization probability densities of all subunits for the major cluster with the experimental EM map using the fitmap tool in UCSF Chimera (Fig. 2-4) (Pettersen et al., 2004). The remainder of the restraints are harmonic, with a specified standard deviation. The cluster generally satisfied the excluded volume and sequence connectivity restraints. A restraint is satisfied by a cluster of models if the restrained distance in any model in the cluster (considering restraint ambiguity) is violated by less than 3 standard deviations, specified for the restraint. Most of the violations are small, and can be rationalized by local structural fluctuations, coarse-grained representation of the model, and/or finite structural sampling.
(4) Fit to data not used in modeling

The MHR integrative models were supported by histone deacetylation assays, mutagenesis, and co-immunoprecipitation showing that MTA1 and the HDAC1 ${ }^{\text {c }}$ regulate HDAC1 deacetylase activity and NuRD assembly (Pflum et al., 2001; Zhang et al., 1999). The localization of domains such as MTA1 ${ }^{\text {BAH }}$ and RBBP4 were validated by their consistency with independently determined cryo-EM maps (Millard et al., 2020).

The MHM integrative models were supported by independent cryo-EM maps of the complex showing similar localizations for MBD2 ${ }^{\text {MBD }}$ and MTA1 ${ }^{\text {BAH }}$ (Millard et al., 2020). The MBD3 ${ }^{1 D R}$ MTA1dimer interaction was also supported by two separate mutagenesis and coimmunoprecipitation studies (Desai et al., 2015; Millard et al., 2020).

The NuDe integrative models were corroborated by immunoprecipitation experiments showing that the MBD domain of MBD3 is buried in NuRD (Zhang et al., 1999). They were also supported by independent cryo-EM maps showing that MBD3 is proximal to MTA1 BAH, and biochemical assays showing the importance of HDAC1 ${ }^{c}$ interactions in NuRD (Millard et al., 2020; Pflum et al., 2001). The mapping of cancer mutations to protein-protein interfaces in the NuDe model also supported them (Fig. 5, Fig. S13, Table S1) (Forbes et al., 2006).

4.1 Mapping COSMIC mutations

We obtained a total of 356 somatic, confirmed pathogenic, point mutations for the modeled NuRD subunits (MTA1, HDAC1, RBBP4, MBD3) from the COSMIC (Catalogue of Somatic Mutations in Cancer) database (Forbes et al., 2006). For each subunit, point mutations were selected from search results based on the presence of census genes and correct documentation of current structures. To ensure the mutations studied significantly affect the function, folding, and protein-protein interaction of the protein, the "confirmed pathogenic" and "somatic" filters were applied in all cases.

Acknowledgements

We thank Vinothkumar Kutti Ragunath for useful comments on the manuscript.
Molecular graphics images were produced using the UCSF Chimera and UCSF ChimeraX packages from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR001081).

Funding

This work has been supported by the following grants: Department of Atomic Energy (DAE) TIFR grant RTI 4006 and Department of Science and Technology (DST) SERB grant SPG/2020/000475 from the Government of India to S.V, National Health and Medical Research Council of Australia project grants: APP1012161, APP1063301, APP1126357 to M.J.L. and J.P.M. and a fellowship (APP1058916) from the same organization to J.P.M.

Conflict of Interest

None declared.

References

Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., Rout, M.P., Sali, A., 2007. Determining the architectures of macromolecular assemblies. Nature 450, 683-694. https://doi.org/10.1038/nature06404
Alqarni, S.S.M., Murthy, A., Zhang, W., Przewloka, M.R., Silva, A.P.G., Watson, A.A., Lejon, S., Pei, X.Y., Smits, A.H., Kloet, S.L., Wang, H., Shepherd, N.E., Stokes, P.H., Blobel, G.A., Vermeulen, M., Glover, D.M., Mackay, J.P., Laue, E.D., 2014. Insight into the Architecture of the NuRD Complex. J. Biol. Chem. 289, 21844-21855. https://doi.org/10.1074/jbc.M114.558940
Basta, J., Rauchman, M., 2017. Chapter 3 - The Nucleosome Remodeling and Deacetylase Complex in Development and Disease, in: Laurence, J., Beusekom, M.V. (Eds.), Translating Epigenetics to the Clinic. Academic Press, Boston, pp. 37-72. https://doi.org/10.1016/B978-0-12-800802-7.00003-4
Basta, J., Rauchman, M., 2015. The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. J. Lab. Clin. Med. 165, 36-47. https://doi.org/10.1016/j.trsl.2014.05.003
Bode, D., Yu, L., Tate, P., Pardo, M., Choudhary, J., 2016. Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells*. Mol. Cell. Proteomics 15, 878-891. https://doi.org/10.1074/mcp.M115.053207
Bonomi, M., Hanot, S., Greenberg, C.H., Sali, A., Nilges, M., Vendruscolo, M., Pellarin, R., 2019. Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Structure 27, 175-188.e6. https://doi.org/10.1016/j.str.2018.09.011
Bornelöv, S., Reynolds, N., Xenophontos, M., Gharbi, S., Johnstone, E., Floyd, R., Ralser, M., Signolet, J., Loos, R., Dietmann, S., Bertone, P., Hendrich, B., 2018. The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of

