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Abstract

Multiple recent studies have shown that motor activity greatly impacts the activity of primary

sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still

unclear.

Here we dissect how these behavior signals are broadcast to different layers and areas of the visual

cortex. To do so, we leveraged a standardized and spontaneous behavioral fidget event in passively

viewing mice. Importantly, this behavior event had no relevance to any ongoing task allowing us to

compare its neuronal correlate with visually relevant behavior like running.

A large two-photon Ca2+ imaging database of neuronal responses uncovered four neural response

types during fidgets that were surprisingly consistent in their proportion and response patterns

across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not

be decoded above chance level based only on neuronal recordings. In contrast to running behavior,

fidget evoked neural responses were independent to visual processing.

The broad availability of visually orthogonal standardized behavior signals could be a key

component in how the cortex selects, learns and binds local sensory information with motor outputs.

Contrary to relevant motor outputs, irrelevant motor signals would use a separate neural subspaces.
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Significance Statement

Recent studies have shown contextual and behavioral variables to dominate brain-wide activity, but

yet it is unknown how this information is broadcast across cortical layers and areas. Using a large

two-photon dataset collected in mice passively viewing a battery of visual stimuli, we characterized

the neuronal response of neurons of the visual cortex to a standardized fidget behavior. We found

that as much as 47% of excitatory neurons show significant co-activity with fidgets. Throughout all

areas and layers we recorded from, those responses were distributed across surprisingly consistent

three neural response types. Further analysis showed no interaction between fidget neural events

and cells’ visual stimulus responses, contrasting with feedback neural signals induced by running.

These contrasting response distribution patterns suggest that behavioral neuronal correlates are

broadly available but will modulate sensory responses depending on their relevance to local sensory

inputs.

Introduction

Traditionally, the sensory cortex has been modelled as a feed-forward structure where low level

information, e.g. pixel-wise visual inputs, are integrated with global behavior signals like motor

output downstream of the visual cortex29. Many principles of deep learning were inspired by this

view and fueled the modern rise of artificial networks. Indeed, initial reports of visual response

modulation in V1 show weak modulation by behavior in monkeys1. This result was experimentally

challenged in mice with the discovery of strong running modulation in V12 as well as across

multiple sensory areas3–6. In addition, it was demonstrated that non-visual events are not mere

modulators but can also directly evoke neuronal activity in V17. In fact, contextual and behavioral
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variables have recently been shown to largely dominate brain-wide activity8,9. This result brings into

question the role of these events. If the brain broadcasts behavior relevant variables like motor

outputs, this should allow each brain area to integrate this information into its computation5. As a

result, understanding the micro-circuit computation occurring across all cortical layers and cell

types in this context requires a detailed physiological characterization of the neuronal correlate of

motor outputs.

One approach to tackle this challenge is to monitor all potential behavior events and characterize all

associated neuronal correlates1. This is challenging since motor outputs, contrary to sensory stimuli,

are highly variable from trial to trial and hard to standardize and control. In addition, behavioral

events like running are correlated with a complex symphony of sensory-motor events, tangling

together feedforward visual and visually-relevant feedback signals. Running behaviors are also

inherently associated with visual motion, triggering visual predictions mismatch in head-fixed

mice7. Thus, to extract principles on the neuronal correlates of behavioral events, it is helpful to

investigate a non-visually relevant behavioral event. Here our goal is to characterize how a

standardized behavior output differently affects all areas, layers and cell types of the cortex in order

to provide foundational knowledge for modelling cortical computation. To achieve this goal, we

leveraged the natural occurrence of fidgets in experimental mice.

Fidgets are stereotypical behavioral responses that are potentially part of a stressful state10. They

manifest as a fast, spontaneous, startle response accompanied with stereotypical body chest

movements. We used fidgets detected in behavioral videos to quantify and compare the neuronal

correlates of standardized behavior events across all layers and most areas of the mouse visual

cortex. To this end, we leveraged a large survey of neuronal responses recorded with in vivo two

photon calcium imaging in the mouse visual cortex4. While the brain-wide impact of behavioral
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events is now established, our analysis revealed that neurons in three different cortical layers and

four visual areas have homogenous post-fidget neural responses. Fidget response profiles were

stereotypical and equally distributed among 4 response types. In addition, in contrast to running

behaviors, visually evoked neuronal responses showed no interaction with fidget neural events.

Results

Fidget as a standardized behavior output

We first sought to characterize the range of behavioral events that mice displayed under head

fixation. While we recorded neuronal activity in vivo using two photon imaging, mice were free to

run on a rotating disc while a camera captured mouse body posture (Fig. 1a-c). We observed a

variety of behaviors such as whisking, grooming, mastication, flailing (uncoordinated movement),

walking, running, and a startle behavior we denote as a “fidget”. Fidgets manifested as a

combination of abdominal flexion (causing the abdomen to be raised above the rotating disk) and an

upward force generated from the lower limbs causing lower trunk curvature and contraction (Fig.

