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One Sentence Summary:  We used single cell transcriptomics to create a molecularly 

defined phenotypic reference of human cell types which spans 24 human tissues and 

organs. 

  

 

Abstract: (~125 words) Molecular characterization of cell types using single cell 

transcriptome sequencing is revolutionizing cell biology and enabling new insights into 

the physiology of human organs.  While most work has focused on specific organs, 

there is a need for a reference which enables comparisons of cell types between organs 

and tissues.  We present a human single cell transcriptomic atlas comprising nearly 

500,000 cells from 24 different tissues and organs, many from the same donor. This 

allows us to control for individual variation and enables characterization of more than 

400 cell types, their distribution across tissues and tissue specific variation in gene 

expression.  From this we identify the clonal distribution of T cells between tissues, the 

tissue specific mutation rate in B cells, and analyze the cell cycle state and proliferative 

potential of shared cell types across tissues. Finally, we characterize cell type specific 

RNA splicing and how such splicing varies across tissues within an individual.  
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Main Text: 

Introduction 

Although the genome is often called the blueprint of an organism, it is perhaps more 

accurate to describe it as a parts list composed of the various genes which may or may 

not be used in the different cell types of a multicellular organism. Despite the fact that 

nearly every cell in the body has the same genome, each cell type makes different use 

of that genome and expresses a subset of all possible genes (1). Therefore, the 

genome in and of itself does not provide an understanding of the molecular complexity 

of the various cell types of that organism. This has motivated efforts to characterize the 

molecular composition of various cell types within humans and multiple model 

organisms, both by transcriptional (2) and proteomic (3, 4) approaches. 

 

While such efforts are yielding insights and producing data (5–7), one caveat to current 

approaches is that individual organs are often collected at different locations, from 

different donors (8) and processed using different protocols, or lack replicate data (9). 

Controlled comparisons of cell types between different tissues and organs are 

especially difficult when donors differ in genetic background, age, environmental 

exposure, and epigenetic effects. To address this, we developed an approach to 

analyzing large numbers of organs from the same individual (10), which we originally 

used to characterize age-related changes in gene expression in various cell types in the 

mouse (11).   
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Data Collection and Cell Type Representation 

We collected multiple tissues from individual human donors (designated TSP 1-15) and 

performed coordinated single cell transcriptome analysis on live cells (12). We collected 

17 tissues from one donor, 14 tissues from a second donor, and 5 tissues from two 

other donors (Fig. 1). We also collected smaller numbers of tissues from a further 11 

donors, which enabled us to analyze biological replicates for nearly all tissues. The 

donors comprise a range of ethnicities, are balanced by gender, have a mean age of 51 

years and a variety of medical backgrounds (table S1).  Tissues were processed 

consistently across all donors. Fresh tissues were collected from consented brain-dead 

transplant donors through an organ procurement organization (OPO) and transported 

immediately to tissue experts where each tissue was dissociated.  For some tissues the 

dissociated cells were purified into compartment-level batches (immune, stromal, 

epithelial and endothelial) and then recombined into balanced cell suspensions in order 

to enhance sensitivity for rare cell types (12). 

 

Single cell transcriptome sequencing was performed with both FACS sorted cells in well 

plates with smartseq2 amplification as well as 10x microfluidic droplet capture and 

amplification for each tissue (fig. S1).  The raw data was processed to remove low 

quality cells, projected into a lower-dimensional latent space using scVI (13), and 

visualized with UMAP (14) (fig. S2). Next, the tissue experts used cellxgene (15) to 

annotate the cells that could be confidently identified by marker gene expression (12). 

These annotations were verified through a combination of automated annotation (16) 
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and manual inspection (12). A defined Cell Ontology terminology was used to make the 

annotations consistent across the different tissues (17), leading to a total of 475 distinct 

cell types with reference transcriptome profiles (tables S2, S3). The full dataset can be 

explored online with the cellxgene tool via a data portal located at (18). 

 

Data was collected for bladder, blood, bone marrow, eye, fat, heart, kidney, large 

intestine, liver, lung, lymph node, mammary, muscle, pancreas, prostate, salivary gland, 

skin, small intestine, spleen, thymus, tongue, trachea, uterus and vasculature. 59 

separate specimens in total were collected, processed, and analyzed, and 481,120 cells 

passed QC filtering (figs. S3-S7 and table S2). On a per compartment basis, the 

dataset includes 264,009 immune cells, 102,580 epithelial cells, 32,701 endothelial cells 

and 81,529 stromal cells. Working with live cells as opposed to isolated nuclei ensured 

that the dataset includes all mRNA transcripts within the cell, including transcripts that 

have been processed by the cell’s splicing machinery, thereby enabling insight into 

variation in alternative splicing.  