Active Transcription to Fine-Tune Gene Expression. Mol. Cell 71, 56-72.e4. https://doi.org/10.1016/j.molcel.2018.06.003
Burgold, T., Barber, M., Kloet, S., Cramard, J., Gharbi, S., Floyd, R., Kinoshita, M., Ralser, M., Vermeulen, M., Reynolds, N., Dietmann, S., Hendrich, B., 2019. The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO J. 38, e100788. https://doi.org/10.15252/embj. 2018100788
Connelly, J.J., Yuan, P., Hsu, H.-C., Li, Z., Xu, R.-M., Sternglanz, R., 2006. Structure and Function of the Saccharomyces cerevisiae Sir3 BAH Domain. Mol. Cell. Biol. 26, 32563265. https://doi.org/10.1128/MCB.26.8.3256-3265.2006

Cramer, J.M., Pohlmann, D., Gomez, F., Mark, L., Kornegay, B., Hall, C., Siraliev-Perez, E., Walavalkar, N.M., Sperlazza, M.J., Bilinovich, S., Prokop, J.W., Hill, A.L., Williams, D.C., 2017. Methylation specific targeting of a chromatin remodeling complex from sponges to humans. Sci. Rep. 7, 40674. https://doi.org/10.1038/srep40674
Cramer, J.M., Scarsdale, J.N., Walavalkar, N.M., Buchwald, W.A., Ginder, G.D., Williams, D.C., 2014. Probing the Dynamic Distribution of Bound States for Methylcytosine-binding Domains on DNA* *This work was supported, in whole or in part, by National Institutes of Health Grants R01 GM098624 (to D. C. W.) and R01 DK029902 (to G. D. G.). NMR data were acquired using NMR instrumentation in the Virginia Commonwealth University Massey Cancer Center Structural Biology Core, and surface plasmon resonance data were acquired in the Virginia Commonwealth University Massey Cancer Center Flow Cytometry Core, both of which are supported, in part, by NCI Cancer Center Core Support Grant P30 CA016059. J. Biol. Chem. 289, 1294-1302. https://doi.org/10.1074/jbc.M113.512236
Denslow, S.A., Wade, P.A., 2007. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433-5438. https://doi.org/10.1038/sj.onc. 1210611
Desai, M.A., Webb, H.D., Sinanan, L.M., Scarsdale, J.N., Walavalkar, N.M., Ginder, G.D., Williams, D.C., 2015. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res. 43, 3100-3113. https://doi.org/10.1093/nar/gkv168
Farnung, L., Ochmann, M., Cramer, P., 2020. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 9, e56178. https://doi.org/10.7554/eLife. 56178
Forbes, S., Clements, J., Dawson, E., Bamford, S., Webb, T., Dogan, A., Flanagan, A., Teague, J., Wooster, R., Futreal, P.A., Stratton, M.R., 2006. Cosmic 2005. Br. J. Cancer 94, 318322. https://doi.org/10.1038/sj.bjc. 6602928