1d). Fidgets were qualitatively stereotyped across mice in their duration, pattern of movement, and

motor response magnitude. Following this observation, we sought to develop a computer vision

model to automatically identify fidget events from hours of mice behavioral videos. Six human

annotators first established a training data set (20 mice, 10,000 fidgets manually annotated, see

Methods). We computed the Histograms of Oriented Gradients (HOGs) for each video frame and

concatenated a feature vector from a one second section of frames (30 frames) (Fig. 1e). HOGs are

transformation invariant visual features extracted using edge-detection-like computation. HOG

features are largely invariant to variation in lighting conditions and image transformations such as

translation, rotation, scale. This allows us to carry out robust behavioral feature detection as others

have firmly established28. Another advantage of using HOG vectors is the biologically inspired
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emphasis on interpretable edge detection computations and has been found to be superior to

Eigenfeature based face recognition models27.

Using this feature, we trained a Support Vector Machine (SVM) classifier in a supervised manner

using the human-annotated labels. Our final trained model had a recall performance of 74% +/- 4.2

(mean +/- std, n=7) and a precision performance of 78% +/- 5.3 (mean +/- std, n=7) for the seven

one-hour long experiments held out as a validation test-set. Our trained classifier was as accurate at

identifying fidgets and other mouse behaviors as human annotators. Indeed, seven pairs of

annotators analyzed the same videos and their annotations were compared head-to-head. Each video

was drawn from a seven video validation test-set. Head-to-head human vs. human performance

recall for the seven videos was 73% +/- 5.9 (mean +/- std, n=7) and had a performance precision

of 74% +/- 7.2 (mean +/- std, n=7); this was within the range of the model’s performance. Having

established a robust computer vision model, we automatically annotated 144 one-hour experiments

total (recall p = 0.51 , performance p = 0.26).

To quantify the standardization of fidget events across mice, we integrated the optical flow

magnitude of the fidget motor response (see Methods) over the duration of the fidget. 80% of all

fidget events from 20 one-hour experiments and across 20 unique mice fell within 30% of the

maximum magnitude; this consistency reaffirmed the stereotypy of fidget events (Fig. 1f).

Occurrence of fidget across mice and visual stimuli

We next sought to establish whether the occurrence of fidgets could relate to our visual stimuli.

Fidget behavior has been associated with stress and surprise responses in mice10,14-15. As described

in a previous publication4, mice passively viewed a range of both artificial (drifting and static

gratings, locally sparse noise) and natural visual stimuli (natural scenes and natural movies),
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organized into three different recording session (sessions A,B and C) (Fig. 2a). We hypothesized

that artificial visual stimuli (e.g. drifting gratings) induce a more stressful or surprising context than

natural stimuli that are more ethologically familiar to the mouse (e.g. natural movies). In particular,

the moving drifting gratings, through its perceived motion, evoke an innate avoidance response3. In

line with our prediction, the average normalized fidget rate was significantly higher during drifting

gratings (Fig. 2a, p = 0.023, two tailed t-test, n = 60) than other stimuli (Fig. 2b).

We found that fidget rate was highly variable across mice (see Supplementary Fig. 1), raising the

possibility that various mouse Cre-lines have different stress sensitivities, thus accounting for the

fidget rate variance. The absolute fidget rate did not significantly differ between mice from different

Cre-lines (ANOVA p-value = 0.14, n = 144). This result did not exclude that mice could be more

sensitive to individual stimuli. To account for variability across individual mice, we normalized the

change in fidget rate evoked during the session with drifting gratings (session A) by the fidget rate

during session C (Fig. 2c). Similarly to the absolute rate, we saw non-significant changes (ANOVA

p-value = 0.14, n = 144).

Previous research has shown that fidget behaviors can be learned10. Our passive viewing protocol

included two weeks of habituation to our visual stimuli (see Methods), suggesting we could have

reached a more stable state. To check whether the fidget occurrence we see is learned over the

course of our two-photon experiments, we quantified the average fidget rate across mice as a

function of the number of visual stimulation sessions the mouse has already seen. We found a

non-significant change in the fidget rate with an increased number of sessions experienced (Fig.

2d), supporting the claim that we are operating in a stable behavioral regime and that the mice are

adequately habituated (ANOVA p-value = 0.21, n = 144).
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In summary, we saw no significant difference in the fidget rate between Cre-lines but different

visual stimuli evoked different fidget rates. Importantly, there were no learning effects as mice were

already habituated to the stimulus. These results allowed us to explore the neuronal correlates of

fidgets across layers and areas of the visual cortex with two-photon calcium imaging.