 

For several of the tissues we also performed literature searches and collected tables of 

prior knowledge of cell type identity and abundance within those tissues (table S4). We 

compared literature values with our experimentally observed frequencies for three well 

annotated tissues: lung, muscle and bladder (fig. S8). We observed surprisingly good 

correspondence in these frequencies, especially considering that the single cell data 

was obtained on dissociated tissues and that some compartments were enriched.  

Dissociation is known to alter the representation of various cell types and generally to 
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increase the representation of immune cell types at the expense of others.  The 

balancing process used on some tissues creates another distortion to absolute 

representation, but not to the extent that the compartments become completely 

equalized and thus some aspects of the original representation statistics are preserved. 

 

To further characterize the relationship between transcriptome data and conventional 

histologic analysis of tissue, a team of trained pathologists analyzed H&E stained 

sections prepared from 9 tissues from donor TSP2 and 13 tissues from donor TSP14 

(18). Cells were identified by morphology and classified broadly into epithelial, 

endothelial, immune and stromal compartments, as well as rarely detected peripheral 

nervous system (PNS) cell types. In some cases, finer cell type classification was also 

performed. An example of such cellular and compartmental identification is illustrated in 

the case of the distal small intestine (Fig. 2A). These classifications were used to 

estimate the relative abundances of cell types across four compartments, as well as to 

the uncertainties in these abundances due to spatial heterogeneity of each tissue type 

(Fig. 2B, fig. S9). We compared the histologically determined abundances with those 

obtained by single cell sequencing (fig. S10).  Although, as expected, there can be 

substantial variation between the abundances determined by these methods, in 

aggregate we observe broad concordance over a large range of tissues and relative 

abundances. This approach enables an estimate of true cell type proportions for organs 

where the compartments were purified, and more generally in every organ since not 

every cell type survives dissociation with equal efficiency (19). The histology images of 

the tissue are available as part of the online data portal (18). 
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Immune Cells: Variation in Gene Expression Across Tissues and a Shared 

Lineage History 

The Tabula Sapiens can be used to study subtle differences in the gene expression 

programs and lineage histories of cell types that are shared across tissues. Importantly, 

these analyses were performed after correcting counts for potential ambient mRNA 

contamination and dissociation artifacts (12), which would otherwise result in the 

detection of differentially expressed genes (DEGs) that are specific to a tissue rather 

than to the cell type of interest. We first examined immune cells, which are born in one 

niche, circulate through the body, and home into other niches where they stay over time 

scales ranging from minutes to years.  We identified tissue-specific gene expression 

features for most immune cell ontology classes via classical DEG analysis.  

 

Here we focus on the signatures of tissue similarity and differences in the 36,475 

macrophages distributed amongst 20 tissues, as tissue-resident macrophages are 

known to carry out specialized functions in different tissues and under different 

conditions. These shared and orthogonal signatures are summarized in a correlation 

map (fig. S11A). For example, macrophages in the spleen were different from most 

other macrophages, and this was driven largely by higher expression of CD5L (fig. 

S11B). We also observed a shared signature of elevated EREG expression in solid 

tissues such as the skin, uterus and mammary compared with EREG expression in 

circulatory tissues (fig. S11B).  
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Macrophages likely secrete abnormal levels of EREG during cancer-progression and 

facilitate the tumor micro-environment (20), but secretion of such factors also has a role 

in the homeostatic maintenance of tissues (21). We observed an antimicrobial 

phenotype of macrophage in the lung and lymph node characterized by CHIT1 

expression (fig. S11B). Interestingly, macrophages in the lymph nodes co-expressed 

CHIT1 and CTSK, while CTSK was largely not expressed in the lung (fig. S11B). Like 

EREG, CTSK is thought to have roles in cancer metastasis as well as normal tissue 

regulation and these data provide insight into tissue-specific specializations and 

functional differences of macrophages (22, 23).  

 

To characterize the lineage relationships between T cells in organs we performed 

computational assembly of the T cell receptor sequence from T cells sequenced via 

Smartseq2 from donor TSP2.  Multiple T cell lineages were distributed across various 

tissues in the body, and we mapped their relationships (Fig. 3A). Large clones were 

often found to reside in multiple organs, and several clones of Mucosal Associated 

Invariant T cells were shared across donors; we identified these cells by their 

characteristic expression of TRAV1-2  as they are thought to be innate-like effector cells 

(24). 