Ganesan, S.J., Feyder, M.J., Chemmama, I.E., Fang, F., Rout, M.P., Chait, B.T., Shi, Y., Munson, M., Sali, A., 2020. Integrative structure and function of the yeast exocyst complex. Protein Sci. Publ. Protein Soc. 29, 1486-1501. https://doi.org/10.1002/pro. 3863
Gnanapragasam, M.N., Scarsdale, J.N., Amaya, M.L., Webb, H.D., Desai, M.A., Walavalkar, N.M., Wang, S.Z., Zu Zhu, S., Ginder, G.D., Williams, D.C., 2011. p66a-MBD2 coiledcoil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2NuRD complex. Proc. Natl. Acad. Sci. 108, 7487-7492.
Guo, T., Luna, A., Rajapakse, V.N., Koh, C.C., Wu, Z., Liu, W., Sun, Y., Gao, H., Menden, M.P., Xu, C., Calzone, L., Martignetti, L., Auwerx, C., Buljan, M., Banaei-Esfahani, A., Ori, A., Iskar, M., Gillet, L., Bi, R., Zhang, J., Zhang, H., Yu, C., Zhong, Q., Varma, S., Schmitt, U., Qiu, P., Zhang, Q., Zhu, Y., Wild, P.J., Garnett, M.J., Bork, P., Beck, M., Liu, K., Saez-Rodriguez, J., Elloumi, F., Reinhold, W.C., Sander, C., Pommier, Y., Aebersold,
R., 2019. Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines. iScience 21, 664-680. https://doi.org/10.1016/j.isci.2019.10.059
Gutierrez, C., Chemmama, I.E., Mao, H., Yu, C., Echeverria, I., Block, S.A., Rychnovsky, S.D., Zheng, N., Sali, A., Huang, L., 2020. Structural dynamics of the human COP9 signalosome revealed by cross-linking mass spectrometry and integrative modeling. Proc. Natl. Acad. Sci. 117, 4088-4098. https://doi.org/10.1073/pnas. 1915542117
Hoffmann, A., Spengler, D., 2019. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front. Genet. 0. https://doi.org/10.3389/fgene.2019.00682
Hong, W., Nakazawa, M., Chen, Y.-Y., Kori, R., Vakoc, C.R., Rakowski, C., Blobel, G.A., 2005. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24, 2367-2378. https://doi.org/10.1038/sj.emboj.7600703
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
Kim, S.J., Fernandez-Martinez, J., Nudelman, I., Shi, Y., Zhang, W., Raveh, B., Herricks, T., Slaughter, B.D., Hogan, J.A., Upla, P., Chemmama, I.E., Pellarin, R., Echeverria, I., Shivaraju, M., Chaudhury, A.S., Wang, J., Williams, R., Unruh, J.R., Greenberg, C.H., Jacobs, E.Y., Yu, Z., de la Cruz, M.J., Mironska, R., Stokes, D.L., Aitchison, J.D., Jarrold, M.F., Gerton, J.L., Ludtke, S.J., Akey, C.W., Chait, B.T., Sali, A., Rout, M.P., 2018. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475-482. https://doi.org/10.1038/nature26003
Kloet, S.L., Baymaz, H.I., Makowski, M., Groenewold, V., Jansen, P.W.T.C., Berendsen, M., Niazi, H., Kops, G.J., Vermeulen, M., 2015. Towards elucidating the stability, dynamics and architecture of the nucleosome remodeling and deacetylase complex by using quantitative interaction proteomics. FEBS J. 282, 1774-1785. https://doi.org/10.1111/febs. 12972
Lejon, S., Thong, S.Y., Murthy, A., AlQarni, S., Murzina, N.V., Blobel, G.A., Laue, E.D., Mackay, J.P., 2011. Insights into Association of the NuRD Complex with FOG-1 from the Crystal Structure of an RbAp48•FOG-1 Complex *. J. Biol. Chem. 286, 1196-1203. https://doi.org/10.1074/jbc.M110.195842
Li, D.-Q., Kumar, R., 2010. Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle Georget. Tex 9, 2071-2079. https://doi.org/10.4161/cc.9.11.11735
Low, J.K.K., Silva, A.P.G., Sharifi Tabar, M., Torrado, M., Webb, S.R., Parker, B.L., Sana, M., Smits, C., Schmidberger, J.W., Brillault, L., Jackman, M.J., Williams, D.C., Blobel, G.A., Hake, S.B., Shepherd, N.E., Landsberg, M.J., Mackay, J.P., 2020. The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Rep. 33, 108450. https://doi.org/10.1016/j.celrep.2020.108450
Millard, C.J., Fairall, L., Ragan, T.J., Savva, C.G., Schwabe, J.W.R., 2020. The topology of chromatin-binding domains in the NuRD deacetylase complex. Nucleic Acids Res. 48, 12972-12982. https://doi.org/10.1093/nar/gkaa1121
Millard, C.J., Varma, N., Saleh, A., Morris, K., Watson, P., Bottrill, A., Fairall, L., Smith, C., Schwabe, J., 2016. The structure of the core NuRD repression complex provides insights into its interaction with chromatin. ELife 2016. https://doi.org/10.7554/eLife. 13941

Millard, C.J., Watson, P.J., Celardo, I., Gordiyenko, Y., Cowley, S.M., Robinson, C.V., Fairall, L., Schwabe, J.W.R., 2013. Class I HDACs Share a Common Mechanism of Regulation by Inositol Phosphates. Mol. Cell 51, 57-67. https://doi.org/10.1016/j.molcel.2013.05.020
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc. 20084
Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., Ferrin, T.E., 2021. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70-82. https://doi.org/10.1002/pro. 3943
Pflum, M.K.H., Tong, J.K., Lane, W.S., Schreiber, S.L., 2001. Histone Deacetylase 1 Phosphorylation Promotes Enzymatic Activity and Complex Formation*. J. Biol. Chem. 276, 47733-47741. https://doi.org/10.1074/jbc.M105590200
Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A., 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290-296. https://doi.org/10.1038/nmeth. 4169
Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., Komatsu, Y., Shinkai, Y., Cheng, X., Jeltsch, A., 2008. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol. 4, 344-346. https://doi.org/10.1038/nchembio. 88
Reynolds, N., O'Shaughnessy, A., Hendrich, B., 2013. Transcriptional repressors: multifaceted regulators of gene expression. Development 140, 505-512. https://doi.org/10.1242/dev. 083105
Rieping, W., Habeck, M., Nilges, M., 2005. Inferential Structure Determination. Science 309, 303-306. https://doi.org/10.1126/science. 1110428
Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J.E., Dunker, A.K., 1997. Identifying disordered regions in proteins from amino acid sequence, in: Proceedings of International Conference on Neural Networks (ICNN'97). Presented at the Proceedings of International Conference on Neural Networks (ICNN'97), pp. 90-95 vol. 1 https://doi.org/10.1109/ICNN.1997.611643
Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J., Dunker, A.K., 2001. Sequence complexity of disordered protein. Proteins 42, 38-48. https://doi.org/10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3
Rout, M.P., Sali, A., 2019. Principles for Integrative Structural Biology Studies. Cell 177, 13841403. https://doi.org/10.1016/j.cell.2019.05.016