Neuronal correlates of fidgets

We analyzed experiments where adult mice (90 +/- 15 days) expressed a genetically encoded

calcium sensor (GCaMP6f) under the control of specific Cre-line drivers (Rorb, Cux2, Rbp4 and

Scnn1a excitatory lines, see Methods). Data was collected from four visual cortical areas (VISal,

VISI, VISp, VISpm) and three different cortical layers (Layer II/III, layer IV, and layer V; 175 μm,

275 μm, and 375 μm depth respectively)2. In total, we analyzed the activity of 20,253 neurons

imaged during 144 one-hour imaging sessions. Visual responses of neurons at the retinotopic center

of gaze were recorded in response to drifting gratings, flashed static gratings, locally sparse noise,

natural scenes and natural movies displayed on a screen. The analysis of these visually evoked

responses was published previously2. Here we focused on the neuronal correlates associated with

fidgets and their overlap with a subset of visual stimuli.

Many neurons showed a robust and prolonged response after fidget onset, in line with multiple

previous studies studying the brain wide effects of motor responses2,8,16-17 (Fig. 3b). We first checked

that this large neural response was not due to motion artifacts caused by the fidget itself (See

Supplementary Figure 3). First, these calcium events were prolonged and delayed, a temporal

dynamic incompatible with an immediate motion artifact. In addition, many fidgets evoked clear

global events across large portions of the field of view with minimal movements of the 2p image

(see Supplementary Videos 1).
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To investigate the structure of these seemingly global neural events, we looked at individual neuron

responses across trials. Interestingly, neuronal responses fell into four distinct types based on the

direction, magnitude and durations of the response: Neutral neurons did not have activity changes

from pre-fidget to post-fidget, Phasic neurons displayed a transient increase of activity right after

fidget initiation, Active neurons maintained this increase throughout the post-fidget period, while

Depressed neurons displayed a decrease in activity post-fidget. These response patterns were stable

across trials for each neuron and displayed little deviation from the trial mean. Similar response

clusters have been identified previously18-20 (Fig. 3c).

Neuronal fidget responses across layers and areas are uniform

Although it is now established that behaviorally related neural events are evoked in the visual

cortex, we wanted to evaluate if these neural response types were localized to a certain layer or area

of visual cortex. To quantify how these response types were distributed, we first used a time series

k-means clustering algorithm (see Methods). Across all 144 experiments, we found a surprisingly

large portion of neurons whose activity was impacted by fidgets. 47.2 percent of neurons were

classified as active (12 %), phasic (13.9%) or depressed (21.3 %), and 52.8% as neutral. The

clustered activity profiles displayed high consistency within each layer and area (Fig. 3d), and the

clustering was able to generalize with high accuracy across layers and areas (Fig. 3e-f). Crucially,

when conditioned on different layers and areas, the distribution of neural response types was

surprisingly consistent, with around 47% of neurons on average being classified as active, phasic or

depressed (Fig. 3g-h). To verify our result was not impacted by a selection criteria on neurons to be

clustered, we applied several different criteria derived from previous publications23 to our clustered

neural data as a control. As expected, the percent of neurons significantly modulated in the post
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fidget period spans from ~8% to ~25% of all neurons depending on the strictness of the threshold

criteria. Crucially, the distribution of neural response types remained consistent when conditioned

on a threshold criteria for different layers and areas (See Supplementary Figure 4).

We next investigated whether layers or visual areas were differentially modulated by what could be

a behaviorally relevant feedback input. To do so, we projected each 200-dimensional post-fidget

neutral response (each time point being a feature) into a 2-dimensional subspace found using

UMAP, a non-linear dimensionality reduction technique26. If cortical layers or areas differed in

post-fidget response, we would expect to see distinct clusters of data points corresponding to each.

Instead we find that when labeled by layer or area identity, the data was mixed and could not be

visually separated---this implies that post-fidget responses did not differ between layer or area

(Supplementary Fig. 2). To validate that area or layer identity could not be distinguished based on

post-fidget neuronal responses with UMAP, we trained a random forest classifier based on the

UMAP-projected dataset using either the layer (175, 275, or 375 μm) or area as labels (VISp,

VISpm, VISal, VISl). If differences between post-fidget responses for each of these layer/area

classes exist, the model should achieve high classification accuracy. After training (see Method),

we found instead that the classifier had low performance for both area and layer on test data, with

comparable performance to the classifier trained on randomly permuted labels (Fig 3e and 3f).

Contrary to behaviors such as running, fidgets in passively viewing mice are non-relevant to vision.

We therefore hypothesized that fidget neuronal response would not affect visual responses as

opposed to running modulation. To do so, we compared the response of cells to different drifting

grating orientations and spatial frequencies during baseline condition with during fidget (see Fig 4a

for examples). We found that all 4 sub-types of fidget responsive cell were equally responsive to
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visual stimuli and their sensory tuning properties to drifting gratings (direction, orientation and

temporal frequency selectivity) were not significantly different. (Fig 4b-d, p=0.24, 0.30, 0.06, 0,16,

two-side t-test, comparing the response amplitude during fidget and baseline for active, phasic,

depressed and neutral sub-class respectively). When comparing visual stimuli during and outside of

fidget behaviors, the visually evoked responses were mostly identical (Fig 4e). This is in contrast to

a visually relevant behavior such as running, which significantly modulated visually evoked

responses as reported previously2,4 (Fig 4f).