 

Lineage information can also be used to measure the level of tissue-specific somatic 

hyper-mutation in B cells.  We computationally assembled the B Cell Receptor (BCR) 

gene from Smartseq2 data from donor TSP2 and then inferred the germline ancestor of 

each cell.  The mutational load varies dramatically by tissue of residence, with blood 
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have the lowest mutational load compared to all of the solid tissues (fig. S11D); in 

quantitative terms solid tissues have an order of magnitude more mutations per 

nucleotide (mean=0.076, s.d.=0.026) compared to the blood (0.0069), suggesting that 

the immune infiltrates of solid tissues are dominated by mature B cells. 

 

B cells also undergo class-switch recombination which diversifies the humoral immune 

response by using constant region genes with distinct roles in immunity. We classified 

every B cell in the dataset as IgA, IgG, or IgM expressing and then calculated the 

relative amounts of each cellular isotype in each tissue (Fig. 3B, table S5). Secretory 

IgA is known to interact with pathogens and commensals at the mucosae, IgG is often 

involved in direct neutralization of pathogens, and IgM is typically expressed in naive B 

cells or secreted in first response to pathogens. Consistent with these functions, our 

analysis revealed opposing gradients of prevalence of IgA and IgM expressing B cells 

across the tissues with blood having the lowest relative abundance of IgA producing 

cells and the large intestine having the highest relative abundance, and the converse for 

IgM expressing B cells (Fig. 3B). 

 

Endothelial Cells Subtypes with Tissue-Specific Gene Expression Programs 

As another example application of using the Tabula Sapiens to analyze shared cell 

types across organs, we focused on endothelial cells (ECs). These cells line the surface 

of blood vessels and together form a conduit allowing for inter-tissue communication, 

oxygen, nutrient and waste exchange, and tissue-level homeostasis. While ECs are 

widely categorized as a single cell type, they exhibit differences in morphology, 
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structure, immunomodulatory and metabolic phenotypes depending on their tissue of 

origin. Here, we discovered that tissue-specificity is also reflected in their 

transcriptomes, as ECs mainly cluster by tissue-of-origin (table S6). UMAP analysis 

(fig. S12A) revealed that lung, heart, uterus, liver, pancreas, fat and muscle ECs 

exhibited the most distinct transcriptional signatures, reflecting their highly specialized 

roles. These distributions were conserved across donors (fig. S12B).  

 

Interestingly, ECs from the thymus, vasculature, prostate, and eye were similarly 

distributed across several clusters, suggesting not only similarity in transcriptional 

profiles but in their sources of heterogeneity. Differential gene expression analysis 

between ECs of these 16 tissues revealed several canonical and previously 

undescribed tissue-specific vascular markers (Fig. 3C). These data recapitulate tissue-

specific vascular markers such as LCN1 (tear lipocalin) in the eye, ABCG2 (transporter 

at the blood-testis barrier) in the prostate, and OIT3 (oncoprotein induced transcript 3) in 

the liver. Of the potential novel markers determined by this analysis, SLC14A1 (solute 

carrier family 14 member 1) appears to be a new specific marker for endothelial cells in 

the heart, whose expression was independently validated with data from the Human 

Protein Atlas (25) (fig. S13). Vascular-bed specific genes could provide further insight 

into tissue-specific homeostatic mechanisms, as well as allow for EC tissue-specificity 

to be deconvolved in experiments like flow cytometry.  

 

Notably, lung ECs formed two distinct populations, which is in line with the aerocyte 

(aCap- EDNRB+) and general capillary (gCap - PLVAP+) cells described in the mouse 
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and human lung (26) (fig. S12 C,D). The transcriptional profile of gCaps were also more 

similar to ECs from other tissues, indicative of their general vascular functions in 

contrast to the more specialized aCap populations. Lastly, we detected two distinct 

populations of ECs in the muscle, including a MSX1+ population with strong angiogenic 

and endothelial cell proliferation signatures, and a CYP1B1+ population enriched in 

metabolic genes, suggesting the presence of functional specialization in the muscle 

vasculature (fig. S12 E,F). 