Russel, D., Lasker, K., Webb, B., Velázquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., Peterson, B., Sali, A., 2012. Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies. PLoS Biol. 10, e1001244. https://doi.org/10.1371/journal.pbio. 1001244
Saltzberg, D., Greenberg, C.H., Viswanath, S., Chemmama, I., Webb, B., Pellarin, R., Echeverria, I., Sali, A., 2019. Modeling Biological Complexes Using Integrative Modeling Platform, in: Bonomi, M., Camilloni, C. (Eds.), Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology. Springer, New York, NY, pp. 353-377. https://doi.org/10.1007/978-1-4939-9608-7_15
Saltzberg, D.J., Viswanath, S., Echeverria, I., Chemmama, I.E., Webb, B., Sali, A., 2021. Using Integrative Modeling Platform to compute, validate, and archive a model of a protein complex structure. Protein Sci. 30, 250-261. https://doi.org/10.1002/pro. 3995
Schneidman-Duhovny, D., Pellarin, R., Sali, A., 2014. Uncertainty in integrative structural modeling. Curr. Opin. Struct. Biol. 28, 96-104. https://doi.org/10.1016/j.sbi.2014.08.001

Sharifi Tabar, M., Mackay, J.P., Low, J.K.K., 2019. The stoichiometry and interactome of the Nucleosome Remodeling and Deacetylase (NuRD) complex are conserved across multiple cell lines. FEBS J. 286, 2043-2061. https://doi.org/10.1111/febs. 14800
Shi, Y., Fernandez-Martinez, J., Tjioe, E., Pellarin, R., Kim, S.J., Williams, R., SchneidmanDuhovny, D., Sali, A., Rout, M.P., Chait, B.T., 2014. Structural characterization by crosslinking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol. Cell. Proteomics MCP 13, 2927-2943. https://doi.org/10.1074/mcp.M114.041673
Smeenk, G., Wiegant, W.W., Vrolijk, H., Solari, A.P., Pastink, A., van Attikum, H., 2010. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol. 190, 741-749. https://doi.org/10.1083/jcb. 201001048

Smits, A.H., Jansen, P.W.T.C., Poser, I., Hyman, A.A., Vermeulen, M., 2013. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res. 41, e28. https://doi.org/10.1093/nar/gks941
Söding, J., Biegert, A., Lupas, A.N., 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244-248. https://doi.org/10.1093/nar/gki408
Spruijt, C.G., Luijsterburg, M.S., Menafra, R., Lindeboom, R.G.H., Jansen, P.W.T.C., Edupuganti, R.R., Baltissen, M.P., Wiegant, W.W., Voelker-Albert, M.C., Matarese, F., Mensinga, A., Poser, I., Vos, H.R., Stunnenberg, H.G., van Attikum, H., Vermeulen, M., 2016. ZMYND8 Co-localizes with NuRD on Target Genes and Regulates Poly(ADP-Ribose)-Dependent Recruitment of GATAD2A/NuRD to Sites of DNA Damage. Cell Rep. 17, 783-798. https://doi.org/10.1016/j.celrep.2016.09.037
Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M., Bax, A., 1997. Use of dipolar 1H15 N and $1 \mathrm{H}-13 \mathrm{C}$ couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732-738. https://doi.org/10.1038/nsb0997-732
Toh, Y., Nicolson, G.L., 2009. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin. Exp. Metastasis 26, 215227. https://doi.org/10.1007/s10585-008-9233-8

Viswanath, S., Bonomi, M., Kim, S.J., Klenchin, V.A., Taylor, K.C., Yabut, K.C., Umbreit, N.T., Van Epps, H.A., Meehl, J., Jones, M.H., Russel, D., Velazquez-Muriel, J.A., Winey, M., Rayment, I., Davis, T.N., Sali, A., Muller, E.G., 2017a. The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol. Biol. Cell 28, 3298-3314. https://doi.org/10.1091/mbc.E17-06-0397
Viswanath, S., Chemmama, I.E., Cimermancic, P., Sali, A., 2017b. Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys. J. 113, 2344-2353. https://doi.org/10.1016/j.bpj.2017.10.005

Ward, A.B., Sali, A., Wilson, I.A., 2013. Integrative Structural Biology. Science 339, 913-915. https://doi.org/10.1126/science. 1228565
Webb, B., Viswanath, S., Bonomi, M., Pellarin, R., Greenberg, C.H., Saltzberg, D., Sali, A., 2018. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 27, 245-258. https://doi.org/10.1002/pro. 3311
Yoshida, T., Hazan, I., Zhang, J., Ng, S.Y., Naito, T., Snippert, H.J., Heller, E.J., Qi, X., Lawton, L.N., Williams, C.J., Georgopoulos, K., 2008. The role of the chromatin remodeler Mi-2 β in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev. 22, 1174-1189. https://doi.org/10.1101/gad. 1642808

Zhang, W., Aubert, A., Gomez de Segura, J.M., Karuppasamy, M., Basu, S., Murthy, A.S., Diamante, A., Drury, T.A., Balmer, J., Cramard, J., Watson, A.A., Lando, D., Lee, S.F., Palayret, M., Kloet, S.L., Smits, A.H., Deery, M.J., Vermeulen, M., Hendrich, B., Klenerman, D., Schaffitzel, C., Berger, I., Laue, E.D., 2016. The Nucleosome Remodeling and Deacetylase Complex NuRD Is Built from Preformed Catalytically Active Sub-modules. J. Mol. Biol. 428, 2931-2942. https://doi.org/10.1016/j.jmb.2016.04.025
Zhang, Y., Ng, H.-H., Erdjument-Bromage, H., Tempst, P., Bird, A., Reinberg, D., 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924-1935.