Could a subset of the same cells be involved in behavior modulation in the visual cortex? To look at

this, we compared the Cohen's d of fidget (see Methods) and running evoked responses across the

four identified neuron response types. Cells that were running modulated (p=0.0002, 0.0004, 0.13,

0,0009, two-side t-test, comparing the response amplitude during running vs stationary for active,

phasic, depressed and neutral sub-class respectively) were in fact not modulated by fidget (p=0.24,

0.30, 0.06, 0.16, two-side t-test, comparing the response amplitude during running vs stationary for

active, phasic, depressed and neutral sub-class respectively) (see Fig 4g). In fact, among cells that

were significantly modulated by running, only 4% of them were also significantly modulated by

fidget.

In conclusion, our data supports that in passively viewing conditions, a behavioral event with no

visual relevance broadly impacts the visual cortex but does not modulate visual responses.

Discussion

Multiple recent studies have shown that motor activity greatly impacts the activity of not only the

motor cortex but primary sensory areas like V12,8,30. Given the rapid advance in brain-wide neuronal

recording21-22, there has been increasing concern related to the importance of monitoring behavioral
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activity to account for spontaneous brain-wide neuronal activity17. Using a large two-photon Ca2+

imaging dataset collected in mice passively viewing a battery of standardized visual stimuli, we

characterized the neuronal response of neurons of the visual cortex to fidgets, a single standardized

motor output analogous to a startle response. We found that 47% of neurons show significant

co-activity with fidgets throughout all areas and layers we recorded from. Previous studies in

behaving mice have shown that brain-wide activity is better accounted for by uninstructed motor

outputs than task driven signals9. Our study confirms the importance of taking into account motor

activity when analyzing neuronal data.

We here propose a complementary approach to uncovering the role of motor signals in primary

sensory areas. Many behavior tasks are associated with rich behavior outputs that can only be

properly captured with multiple video cameras8. Even with appropriate monitoring, the

dimensionality and variability of behavioral outputs make any interpretation more challenging. By

focusing our analysis on a single standardized behavior event, we could group together a large

number of behavioral trials, akin to visually-evoked stimulus trials. Closed-loop experimental

designs could prove instrumental to extend this approach, by pairing specific visual stimuli with

specific tracked behavioral events. Such an approach could allow a more direct analysis of how

motor output modulates visual inputs.

“Visual” fidgets were previously analyzed in relation to visual stimuli10. They observed an increase

of behavioral visual fidget response to gratings as supported here. Contrary to this study, all of our

analysis were conducted in a familiar sensory environment where all mice were habituated to

stimuli. We also included all fidgets in our subsequent analysis regardless of their timing with a
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visual stimulus. This allowed us to compare a large number of single cell responses to either fidgets

or visual stimuli, extending this previous characterization to a novel direction.

We found that excitatory neurons were responding with 3 distinct temporal profiles to fidgets.

Remarkably the proportion and responses of neurons in each class was maintained in all layers and

brain areas we looked at, and consequently we could not predict the location of our recording using

the response to fidget despite a large database to train our decoder on. This result suggests that

behavioral information is not only broadcasted broadly, but also homogeneously throughout the

cortical mantle. This result is to contrast with running modulation which typically impacts deeper

layers more strongly4. Our interpretation is that local sensory inputs shape local behavioral

representations depending on the causal overlap of those events. Future research could test whether

a visually conditioned behavioral event transitions from a broad modulation to be more specific to

certain visual areas during learning24,25. The broad availability of standardized behavior signals

could be a key component in how the cortex selects, learns and binds local sensory information with

relevant motor outputs.
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Fig. 1 | Detection of behavioral fidget during two photon imaging in freely-viewing mice. (a)
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Computer design of our apparatus to monitor the behavior of mice during head-fixation and

two-photon imaging. (b) Example two photon imaging field of view (400 μm x 400 μm)

showcasing neurons labeled with Gcamp6f. (c) Example video frame of mouse captured by the

body camera at 30Hz. (d) A pair of video frames showing the progression of a prototype fidget

behavior in time. (i) First, the mouse is stationary (ii) Then, during the initiation of the startle

response, the mouse stereotypically pushes its body up using its bottom paws while arching the

back and contracting the abdomen. (e) Computational strategy for detecting fidgets automatically.