 

Alternative Splice Variants are Cell Type Specific 

The Tabula Sapiens can also be used to understand cell type specific usage of 

alternative splicing. The GRCH38 RefSeq genome annotation contains 37,344 genes 

with multiple annotated exons, 21,923 of which have multiple annotated transcripts, 

totaling 169,061 splice variants derived from 328,603 possible splice junctions (27). Yet 

the function of alternative splicing and the extent to which regulation is cell type specific 

remains largely unexplored. We used SICILIAN (28), a statistical method that removes 

false positive spliced alignments due to technical artifacts, to identify splice junctions in 

the Tabula Sapiens corpus. Among other statistical filters, SICILIAN requires each 

called junction to have at least two supporting reads and has an estimated false positive 

rate of 2.8%. 

 

SICILIAN detected a total of 955,785 junctions (fig. S14A-E, table S7).  Of these, 

217,855 were previously annotated, and thus our data provides independent validation 

of 61% of the total junctions catalogued in the entire RefSeq database. Although 
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annotated junctions made up only 22.8% of the unique junctions, they represent 93% of 

total reads, indicating that previously annotated junctions tend to be expressed at higher 

levels than novel junctions. We additionally found 34,624 novel junctions between 

previously annotated 3’ and 5’ splice sites (3.6%). We also identified 119,276 junctions 

between a previously annotated site and a novel site in the gene (12.4%). This leaves 

584,030 putative junctions for which both splice sites were previously unannotated, i.e. 

about 61% of the total detected junctions. Most of these have at least one end in a 

known gene (94.7%), while the remainder represent potential new splice variants from 

unannotated regions (5.3%). In the absence of independent validation, we 

conservatively characterized all of the unannotated splices as putative novel junctions. 

We then used the GTEx database (29) to seek independent corroborating evidence of 

these putative novel junctions, and found that reads corresponding to nearly one third of 

these novel junctions can be found within GTEx data (table S7); this corresponds to 

more than 300,000 new validated splice variants revealed by the Tabula Sapiens.  

 

Hundreds of splice variants are used in a highly cell-type specific fashion; these can be 

explored in the cellxgene browser (18) which uses a statistical approach for detecting 

cell-type-specific splicing called the SpliZ (30). Here we focus on two examples of cell 

type specific usage of two well studied genes: MYL6 and CD47. Both genes are 

ubiquitously expressed yet are highly regulated in single cells at the level of splicing 

(Fig. 4).  Similar cell-type specific splice usage was also observed with TPM1, TPM2, 

and ATP5F1C, three other genes with well-characterized splice variants (fig. S15). 
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MYL6 is an “essential light chain” (ELC) for myosin (as opposed to Ca2+-sensitive 

“regulatory light chains” (RLCs) such as calmodulin), and is highly expressed in all 

tissues and compartments. Yet, splicing of MYL6, in particular involving the 

inclusion/exclusion of exon 6 (Fig. 4A) varies in a cell-type and compartment-specific 

manner (Fig. 4B). The two isoforms differ by 5 amino acids in the C-terminal helix, 

which is in close contact with the myosin lever arm; some studies suggest that the -

exon6 isoform confers on myosin a faster shortening velocity (31). While the -exon6 

isoform has previously been mainly described in phasic smooth muscle (32), the Tabula 

Sapiens atlas shows that it can also be the predominant isoform in non-smooth-muscle 

cell types. Our analysis establishes pervasive regulation of MYL6 splicing in many cell 

types, such as endothelial and immune cells. Further, these previously unknown 

compartment-specific expression patterns of the two MYL6 isoforms are reproduced in 

multiple individuals from the Tabula Sapiens dataset (Fig. 4A,B) and using both 10X 

and Smart-Seq2 sequencing technologies. 

 

As another example, CD47 is a multi-spanning membrane protein involved in many 

cellular processes, including angiogenesis, cell migration, and as a “don’t eat me” signal 

to macrophages (33). Targeting the latter function has been promising for treating some 

myeloid malignancies (34).  CD47 has complex splicing patterns that include alternative 

inclusion of at least 4 different exons immediately adjacent to the signaling domain 

ending at the 3’ splice splice site at exon 11 (fig. S14F). Differential use of exons 7-10 

(Fig. 4C and fig. S14F) compose a variably long cytoplasmic tail (35). Immune cells – 

but also stromal and endothelial cells – have a distinct, consistent splicing pattern in 
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CD47 that dominantly excludes two proximal exons and splicing directly to exon 8. In 

contrast to other compartments, epithelial cells exhibit a different splicing pattern that 

increases the length of the cytoplasmic tail by splicing more commonly to exon 9 and 

exon 10 (Fig. 4D). Characterization of the splicing programs of CD47 in single cells may 

have implications for understanding the differential signaling activities of CD47 and for 

understanding potentially therapeutic manipulation of CD47 function.  