Supplementary Figures and Tables

Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination

Shreyas Arvindekar ${ }^{1}$, Matthew J. Jackman², Jason K.K. Low ${ }^{3}$, Michael J. Landsberg ${ }^{2}$, *, Joel P. Mackay ${ }^{3}$, *, and Shruthi Viswanath ${ }^{1, *}$

${ }^{1}$ National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
${ }^{2}$ School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
${ }^{3}$ School of Life and Environmental Sciences, University of Sydney, NSW, Australia
*Corresponding authors E-mail: m.landsberg@uq.edu.au (M.J.L.); joel.mackay@sydney.edu.au (J.P.M.); shruthiv@ncbs.res.in (S.V.)

Fig. S1 Subunits in NuRD sub-complexes A. Sequences and isoforms of modeled subunits are shown and domains are labeled. Domains are shown in progressively dark shades along the sequence for MTA1, HDAC1, and MBD3. Regions with known structure are represented by rectangles while regions without known structure are represented by beads. PDB IDs are shown for existing subunit structures and templates of homology models. B. Coarse-grained bead representation of subunits and C. stoichiometries of modeled complexes.

Fig. S2 Single particle analysis of the MHR complex. A flowthrough from the micrographs imported into Cryosparc (Punjani et al., 2017) to the final 3D reconstruction of the MHR complex using the ab-initio reconstruction job. 2D classes were generated using 50 classes per run, with particles from non-junk classes used as input to subsequent 2 D classification jobs. Non-uniform refinement was not performed on the final structure due to its low resolution.

Fig. S3 Sampling exhaustiveness protocol on MHR models Results of test 1, convergence of the model score, for the 15200 goodscoring models; the scores do not continue to improve as more models are computed essentially independently. The error bar represents the standard deviations of the best scores, estimated by repeating sampling of models 10 times. The red dotted line indicates a lower bound reference on the total score. B. Results of test 2, testing similarity of model score distributions between samples 1 (red) and 2 (blue); the difference in the distribution of scores is significant (Kolmogorov-Smirnov two-sample test p-value less than 0.05) but the magnitude of the difference is small (the Kolmogorov-Smirnov two-sample test statistic D is 0.04); thus, the two score distributions are effectively equal. C. Results of test 3 , three criteria for determining the sampling precision (Y-axis), evaluated as a function of the RMSD clustering threshold (X-axis). First, the p-value is computed using the χ^{2}-test for homogeneity of proportions (red dots). Second, an effect size for the χ^{2}-test is quantified by the Cramer's V value (blue squares). Third, the population of models in sufficiently large clusters (containing at least 10 models from each sample) is shown as green triangles. The vertical dotted grey line indicates the RMSD clustering threshold at which three conditions are satisfied (p -value >0.05 [dotted red line], Cramer's $\mathrm{V}<0.10$ [dotted blue line], and the population of clustered models >0.80 [dotted green line]), thus defining the sampling precision of $41 \AA$. D. Populations of sample 1 and 2 models in the clusters obtained by threshold-based clustering using the RMSD threshold of $41 \AA$. Cluster precision is shown for each cluster. E. and F. Results of test 4: comparison of localization probability densities of models from sample A and sample B for the major cluster (84.95% population). The cross-correlation of the density maps of the two samples is greater than 0.96 .

Fig. S4 Sampling exhaustiveness protocol on MTA1 ${ }^{\text {N }}$-HDAC1-MBD3 ${ }^{\text {GATAD2CC }}$ (MHM) models Results of test 1, convergence of the model score, for the 21960 good-scoring models; the scores do not continue to improve as more models are computed essentially independently. The error bar represents the standard deviations of the best scores, estimated by repeating sampling of models 10 times. The red dotted line indicates a lower bound reference on the total score. B. Results of test 2, testing similarity of model score distributions between samples 1 (red) and 2 (blue); the difference in the distribution of scores is significant (Kolmogorov-Smirnov two-sample test p -value less than 0.05) but the magnitude of the difference is small (the KolmogorovSmirnov two-sample test statistic D is 0.08); thus, the two score distributions are effectively equal. C. Results of test 3 , three criteria for determining the sampling precision (Y-axis), evaluated as a function of the RMSD clustering threshold (X-axis). First, the pvalue is computed using the χ^{2}-test for homogeneity of proportions (red dots). Second, an effect size for the χ^{2}-test is quantified by the Cramer's V value (blue squares). Third, the population of models in sufficiently large clusters (containing at least 10 models from each sample) is shown as green triangles. The vertical dotted grey line indicates the RMSD clustering threshold at which three conditions are satisfied (p -value >0.05 [dotted red line], Cramer's $\mathrm{V}<0.10$ [dotted blue line], and the population of clustered models >0.80 [dotted green line]), thus defining the sampling precision of $28.85 \AA$. D. Populations of sample 1 and 2 models in the clusters obtained by threshold-based clustering using the RMSD threshold of $28.85 \AA$. Cluster precision is shown for each cluster. E. and F. Results of test 4: comparison of localization probability densities of models from sample A and sample B for the major cluster (60.23% population). The cross-correlation of the density maps of the two samples is greater than 0.95 .