(f) Cumulative probability sum of labelled fidget moment magnitude, showcasing the consistency of

the stereotyped behavior across experiments and mice. Fidget magnitude is calculated as the sum of

2D optical flow vectors throughout the fidget duration (see Methods for optical flow calculation).
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Fig. 2 | Fidget rate is correlated with visual stimulus type, but independent of a mouse

driver-line or session number. (a) (left) Standardized experimental design of sensory visual

stimuli. Six blocks of different stimuli were presented to mice and were distributed into three

separate protocols identified as Session A, Session B, and Session C (right). Normalized fidget rate

(black dots) for all three session types across all mice. Grey bars indicate 95% mean confidence

intervals. Color coded stimulus protocol with indicated durations (minutes) are aligned with the

time axis for all three session types. (b) Average normalized fidget rate across all mice during the

presentation of drifting grating visual stimulus in comparison to all other stimuli (p-value = 0.023).

(c) Comparison of the fidget rate ratio between different session types across cre-lines. No

significant effect was found (ANOVA, p-value = 0.14). (d) average percent of video frames labeled

as fidget vs. the number of experimental sessions a mouse has been exposed to, no significant

learning effect found  (ANOVA, p-value = 0.21).
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Fig. 3 | Neuronal fidget response types are distributed equally across visual cortical layers and

areas. (a) Example two photon imaging field of view (Cux2, 400 μm x 400 μm) showcasing all

neurons recorded in one session. Four unique neuronal response types are displayed by the four

neurons identified by colored circles. Scale bar = 100 μm. (b) The trial averaged z-scored activity of

all neurons from one experiment, aligned to the time of fidget initiation (0 seconds). (c) The activity

profiles of exemplary neurons showcasing the four types of neuronal responses identified using
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clustering (see Method). Top-left in grey: neutral, top-right in green: active, bottom-left in red:

phasic, bottom-right in blue: depressed. Colored points indicate the trial averaged z-scored activity,

shaded region indicate one standard deviation across trials for each time point. (d) All layer 2/3

neurons from all experiments clustered into the four neuronal response types outlined by color

coded borders (neutral: grey, depressed: blue, phasic: red, active: green). (e) Decoding of neural

response type using UMAP feature vector across cortical depths (see Method). Results suggest that

the neural response types cannot be differentiated across cortical depth (black bars: F1 score based

on neural data, orange dashed line: F1 score based on shuffled neural data) (f) Decoding of neural

response type using UMAP feature vector across cortical areas. Results suggest that the neural

response types cannot be differentiated across cortical area (black bars: F1 score based on neural

data, orange dashed line: F1 score based on shuffled neural data) (g) Percent distribution of

neuronal response types per cortical layer for all cortical areas. (h) percent distribution of the

neuronal response types per cortical area for all cortical layers.
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Fig. 4 | Contrary to running responses, neuronal fidget responses do not modulate visually

evoked activity. (a) Example visual evoked responses of a cell to drifting gratings during running,

fidgets, and resting conditions, shaded error bars indicate +/- SEM. (b) Normalized histograms of

the direction selectivity of the four cells types during the drifting gratings stimulus is plotted (c)
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same as (b) but for cells’ preferred drifting grating orientation (d) same as (b) but for cells’

preferred temporal frequency of drifting gratings (e) The mean trial ∆F/F during fidget is plotted

against non-fidget behavior for each cell during its preferred direction and temporal frequency of

the drifting grating stimulus. The best fitting linear regression line is plotted in orange. This metric

is plotted separately for all four cell types. (f) same as (d) but for running vs. stationary behaviors.

(g) The Cohen’s d metric for fidget is plotted against the Cohen’s d for running behavior for each

cell, across all four cell types.
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METHODS

Transgenic mice

All animal procedures were approved by the Institutional Animal Care and Use Committee

(IACUC) at the Allen Institute for Brain Science. Triple transgenic mice (Ai93, tTA, Cre) were

generated by first crossing Ai93 mice with Camk2a-tTA mice, which preferentially express tTA in

forebrain excitatory neurons. Double transgenic mice were then crossed with a Cre driver line to

generate mice in which GCaMP6f expression is induced in the specific populations of neurons that

express both Cre and tTA.

Rorb-IRES2-Cre;Cam2a-tTA;Ai93 (n=10) exhibit GCaMP6f in excitatory neurons in

cortical layer 4 (dense patches) and layers 5,6 (sparse). Cux2-CreERT2;Camk2a-tTA;Ai93 (n=16)

expression is regulated by the tamoxifen-inducible Cux2 promoter, induction of which results in

Cre-mediated expression of GCaMP6f predominantly in superficial cortical layers 2, 3 and 4.