 

Cell State Dynamics Can Be Inferred From A Single Time Point 

Although the Tabula Sapiens was created from a single moment in time for each donor, 

it is possible to infer various forms of dynamic information about the cells from the data.  

For example, one of the most important transient changes of internal cell state is cell 

division. We computed a cycling index for each cell type across all organs to identify 

actively proliferating versus quiescent or post-mitotic cell states.  This index was derived 

on the basis of the log ratio of the number of cycling to non-cycling cells for each cell 

type, determined by high confidence cell cycle markers for G1-M phases (G1/S 

markers: CEP57, CDCA7L; S markers: ABHD10, CCDC14, CDKN2AIP, NT5DC1, 

SVIP, PTAR1; G2 makers: ANKRD36C, YEATS4,  DCTPP1; G2/M markers: SMC4, 

TMPO, LMNB1, HINT3; M markers: HMG20B, HMGB3, HPS4) to indicate cycling and 

G0 phase markers (CDKN1A, CDKN1B, CDKN1C) for non-cycling (12).   

 

We observed that rapidly dividing progenitor cells had among the highest cycling 

indices, while cell types mostly from the endothelial and stromal compartments, which 

are known to be largely quiescent, had low cycling indices (Fig. 5A). In intestinal tissue, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.07.19.452956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

transient amplifying cells and the crypt stem cells divide rapidly in the intestinal crypts to 

give rise to terminally differentiated cell types of the villi (36). These cells were ranked 

with the highest cycling indices whereas terminally differentiated cell types such as the 

goblet cells had the lowest ranks (fig. S16A). To complement the computational 

analysis of cell cycling, we performed immunostaining of intestinal tissue for MKI67 

protein (commonly referred to as Ki-67) and confirmed that transient amplifying cells 

abundantly express this proliferation marker (fig. S16B,C), supporting that this marker 

is differentially expressed in the G2/M cluster.  

 

We observed several interesting tissue-specific differences in cell cycling. To illustrate 

one example, UMAP clustering of macrophages showed tissue-specific clustering of this 

cell type, and that blood, bone marrow, and lung macrophages have the highest cycling 

indices compared to macrophages found in the bladder, skin, and muscle (fig. S16D-

G). Consistent with this finding, the expression values of CDK-inhibitors (in particular 

the gene CDKN1A), which block the cell cycle, have the lowest overall expression in 

macrophages from tissues with high cycling indices (fig. S16F).  

 

As a further example of how the Tabula Sapiens can be used to reveal cell state 

dynamics, we used RNA velocity (37) to study trans-differentiation of bladder 

mesenchymal cells to myofibroblasts (Fig. 5B). This process is important for tissue 

remodeling and healing, and if left unchecked can result in fibrosis. Myofibroblasts 

produce different components of the ECM such as collagen and fibronectin. RNA 

velocity captures the ratio of unspliced to spliced RNA on a per-gene basis, and thus 
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provides temporal information (37, 38). RNA velocities across many genes are used to 

infer a latent temporal axis on which cells undergoing a dynamic process such as 

differentiation can be ordered on. The inferred transitions on this temporal axis as 

bladder mesenchymal cells transdifferentiate to myofibroblasts are shown. Latent time 

analysis, which provides an estimate of each cell’s internal clock using RNA velocity 

trajectories (39), correctly identified the direction of differentiation without requiring 

specification of root cells (Fig. 5C). Similar trajectories were found across multiple 

donors. Finally, the ordering of cells as a function of latent time shows clustering of the 

mesenchymal and myofibroblast gene expression programs for the most dynamically 

expressed genes (Fig. 5D). Among these genes, ACTN1 (Alpha Actinin 1) – a key actin 

crosslinking protein that stabilizes cytoskeleton-membrane interactions (40) – increases 

across the mesenchymal to myofibroblast trans-differentiation trajectory (fig. S16H).  

Another gene with a similar trajectory is MYLK (myosin light-chain kinase), which also 

rises as myofibroblasts attain more muscle-like properties (41). Finally, a random 

sampling of the most dynamic genes shared across TSP1 and TSP2 demonstrated that 

they share concordant trajectories and revealed some of the core genes in the 

transcriptional program underlying this trans-differentiation event within the bladder (fig. 

S16I). 