Fig. S5 Sampling exhaustiveness protocol on NuDe integrative models Results of test 1, convergence of the model score, for the 21632 good-scoring models; the scores do not continue to improve as more models are computed essentially independently. The error bar represents the standard deviations of the best scores, estimated by repeating sampling of models 10 times. The red dotted line indicates a lower bound reference on the total score. B. Results of test 2 , testing similarity of model score distributions between samples 1 (red) and 2 (blue); the difference in the distribution of scores is significant (Kolmogorov-Smirnov two-sample test p-value less than 0.05) but the magnitude of the difference is small (the Kolmogorov-Smirnov two-sample test statistic D is 0.12); thus, the two score distributions are effectively equal. C. Results of test 3 , three criteria for determining the sampling precision (Y -axis), evaluated as a function of the RMSD clustering threshold (X-axis). First, the p-value is computed using the χ^{2}-test for homogeneity of proportions (red dots). Second, an effect size for the χ^{2}-test is quantified by the Cramer's V value (blue squares). Third, the population of models in sufficiently large clusters (containing at least 10 models from each sample) is shown as green triangles. The vertical dotted grey line indicates the RMSD clustering threshold at which three conditions are satisfied (p -value >0.05 [dotted red line], Cramer's $\mathrm{V}<0.10$ [dotted blue line], and the population of clustered models >0.80 [dotted green line]), thus defining the sampling precision of $45.98 \AA$. D. Populations of sample 1 and 2 models in the clusters obtained by threshold-based clustering using the RMSD threshold of $45.98 \AA$. Cluster precision is shown for each cluster. E. and F. Results of test 4: comparison of localization probability densities of models from sample A and sample B for the major cluster (99.96% population). The cross-correlation of the density maps of the two samples is ~ 0.95.

E

F
XL Distances for ADH

Fig. S6 Results of crosslinks fit for MHR models CX-CIRCOS (http://cx-circos.net/) plots are shown for A. BS3DSS, B. DMTMM, and C. ADH crosslinks on the ensemble of MHR models from the major cluster. Each link depicts a crosslink; its color depicts the minimum distance between the corresponding cross-linked residues in the ensemble, as shown in the color key (top). Histograms showing the distribution of the minimum crosslink distance in the ensemble for D. BS3DSS, E. DMTMM, and F. ADH crosslinks. The red line indicates the distance threshold for a crosslink type.

$$
\text { Key: }-<10 \AA \longrightarrow<20 \AA \longrightarrow<30 \AA \longrightarrow<40 \AA \longrightarrow>40 \AA
$$

Fig. S7 Results of crosslinks fit for MTA1 ${ }^{\text {N-HDAC1-MBD3 }}{ }^{\text {GATAD2CC }}$ (MHM) models CX-CIRCOS (http://cx-circos.net/) plots are shown for A. BS3DSS, B. DMTMM, and C. ADH crosslinks on the ensemble of MHM models from the major cluster. Each link depicts a crosslink; its color depicts the minimum distance between the corresponding cross-linked residues in the ensemble, as shown in the color key (top). Histograms showing the distribution of the minimum crosslink distance in the ensemble for D. BS3DSS, E. DMTMM, and F. ADH crosslinks. The red line indicates the distance threshold for a crosslink type.

Fig. S8 Results of crosslinks fit for NuDe models CX-CIRCOS (http://cx-circos.net/) plots are shown for A. BS3DSS, B. DMTMM, and C. ADH crosslinks on the ensemble of NuDe models from the major cluster. Each link depicts a crosslink; its color depicts the minimum distance between the corresponding cross-linked residues in the ensemble, as shown in the color key (top). Histograms showing the distribution of the minimum crosslink distance in the ensemble for D. BS3DSS, E. DMTMM, and F. ADH crosslinks. The red line indicates the distance threshold for a crosslink type.

Fig. S9 Integrative model of the MHR complex based on crosslinks alone Representative bead model from the most populated cluster of analyzed integrative models for the MHR complex, colored by subunit. The two copies of MTA1 are shown in different colors (orange and brown) to illustrate the crossover.

Fig. S10 Integrative model of the MTA1 ${ }^{\text {N}}$-HDAC1-MBD3 ${ }^{\text {GATAD2CC }}$ complex with one copy of MBD3 Localization probability density maps showing the position of different domains in the ensemble of models from the major cluster, illustrating two different binding sites for MBD3 on the MTA1-HDAC1 dimer. The density maps were contoured at 30% (HDAC1 structured region), 5% ($\mathrm{HDAC} 1{ }^{\mathrm{C}}, \mathrm{MBD} 3$ and GATAD2 ${ }^{\mathrm{CC}}$), $20 \%\left(\mathrm{MTA}^{\mathrm{BAH}}\right.$ and MTA1 ${ }^{\mathrm{ELM2} 2 \text { SANT }}$), and $10 \% ~\left(\mathrm{MTA}^{\text {mid }}\right.$) of their respective maximum voxel values.

Fig. S11 Distance maps for protein interactions in NuDe. The distance maps show the average pairwise residue distances in the ensemble of NuDe models for the A. MBD3-MTA1, B. MBD3-HDAC1, and C. HDAC1-MTA1 protein pairs. For a pair of residues, the map indicates the distance between the surfaces of the corresponding beads averaged over the ensemble.