Slc17a7-IRES2-Cre;Camk2a-tTA;Ai93 (n=2) is a pan-excitatory line and shows expression

throughout all cortical layers. Scnn1a-Tg3-Cre;Camk2a-tTA;Ai93 (n=5) exhibit GCaMP6f in

excitatory neurons in cortical layer 4 and in restricted areas within the cortex, in particular primary

sensory cortices. Nr5a1-Cre;Camk2a-tTA;Ai93 (n=1) exhibit GCaMP6f in excitatory neurons in

cortical layer 4. Rbp4-Cre;Camk2a-tTA;Ai93 (n=11) exhibit GCaMP6f in excitatory neurons in

cortical layer 5. Ntsr1-Cre_GN220;Ai148 (n=1) exhibit CaMP6f in excitatory corticothalamic

neurons in cortical layer 6.

Animal head-implants and cortical window implantation
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Transgenic mice expressing GCaMP6f were weaned and genotyped at ~p21, and surgery

was performed between p37 and p63. Surgical protocols were described in previous publications

associated with the two-photon datasets4.

Intrinsic imaging and mapping of the visual cortex

Retinotopic mapping was used to delineate functionally defined visual area boundaries and

enable targeting of the in vivo two-photon calcium imaging to retinotopically defined locations in

primary and secondary visual areas. Retinotopic mapping protocols were described in previous

publications associated with the two-photon datasets4.

In vivo two-photon chronic imaging

Calcium imaging was performed using a two-photon-imaging instrument, Nikon A1R MP+.

The Nikon system was adapted to provide space to accommodate the behavior apparatus). Laser

excitation was provided by a Ti:Sapphire laser (ChameleonVision – Coherent) at 910 nm.

Pre-compensation was set at ~10,000 fs2. Movies were recorded at 30Hz using resonant scanners

over a 400 μm field of view.

Mice were head-fixed on top of a rotating disk and free to walk at will. The disk was

covered with a layer of removable foam (Super-Resilient Foam, 86375K242, McMaster) to alleviate

motion-induced artifacts during imaging sessions.

An experiment container consisted of three imaging sessions (60 min each) at a given field

of view during which mice passively observed three different stimuli. The same location was

targeted for imaging on all three recording days to allow repeat comparison of the same neurons

across sessions. One imaging session was performed per day, for a maximum of 16 sessions for

each mouse.
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On the first day of imaging at a new field of view, the ISI targeting map was used to select

spatial coordinates. A comparison of surface vasculature patterns was used to verify the appropriate

location by imaging over a field of view of ~800 μm using epi-fluorescence and blue light

illumination. Once a cortical region was selected, the imaging objective was shrouded from stray

light from the stimulus screen using opaque black tape. In two-photon imaging mode, the desired

depth of imaging was set to record from a specific cortical depth. On subsequent imaging days, we

returned to the same location by matching (1) the pattern of vessels in epi-fluorescence with (2) the

pattern of vessels in two photon imaging and (3) the pattern of cellular labelling in two photon

imaging at the previously recorded location.

Calcium imaging data was collected at the four cortical depths of 175, 275, 350 and 375

micrometers. Throughout our analysis, data from the cortical depth of 175 micrometers were

classified as layer 2/3, 275 and 350 micrometers as layer 4, and 375 as layer 5.

More details on our imaging protocols are available in our previous publication4.

Visual stimulation

Visual stimuli were generated using custom scripts written in PsychoPy as described

previously4.

Visual stimuli included drifting gratings, static gratings, locally sparse noise, natural scenes

and natural movies. These stimuli were distributed across three ~60 minutes imaging sessions.

During session A the drifting gratings, natural movie one and natural movie three stimuli were

presented. During session B the static gratings, natural scenes, and natural movie were presented.

During session C the locally sparse noise, natural movie one and natural move two were presented.

In each session, the different stimuli were presented in segments of 5-13 minutes and interleaved
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with each other. In addition, at least 5 minutes of spontaneous activity were recorded in each

session.

Drifting Gratings. The total stimulus duration was 31.5 minutes. The stimulus consisted of a

full field drifting sinusoidal grating at a single spatial frequency (0.04 cycles/degree) and contrast

(80%). The grating was presented at 8 different directions (separated by 45°) and at 5 temporal

frequencies (1, 2, 4, 8, 15 Hz). Each grating was presented for 2 seconds, followed by 1 second of

mean luminance gray before the next grating. Each grating condition (direction & temporal

frequency combination) was presented 15 times, in a random order. There were blank sweeps (i.e.

mean luminance gray instead of grating) presented approximately once every 20 gratings. This

stimulus was used to measure the direction tuning, orientation tuning and temporal frequency tuning

of the cells.

Static Gratings. The total stimulus duration was 26 minutes. The stimulus consisted of a full

field static sinusoidal grating at a single contrast (80%). The grating was presented at 6 different

orientations (separated by 30°), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree),

and 4 phases (0, 0.25, 0.5, 0.75). The grating was presented for 0.25 seconds, with no inter-grating

gray period. Each grating condition (orientation, spatial frequency, and phase) was presented ~50

times in a random order. There were blank sweeps (i.e. mean luminance gray instead of grating)

presented roughly once every 25 gratings. This stimulus was used to measure the spatial frequency

tuning and the orientation tuning of the cells, providing a finer measurement of orientation than

provided from the drifting grating stimulus.