 

Unexpected Spatial Variation in the Microbiome  

Imbalances in the interactions between the gut microbiome and the host immune 

system impact are linked to many region-specific intestinal diseases (42, 43), and stool 

is not necessarily representative of the spatially distinct microbial (44) and immune (45) 
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niches throughout the intestinal tract. Despite its importance, the spatial heterogeneity 

of the microbiome remains understudied and largely unknown. The Tabula Sapiens 

provided an opportunity to densely and directly sample the human microbiome 

throughout the gastrointestinal tract. The intestines from donors TSP2 and TSP14 were 

sectioned into five regions: the duodenum, jejunum, ileum, and ascending and sigmoid 

colon (Fig. 6A). Each section was transected, and three to nine samples of ~1 g of 

digesta were collected from each location using an inoculating loop (23 samples in total 

from TSP2 and 30 samples from TSP14). 

 

The taxonomic composition of the microbiome was characterized by amplifying the 16S 

rRNA gene from all samples. Uniformly there was a high (~10-30%) relative abundance 

of Proteobacteria, particularly Enterobacteriaceae (Fig. 6B), even in the colon. 

Enterobacteriaceae are rarely found at such high abundance in stool, hence this high 

relative abundance may be due to the postmortem state of the donor. Most samples 

within the sigmoid and ascending colon were similar to each other, although the relative 

abundances of the Proteobacteria phylum and Lachnospiraceae family were variable in 

the sigmoid colon. By contrast, samples from each of the duodenum, jejunum, and 

ileum were largely distinct from one another, with samples exhibiting individual patterns 

of blooming or absence of certain families (Fig. 6B). These data reveal that the 

microbiota is patchy even at a 3-inch length scale. We observed similar heterogeneity in 

the spatial pattern of TSP2’s microbiome (fig. S17A-C).  
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In the small intestine, richness (number of observed species) was also variable, and 

was negatively correlated with the relative abundance of Burkholderiaceae (Fig. 6C); in 

TSP2, the Proteobacteria phylum was dominated by Enterobacteriaceae, which was 

present at >30% in all samples at a level negatively correlated with richness (fig. S17A-

C). Shannon diversity largely mimicked the number of observed species (Fig. 6D). In a 

comparison of species from adjacent regions across the gut, a large fraction of species 

was unique to each region (Fig. 6E), reflecting the patchiness. The average number of 

unique ASVs (a proxy for species) in each sample was 41.4±21.1 for the five regions of 

TSP14, and within each location, samples in the duodenum, jejunum, and ileum 

exhibited 1.83±1.6, 8.5±4.4, and 11.4±6.9 unique ASVs, respectively, compared with 

18.2±8.2 and 16.2±7.9 for the ascending and sigmoid colon, respectively. These 

numbers indicate that ~25% of the ASVs in each sample were unique when comparing 

to other samples from the same region. For TSP2, somewhat higher fractions of unique 

ASVs were observed in the small intestine and very few ASVs were unique to the colon 

(both in comparisons across regions and within each region, fig. S17D), indicating 

greater patchiness in the SI of this donor. 

 

To compare our findings to existing fecal microbiome data, we analyzed the prevalence 

of each of the 601 ASVs detected across all TSP14 samples to a set of stool samples 

collected from healthy individuals in a separate study. Of the 1193 ASVs detected in the 

stool samples, only 31 were also found in TSP14 samples, of which 7 were specific to 

the small intestine, 9 were specific to the colon, and 15 were found in both the small and 

large intestine. The 31 ASVs were typically found in only a few of the stool samples 
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(4.0±3.5), highlighting the unique aspect of the ASVs that we observed in the small 

intestine. 

 

We analyzed host immune cells in conjunction with the spatial microbiome data; UMAP 

clustering analysis revealed that the small intestine T cell pool from TSP14 contained a 

population with distinct transcriptomes (Fig. 6F). The most significant transcriptional 

differences in T cells between the small and large intestine were genes associated with 

trafficking, survival, and activation (Fig. 6G, table S8). For example, expression of the 

long non-coding RNA MALAT1, which impacts the regulatory function of T cells, and 

CCR9, which mediates T lymphocyte development and migration to the intestine (46), 

were high only in the small intestine, while GPR15 (colonic T cell trafficking), 

SELENBP1 (selenium transporter), ANXA1 (repressor of inflammation in T cells), 

KLRC2 (T cell lectin), CD24 (T cell survival), GDF15 (T cell inhibitor), and RARRES2 (T 

cell chemokine) exhibited much higher expression in the large intestine. Within the 

epithelial cells, we observed distinct transcriptomes between small and large intestine 

Paneth cells and between small and large intestine enterocytes, while there was some 

degree of overlap for each of the two cell types for either location (fig. S17E,F). The 

site-specific composition of the microbiome in the intestine, paired with distinct T cell 

populations at each site helps to define local host-microbe interactions that occur in the 

GI tract and is likely reflective of a gradient of physiological conditions that influence 

host-microbe dynamics. 