Fig. S12 Densities of RBBPs in MHR and NuDe. The localization probability densities for MTA1 $1^{\text {R1 }}-$ RBBP4 and MTA1 $1^{\text {R2 }}-$ RBBP4 in MHR (green) and NuDe (blue) are shown. The MHR model shows a broader localization of RBBPs (volume enclosed by the corresponding maps $=1120 \mathrm{~nm}^{3}$), compared to $\mathrm{NuDe}\left(\right.$ volume enclosed $\left.=883.6 \mathrm{~nm}^{3}\right)$. All maps were contoured at 10%.

Fig. S13 COSMIC mutations on the structured regions of NuDe complex Somatic, confirmed pathogenic, point mutations from the COSMIC database (Forbes et al., 2006) mapped onto regions with known structure in the NuDe integrative model shown in Fig. 4A. A. Regions with known atomic structure in the integrative model colored by subunit. B. Mutations on residues in regions of known structure, colored according to the legend.

Intrinsic disorder profile

Fig. S14 Disorder prediction for MBD3 PONDR ${ }^{\circledR}$ (http://www.pondr.com) (Romero et al., 2001, 1997) disorder prediction for MBD3.

Table S1. COSMIC Somatic, confirmed pathogenic point mutations from the COSMIC database [(Forbes et al., 2006)] mapped on the NuDe integrative model. A. Mutations in previously undescribed protein-protein interfaces in the model. Residues from two proteins are at an interface if the average distance between their corresponding bead surfaces is less than $10 \AA$ in the cluster of models. B. Mutations in exposed binding sites between modeled proteins and known binding partners, based on the representative NuDe model.
A. COSMIC mutations in previously undescribed protein-protein interfaces in NuDe

NuRD protein	Residues with mutations	Interacting partner in NuRD	Number of COSMIC mutations
MBD3	$\begin{aligned} & 68,78,80,85,87,98,103,107,138,148,150,236,260,271, \\ & 275 \end{aligned}$	MTA1 ${ }^{\text {BAH }}$	1-2
MTA1 ${ }^{\text {BAH }}$	15,24, 31, 46, 112, 153, 155, 158	MBD3	1-2
	12	MBD3	5+
MBD3	$2,7,12,14,19,31,39,41,43,45,55,65,68,78,80,85,87,98$, $103,107,111,125,130,138,148,150,236,240,243,250,260$, 271,275	HDAC1 ${ }^{60-100}$	1-2
	17,60, 112, 128, 246	HDAC1 ${ }^{60-100}$	3-4
HDAC1 1^{60-100}	61, 64, 69, 73, 80, 86, 94, 96	MBD3	1-2
	62	MBD3	3-4
HDAC1 ${ }^{\text {C }}$	411, 420, 423, 425, 431, 435, 447, 462	MTA1 ${ }^{\text {BAH }}$	1-2
MTA1 ${ }^{\text {BAH }}$	53, 60, 63, 153, 155, 158	HDAC1 ${ }^{\text {c }}$	1-2

B. COSMIC mutations in exposed binding sites to known interactors in NuDe

NuRD protein	Residues with mutations	Associated partner outside NuRD if known	Number of COSMIC mutations
RBBP4	$\begin{gathered} 39,45,71,75,128,321,376, \\ 396,398 \end{gathered}$	H3, FOG1/2, other ZF containing TFs [(Lejon et al., 2011; Liu et al., 2015; Moody et al., 2018; Schmidberger et al., 2016)	1-2
RBBP4	40,378	H3, FOG1/2, other ZF containing TFs [(Lejon et al., 2011; Liu et al., 2015; Moody et al., 2018; Schmidberger et al., 2016)	3-4
MTA1 ${ }^{\text {BAH }}$	46, 53, 153, 155, 158	Nucleosome (based on Sir3BAH PDB 3TU4 [6]), MAT1 [(Millard et al., 2014)]	1-2
MTA1 ${ }^{\text {mid }}$	$\begin{gathered} \hline 390,393,394,397,401,410, \\ 416,420,424 \end{gathered}$	MAT1 [(Mazumdar et al., 2001)]	1-2
MTA1 ${ }^{\text {mid }}$	406, 415	MAT1 [(Mazumdar et al., 2001)]	3-4
MTA1 ${ }^{\text {mid }}$	372	NRIF3 [(Talukder et al., 2004)]	5+
MTA1 ${ }^{\text {USR }}$	$\begin{gathered} 547,550,562,564,578,581, \\ 601,603,606,610,611,612, \\ 617,619,633,646,647,652, \\ 658,666 \end{gathered}$	MICoA [(Mishra et al., $2003)]$	1-2
MTA1 ${ }^{\text {USR }}$	549, 566, 571	$\begin{gathered} \text { MICoA [(Mishra et al., } \\ 2003)] \\ \hline \end{gathered}$	3-4
MTA1 ${ }^{\text {C }}$	697, 699, 705, 709, 715	$\begin{gathered} \hline \text { MICoA [(Mishra et al., } \\ 2003)] \\ \hline \end{gathered}$	1-2
HDAC1 active site	140, 150, 303	Histone tails, TFs [(Scafuri et al., 2020)]	1-2
MBD3 ${ }^{\text {IDR }}$	$\begin{gathered} 77,78,80,85,87,97,98 \\ 102,103,107 \end{gathered}$	Evil [(Spensberger \& Delwel, 2008)], [(Sakai et al., 2002)]	1-2

Movies

M1. MHR movie. The movie shows a sample of one thousand models from the ensemble of MHR integrative models.