Locally Sparse Noise. Stimulus. The total stimulus duration was 37.5 minutes. The Locally

Sparse Noise stimulus consisted of a 16 x 28 array of pixels, each 4.65 degrees on a side. For each

frame of the stimulus (which was presented for 0.25 seconds), a small number of pixels were white,
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a small number were black, and the rest were mean gray. The white and black spots were distributed

such that no two spots were within 5 pixels of each other.

Natural Scenes. The stimulus consisted of 118 natural images. Images 1-58 were from the

Berkeley Segmentation Dataset, images 59-101 from the van Hateren Natural Image Dataset, and

images 102-118 are from the McGill Calibrated Colour Image Database. The images were presented

in grayscale and were contrast normalized and resized to 1174 x 918 pixels. The images were

presented for 0.25 seconds each, with no inter-image gray period. Each image was presented ~50

times, in random order, and there were blank sweeps (i.e. mean luminance gray instead of an image)

roughly once every 100 images.

Natural Movie. Three different clips were used from the opening scene of the movie Touch

of Evil (Welles, 1958). Natural Movie 1 and Natural Movie 2 were both 30 second clips while

Natural Movie 3 was a 120 second clip. All clips had been contrast-normalized and were presented

in grayscale at 30 fps. Each movie was presented 10 times in a row with no inter-trial gray period.

Behavioral monitoring

During calcium imaging experiments, eye movements and animal posture were recorded.

The left side of each mouse was imaged with the stimulation screen in the background to provide a

detailed record of the animal response to all stimuli. The eye facing the stimulus monitor (right eye)

was recorded using a custom IR imaging system. No pupillary reflex was evoked by any of these

illumination LEDs.

Eye tracking video hardware includes a camera (Allied Vision, Mako G-032B with GigE

interface) acquiring at a rate of 30 fps, with a 33ms exposure time and gain between 10-20. These

videos were illuminated using an LED (Engin Inc, LZ1-10R602) at a wavelength of 850 nm with a

fixed lens in front (Thorlabs, LB-1092-B-ML).
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Animal behavior monitoring hardware includes a camera (Allied Vision Mako G-032B with

GigE interface) with a 785 nm short pass filter (Semrock, BSP01-785R-25), and lens (Thorlabs

MVL8M23, 8mm EFL, f/1.4). The camera acquires at a rate of 30 fps, with a 33ms exposure time

and a set gain of 10. The short-pass filter is affixed to the camera to suppress any light from the eye

tracking LED. Illumination for the behavior monitoring camera comes from a 740 nm LED (LED

Engine Inc, LZ4, 40R308-000). A bandpass filter (747 +/- 33nm, Thorlabs, LB1092-B-ML) is

affixed in front of the illumination LED to prevent visible portion of the LED spectrum from

reaching the mouse eye.

Two-photon movies (512x512 pixels, 30Hz), eye tracking (30 Hz), and a side-view full body

camera (30 Hz) were recorded and continuously monitored.

Processing of two-photon calcium imaging movies

For each two-photon imaging session, the image processing pipeline performed: (1) spatial

or temporal calibration, (2) motion correction, (3) image normalization to minimize confounding

random variations between sessions, (4) segmentation of connected shapes and (5) classification of

soma-like shapes from remaining clutter.

The motion correction algorithm relied on phase correlation and only corrected for rigid

translational errors. Each movie was partitioned into 400 consecutive frame blocks, representing

13.3 s of video. Each block was registered iteratively to its own average three times. A second stage

of registration integrated the periodic average frames themselves into a single global average frame

through six additional iterations. The global average frame served as the reference image for the

final resampling of every raw frame in the video.
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Fluorescence movies were processed using a segmentation algorithm to identify somatic

regions of interest (ROIs) that was described previously2. Segmented ROIs were matched across

imaging sessions. For each ROI, events were detected from ∆F/F by using an L0-regularized

algorithm. For each neuron, we z-score ∆F/F trial activity and compute the mean z-scored response

of each neuron aligned to the time of fidget onset (0 seconds).

To determine the significance of neural activity modulation post-fidget, we apply several threshold

criteria to clustered neuronal activity. The threshold criteria were used in previous calcium imaging

literature, and here we present two that gave very different results: One criteria where the mean

∆F/F is larger than 6%, and one criteria where the maximum ∆F/F during the post-fidget period is

greater than 5%.

Behavioral Analysis

We use histogram of oriented gradients (HOG) descriptors as our model features due to their

invariance to position, rotation, scale, and changes to lighting between mice. Additionally, HOG

vectors have been shown to perform well in dynamic behavioral classification across different

individuals4.