 

Conclusion 
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The Tabula Sapiens is unique in being constructed from live cells from multiple-organ 

donors and including biological replicates from more than one donor. It is part of a 

growing set of data which when analyzed together will enable many interesting 

comparisons of both a biological and a technical nature.  For example, choosing a 

particular cell type and studying it across organs, datasets, and species will yield new 

biological insights – as was demonstrated recently with fibroblasts (47). As another 

example, one can compare gene expression in fetal human cell types (48) to those 

determined here in adults to glean insight into the effects of aging and the loss of 

plasticity from early development to maturity. Many of these datasets were created with 

different technical approaches and having data from cell types shared across many 

organs may facilitate the development of normalization methods to compare such 

diverse data – and also may enable better understanding of technical artifacts 

introduced by the various approaches (8, 9, 49, 50).  The Tabula Sapiens has enabled 

several discoveries relating to shared behavior or subtle organ specific differences 

across a number of cell types. For example, we found specific T cell clones which are 

shared between organs, and characterized organ dependent hypermutation rates 

amongst B cells. Cell types which are shared across tissues often show subtle but clear 

differences in gene expression, as we found with both endothelial cells and 

macrophages.   We found an unexpectedly large and diverse amount of cell-type 

specific RNA splice variant usage, and discovered and validated many new splices. 

Finally, we performed direct spatial characterization of microbiome diversity and related 

that to gene expression in resident immune cells. These are but a few examples of how 

the Tabula Sapiens represents a broadly useful reference to understand and explore 
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human biology deeply at cellular resolution. We expect that, similar to the human 

genome project, over time the release of updated versions of Tabula Sapiens will 

incorporate data from additional donors and include further refinements in the cell type 

annotations. 

 

 

Brief synopsis of methods  

Fresh whole non-transplantable organs, or 1-2cm2 organ samples, were obtained from 

surgery and then transported on ice by courier as rapidly as possible to individual tissue 

expert labs where they were immediately prepared for transcriptome sequencing. When 

available, a 1-2 cm2 sample was preserved in Formalin for histological analysis. For 

each organ/tissue, single-cell suspensions were prepared for 10x Genomics 3’ V3.1 

droplet-based sequencing and for FACS sorted 384-well plate Smart-seq2. Preparation 

began with dissection, digestion with enzymes and physical manipulation; the details of 

which are tissue specific and explained in the methods supplement (12). To detect as 

many cell types as possible, the cell suspensions from some organs were normalized 

by major cell compartment (epithelial, endothelial, immune, and stromal) using antibody-

labelled magnetic microbeads to enrich rare cell types. cDNA and sequencing libraries 

were prepared and run on the Illumina NovaSeq 6000 with the goal to obtain 10,000 

droplet-based cells and 1000 plate-based cells for each organ. Sequences were de-

multiplexed and aligned to the GRCh38 reference genome. Gene count tables were 

generated with CellRanger (droplet samples), or STAR and HTSEQ (plate samples). 

Cells with low UMI counts and low gene counts were removed. Droplet cells were 
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filtered to remove barcode-hopping events and filtered for ambient RNA using DecontX. 

Sequencing batches were harmonized using scVI and projected to 2-D space with 

UMAP for analysis by the tissue experts. Expert annotation was made through the 

cellxgene browser and regularized with a public cell ontology. Annotation was manually 

QC checked and cross-validated with PopV, an annotation tool, which employs seven 

different automated annotation methods. 

For complete methods, see supplementary materials (12). 
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Figure Legends: 

 

Figure 1. Overview of Tabula Sapiens. The Tabula Sapiens was constructed with 

data from 15 human donors; for detailed information on which tissues were examined 

for each donor please refer to table S2.  Demographic and clinical information about 

each donor is listed in the supplement and in table S1.  Donors 1, 2, 7 and 14 

contributed the largest number of tissues each, and the number of cells from each 

tissue is indicated by the size of each circle. Tissue contributions from additional donors 

who contributed single or small numbers of tissues are shown in the “Additional donors” 

column, and the total number of cells for each organ are shown in the final column. 

 

Figure 2. Comparison of single cell transcriptomics with conventional  

histology. Clinical pathology was performed on nine tissues from donors TSP2 and 

TSP13.  A. Hematoxylin and eosin (H&E) stained image used for histology of the colon 

from TSP2, with compartments (solid, colored lines) and individual cell types (dashed 

black ellipses) identified by the pathologists. B. Coarse cell type representation of TSP2 

as morphologically estimated by pathologists across several tissues, ordered by 

increasing heterogeneity of the tissue. Compartment colors are consistent between 

panels A and B.  