M2. MHM movie. The movie shows a sample of one thousand models from the ensemble of MHM integrative models.

M3. NuDe movie. The movie shows a sample of one thousand models from the ensemble of NuDe integrative models.

References:

Armache, K.-J., Garlick, J. D., Canzio, D., Narlikar, G. J., \& Kingston, R. E. (2011). Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution. Science, 334(6058), 977-982. https://doi.org/10.1126/science. 1210915

Forbes, S., Clements, J., Dawson, E., Bamford, S., Webb, T., Dogan, A., Flanagan, A., Teague, J., Wooster, R., Futreal, P. A., \& Stratton, M. R. (2006). Cosmic 2005. British Journal of Cancer, 94(2), 318-322. https://doi.org/10.1038/sj.bjc. 6602928

Lejon, S., Thong, S. Y., Murthy, A., AlQarni, S., Murzina, N. V., Blobel, G. A., Laue, E. D., \& Mackay, J. P. (2011). Insights into Association of the NuRD Complex with FOG-1 from the Crystal Structure of an RbAp48•FOG-1 Complex *. Journal of Biological Chemistry, 286(2), 1196-1203. https://doi.org/10.1074/jbc.M110.195842

Liu, Z., Li, F., Zhang, B., Li, S., Wu, J., \& Shi, Y. (2015). Structural Basis of Plant Homeodomain Finger 6 (PHF6) Recognition by the Retinoblastoma Binding Protein 4 (RBBP4) Component of the Nucleosome Remodeling and Deacetylase (NuRD) Complex. Journal of Biological Chemistry, 290(10), 6630-6638. https://doi.org/10.1074/jbc.M114.610196

Mazumdar, A., Wang, R.-A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., Vadlamudi, R. K., \& Kumar, R. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30-37. https://doi.org/10.1038/35050532

Millard, C. J., Fairall, L., \& Schwabe, J. W. R. (2014). Towards an understanding of the structure and function of MTA1. Cancer and Metastasis Reviews, 33(4), 857-867. https://doi.org/10.1007/s10555-014-9513-5

Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., Li, F., Wang, R.-A., Yu, W., Jordan, V. C., Santen, R. J., \& Kumar, R. (2003). MICoA, a Novel Metastasis-associated Protein 1 (MTA1) Interacting Protein Coactivator, Regulates Estrogen Receptor- α Transactivation Functions*. Journal of Biological Chemistry, 278(21), 19209-19219. https://doi.org/10.1074/jbc.M301968200

Moody, R. R., Lo, M.-C., Meagher, J. L., Lin, C.-C., Stevers, N. O., Tinsley, S. L., Jung, I., Matvekas, A., Stuckey, J. A., \& Sun, D. (2018). Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. The Journal of Biological Chemistry, 293(6), 2125-2136.
https://doi.org/10.1074/jbc.M117.811463
Punjani, A., Rubinstein, J. L., Fleet, D. J., \& Brubaker, M. A. (2017). cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods, 14(3), 290-296. https://doi.org/10.1038/nmeth. 4169

Romero, P., Obradovic, Z., Kissinger, C., Villafranca, J. E., \& Dunker, A. K. (1997). Identifying disordered regions in proteins from amino acid sequence. Proceedings of International Conference on Neural Networks (ICNN'97), 1, 90-95 vol.1. https://doi.org/10.1109/ICNN.1997.611643

Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., \& Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins, 42(1), 38-48. https://doi.org/10.1002/1097-0134(20010101)42:1<38::aid-prot50>3.0.co;2-3

Sakai, H., Urano, T., Ookata, K., Kim, M.-H., Hirai, Y., Saito, M., Nojima, Y., \& Ishikawa, F. (2002). MBD3 and HDAC1, Two Components of the NuRD Complex, Are Localized at Aurora-A-positive Centrosomes in M Phase *. Journal of Biological Chemistry, 277(50), 48714-48723. https://doi.org/10.1074/jbc.M208461200

Scafuri, B., Bontempo, P., Altucci, L., De Masi, L., \& Facchiano, A. (2020). Molecular Docking Simulations on Histone Deacetylases (HDAC)-1 and -2 to Investigate the Flavone Binding. Biomedicines, 8(12). https://doi.org/10.3390/biomedicines8120568

Schmidberger, J. W., Tabar, M. S., Torrado, M., Silva, A. P. G., Landsberg, M. J., Brillault, L., AlQarni, S., Zeng, Y. C., Parker, B. L., Low, J. K. K., \& Mackay, J. P. (2016). The MTA1 subunit of the nucleosome remodeling and deacetylase complex can recruit two copies of RBBP4/7. Protein Science, 25(8), 1472-1482. https://doi.org/10.1002/pro. 2943

Spensberger, D., \& Delwel, R. (2008). A novel interaction between the proto-oncogene Evil and histone methyltransferases, SUV39H1 and G9a. FEBS Letters, 582(18), 2761-2767.
https://doi.org/10.1016/j.febslet.2008.06.056
Talukder, A. H., Gururaj, A., Mishra, S. K., Vadlamudi, R. K., \& Kumar, R. (2004). Metastasis-Associated Protein 1 Interacts with NRIF3, an Estrogen-Inducible Nuclear Receptor Coregulator. Molecular and Cellular Biology, 24(15), 6581-6591. https://doi.org/10.1128/MCB.24.15.6581-6591.2004