Side-view full-body camera (30 Hz) videos were converted to grayscale, normalized using

power law compression before processing, and manually cropped to exclude background elements

including the screen and rotation disk. Cropping was done by a manual selection tool that

constructed a rectangle from four clicked points. Pixels outside this rectangle were cropped out. The

four points were systematically chosen in this order: upper-left as the eye of the mouse, lower-left as

the closest point on the running disk forming a line to the first chosen point that is parallel to the
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vertical axis, lower-right as the point forming a line to the second point that is parallel to the surface

of the running disk, and finally upper-right as the closest point intersecting the head-stage forming a

line to the third point that is parallel to the vertical axis. Histograms of Oriented Gradients (HOGs)

were then computed for each frame using the following parameters: 8 histogram orientation bins,

using square cells with a height of 32 pixels and 1 cell per block, and then dimensionality reduced

using principal component analysis (50 dimensions). The features were then concatenated in one

second blocks and fed into the model.

The training set of ~ 100,000 video frame labels was collected from six human annotators

who used a custom XML based tool. A radial basis function support vector machine (SVM) was

trained on the training set with a cross-entropy loss function (C and gamma parameters of the SVM

found using a grid search).

The normalized fidget rate was computed by subtracting the baseline fidget rate during

inter-stimulus grey stimulus presentation and dividing by the standard deviation of the fidget rate.

To estimate fidget magnitude, an optical flow measure was computed for each grayscale

cropped frame using python’s OpenCV Optical flow function. We used the Gunner’s Farneback

algorithm using Two-Frame Motion Estimation Based on Polynomial Expansion with a 30 pixels

kernel size. For each example, the optical flow measure was integrated over the duration of all

continuous frames labeled as fidget.

Fidget neuronal response analysis

Neural responses were aligned to the onset of the fidget behavior and cropped to keep 100 frames (~

3 seconds) preceding the initiation of the fidget and 200 frames (~ 6 seconds) post fidget initiation.
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Neural activity was normalized on a trial-by-trial basis by subtracting the mean activity of the 100

frames (~3 seconds) of baseline neural activity preceding the initiation of the fidget response and

dividing by the standard deviation of activity. Across trial z-scored neural activity was then

averaged to get the mean z-scored activity for each neuron.

Clustering of fidget neuronal responses

The mean z-scored activity for all neurons post-fidget was passed into the k-means++ clustering

algorithm with clustering evaluated using the gap statistic. The optimal number of clusters was

found to be four.

Analysis of visually evoked responses in the visual cortex along with their fidget and running

modulation

To compare visually evoked responses during fidget and non-fidget, we computed the mean ∆F/F

trial activity during frames annotated as fidget and non-fidget. Specifically, we only compute this

metric during cells’ preferred direction and temporal frequency tuning for the drifting gratings

stimulus, defined as the stimulus parameters which elicit the largest mean response.

To investigate whether there is an interaction between fidget and running modulation, we computed

a Fidget Cohen’s d metric defined as:

where is the mean ∆F/F during fidget, is the mean ∆F/F during non-fidget and s is the norm of𝑥1 𝑥2

the standard deviation of ∆F/F during fidget and non-fidget. We then computed the running Cohen's
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d metric same as above but for running vs. stationary behavior. For each cell, we then plotted the

fidget and running Cohen's d against each other per individual cell, and computed a covariance that

indicates whether cell’s that were highly modulated by fidget were also highly modulated by

running.

UMAP and Random Forest Classification

To search for any differences between fidget neural responses across different cortical layers and

visual areas we took 200 frames (~ 6 seconds) of each neuron’s normalized average post fidget

activity and passed them into a nonlinear dimensionality reduction method, UMAP. In Python, we

used the umap package (umap 0.4.0rc3, hyperparameters min_dist = 0.0 and n_neighbors = 200) to

project the dataset into a 2-dimensional embedding to elicit any differences in the data. The

embedded data points were then passed into a random forest classifier. An 85-15 train-test split was

used along with 5-fold cross-validation with XGBoost (xgboost 1.2.0) and Scikit-Learn (sklearn

0.23.2). A grid hyperparameter search was used to optimize the classifier. To counter

class-imbalance in the training and test sets, each class was randomly subsampled down to the count

of the least prevalent class in the set. After training, F1-scores ( ; TP, FP, and𝐹1 = 𝑇𝑃
𝑇𝑃+0.5*(𝐹𝑃+𝐹𝑁)

FN are true positives, false positives, and false negatives respectively) were estimated for each

class.

Statistical tests

Multiple comparisons were corrected using the Benjamini–Hochberg false discovery rate

framework (q < 0.05), and all statistical tests in the study were two-tailed, two-sample

Kolmogorov–Smirnov tests.
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Data availability

The behavioral data that support the findings of this study are available from the corresponding

authors upon request.
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