 

Figure 3. Analysis of immune and endothelial cell types shared across tissues. A. 

Illustration of clonal distribution of T cells across multiple tissues. The majority of T cell 

clones are found in multiple tissues and represent a variety of T cell subtypes. B. 
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Prevalence of B cell isotypes across tissues, ordered by decreasing abundance of IgA.  

C. Expression level of tissue specific endothelial markers, shown as violin plots, in the 

entire dataset. Many of the markers are highly tissue specific, and typically derived from 

multiple donors as follows: bladder (3 donors), eye (2), fat (2), heart (1), liver (2), lung 

(3), mammary (1), muscle (4), pancreas (2), prostate (2), salivary gland (2), skin (2), 

thymus (2), tongue (2), uterus (1) and vasculature (2). A detailed donor-tissue 

breakdown is available in table S2. 

  

Figure 4. Alternative splicing analysis. A,B. The sixth exon in MYL6 is skipped at 

different proportions in different compartments. Cells in the immune and epithelial 

compartments tend to skip the exon, whereas cells in the endothelial and stromal 

compartments tend to include the exon. Boxes are grouped by compartment and 

colored by tissue. The fraction of junctional reads that include exon 6 was calculated for 

each cell with more than 10 reads mapping to the exon skipping event. Only shared cell 

types with more than 10 cells with spliced reads mapping to MYL6 are shown. 

Horizontal box plots in B show the distribution of exon inclusion in each cell type (point 

outside of 1.5*IQR are plotted individually). C,D. Alternative splicing in CD47 involves 

one 5’ splice site (exon 11, 108,047,292) and four 3’ splice sites. Horizontal box plots in 

D show the distribution of weighted averages of alternative 3’ splice sites (based on 

read counts and using exon numbers) in each cell type. Epithelial cells tend to use 

closer exons to the 5' splice site   compared to immune and stromal cells. Boxes are 

grouped by compartment and colored by tissue. The average splice site rank was 

calculated for each cell with more than one read corresponding to the splice site. Only 
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shared cell types with more than 5 cells with spliced reads mapping to CD47 are shown. 

Both genes were found significant (controlled FDR< 0.05) by the SpliZ analysis (30). 

 

Figure 5. Dynamic changes in cell state. A. Cell types ordered by magnitude of cell 

cycling index, per donor (each a separate color) with the most highly proliferative at the 

top and quiescent cells at the bottom of the list. B. RNA velocity analysis demonstrating 

mesenchymal to myofibroblast transition in the bladder. The arrows represent a flow 

derived from the ratio of unspliced to spliced transcripts which in turn predicts dynamic 

changes in cell identity. C,D. Latent time analysis of the mesenchymal to myofibroblast 

transition in the bladder demonstrating stereotyped changes in gene expression 

trajectory. 

 

Figure 6. High-resolution view highlights patchiness of the gut microbiome. A. 

Schematic (left) and photo of the colon from donor TSP2 (right), with numbers 1-5 

representing microbiota sampling locations. B-D. Relative abundances (B) and richness 

(number of observed species, C) at the family level in each sampling location, as 

determined by 16S rRNA sequencing. The Shannon diversity (D), a metric of evenness, 

mimics richness. Variability in relative abundance and/or richness/Shannon diversity 

was higher in the duodenum, jejunum, and ileum as compared with the ascending and 

sigmoid colon. E. A Sankey diagram showing the inflow and outflow of microbial species 

from each section of the gastrointestinal tract. The stacked bar for each gastrointestinal 

section represents the number of observed species in each family as the union of all 

sampling locations for that section. The stacked bar flowing out represents 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2021. ; https://doi.org/10.1101/2021.07.19.452956doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42

gastrointestinal species not found in the subsequent section and the stacked bar flowing 

into each gastrointestinal section represents the species not found in the previous 

section. F. UMAP clustering of T cells reveals distinct transcriptome profiles in the distal 

and proximal small and large intestines. G. Dots in volcano plot highlight genes up-

regulated in the large (left) and small (right) intestines. Labeled dots include genes with 

known roles in trafficking, survival, and activation. 
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Supplementary Material 
 

Materials and Methods 
Figs. S1 to S16 
Tables S1 to S9 
References (51-84) 
 

Resources 

Data portal for Tabula Sapiens (18) 
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