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Abstract:  

Single cell RNA Sequencing (scRNA-seq) has rapidly gained popularity over the last few years 

for profiling the transcriptomes of thousands to millions of single cells. To date, there are more 

than a thousand software packages that have been developed to analyse scRNA-seq data. These 

focus predominantly on visualization, dimensionality reduction and cell type identification. 

Single cell technology is now being used to analyse experiments with complex designs including 

biological replication. One question that can be asked from single cell experiments which has not 

been possible to address with bulk RNA-seq data is whether the cell type proportions are 

different between two or more experimental conditions. As well as gene expression changes, the 

relative depletion or enrichment of a particular cell type can be the functional consequence of 

disease or treatment. However, cell type proportions estimates from scRNA-seq data are variable 

and statistical methods that can correctly account for different sources of variability are needed 

to confidently identify statistically significant shifts in cell type composition between 

experimental conditions. We present propeller, a robust and flexible method that leverages 

biological replication to find statistically significant differences in cell type proportions between 

groups. The propeller method is publicly available in the open source speckle R package 

(https://github.com/Oshlack/speckle). 
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1. Introduction 

Single cell RNA-sequencing (scRNA-seq) technology has led to breakthroughs in the discovery 

of novel cell types and enhanced our understanding of the development of complex tissues. As 

the technology has matured it has become relatively straightforward to profile the transcriptomes 

of hundreds of thousands of cells, resulting in valuable insight into the composition of tissues. 

  

While many of the first published single cell papers focused on defining the resident cell types in 

complex tissues1–4, the field is now using this technology for complex experimental comparisons 

with biological replication5–8. While experiments with different conditions and multiple 

biological samples can be costly, substantial savings can be made by pooling cells from multiple 

samples. If samples are genetically diverse, they can be demultiplexed using genetic 

information9,10. An alternative approach is to use molecular cell multiplexing protocols, some of 

which are now commercially available, e.g. CellPlex from 10x Genomics. Collectively, cell 

multiplexing makes designing larger scRNA-seq experiments more feasible.  

 

While the first step in analysis for a scRNA-seq experiment with multiple experimental 

conditions and biological replicates is to identify the cell types present in each sample, 

downstream analysis requires sophisticated tools to address specific hypotheses about how a 

perturbation affects the biological system. Two analysis tasks are commonly performed 

following cell type identification in order to understand the effect of the condition. One task is to 

find genes that are differentially expressed between groups of samples, for every cell type 

observed in the experiment, similar to the analysis of bulk RNA-seq experiments11. However, a 

benefit of scRNA-seq data is that we have additional information on the composition of the 

samples. The relative change in abundance of a cell type can be a consequence of disease or 

treatment. Due to technical as well as biological sources, the cell type proportions estimates can 

be quite variable. The focus of this work is to find statistically significant differences in cell type 

proportions between groups of samples that appropriately takes into account sample-to-sample 

variability. Here we present propeller, a robust and flexible linear modelling based solution to 

test for differences in cell type proportions between experimental conditions. Our propeller 

method is publicly available in the speckle R package (https://github.com/Oshlack/speckle). 
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2. Methods 

Propeller is a function in the speckle R package that uses cell level annotation information to 

calculate sample level cell type proportions, followed by data transformation and statistical 

testing for each cell type. Propeller leverages biological replication to estimate the high sample-

to-sample variability in cell type counts often observed in real single cell data (Figure 1a). While 

the variability in cell type proportions estimates between samples can be due to technical sources 

such as variation in dissociation protocols, there may be valid biological reasons for variations. 

For example, blood cell type composition is known to change with age12. Taking into account 

sample-to-sample variability when analysing differences in cell type proportions is critical as 

observed cell type variances are far greater than variances estimated under a binomial or Poisson 

distribution, which can only account for sampling variation (Figure 1b). 

 

The first step of propeller is to calculate the cell type proportions for each sample which can be 

derived from a Seurat or SingleCellExperiment object. This results in a matrix of proportions 

where the rows are the cell types and the columns are the samples.  The binomial distribution has 

the property that proportions close to 0 and 1 have small variance, and values close to 0.5 have 

large variance i.e. the variances are heteroskedastic. To overcome this, we have implemented 

two transformations in propeller: (1) arcsin square root transformation, and (2) logit 

transformation. While the arcsin square root transformation is not as effective at stabilising 

variances as the logit transformation, it will always produce a real value. If the logit 

transformation is selected an offset of 0.5 is added to the raw cell type counts matrix prior to 

transformation. 

 

Next we test whether the transformed proportions for every cell type are significantly different 

between two or more experimental conditions. If there are exactly two groups, we perform 

moderated t-tests; if there are more than two groups, we perform moderated ANOVA tests13. 

These tests are moderated using an empirical Bayes framework, allowing information to be 

borrowed across cell types to stabilise the cell type specific variance estimates. This is 

particularly effective when the number of biological replicates is small, currently a common 

situation in scRNA-seq experiments. The final step in propeller is to calculate false discovery 

rates14 to account for testing across multiple cell types. The output of propeller consists of 
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condition specific proportions estimates, p-values and false discovery rates for every cell type 

observed in the experiment.  

 

The minimal annotation information that propeller requires for each cell is cluster/cell type, 

sample and group/condition, which can be automatically extracted from Seurat and 

SingleCellExperiment class objects. More complex experimental designs can be accommodated 

using the propeller.ttest and propeller.anova functions.  

 

3. Simulating cell type counts data 

We simulated cell type counts from a beta-binomial distribution. The parameters α and β of the 

beta distribution were estimated from real data (Figure 1a, heart single nuclei RNA-seq) using 

the estimateBetaParamsFromCounts function available in speckle. We compared the 

performance of propeller to other commonly used statistical models for analysing differences in 

proportions that can take into account biological variability15–19. A dataset with two groups of 

five samples and seven cell types of varying abundance was simulated resembling the heart 

single nuclei RNA-seq (snRNA-seq) dataset. Three cell types change proportions between the 

two groups by 2-3 fold, while the remaining four cell types do not. Across 1,000 simulated 

datasets, we found that the power to detect true differences in proportions was strongly 

influenced by cell type abundance (Figure 1c). Methods based on the negative binomial 

distribution had reduced power to detect changes in cell types with larger abundances, while 

propeller with arcsin square root transform had reduced power to detect differences in cell types 

that were relatively rare. Propeller with logit transform and the beta-binomial model performed 

comparably well across the range of cell type abundances. 

 

4. Application to real single cell datasets 

Complex experimental designs can be modelled using the propeller functions. In order to 

demonstrate the types of experimental designs that can be accommodated, we applied propeller  

to three different scRNA-seq datasets:  

1. 20 PBMC samples across young and old male and female samples6. We modelled age 

and sex as categorical variables. 
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2. 9 human heart biopsy samples across development (fetal, young, adult)5. We modelled 

development as a continuous variable and sex as a categorical variable. 

3. 13 bronchoalveolar lavage fluid immune cell samples across three groups (healthy 

controls, moderate and severe COVID-19 infection)20. We modelled disease status as a 

categorical variable and performed an ANOVA to find cell type differences between the 

three groups. 

 

Figure 1d-f shows examples of statistically significant cell types for the three different datasets 

and models using propeller with a logit transformation. In the study of the immune system 

landscape, CD8 naive cells are depleted in old samples compared to young, taking sex into 

account (Figure 1d). Across healthy human heart development, the relative proportion of 

cardiomyocytes decline with age (Figure 1e). In a study of moderate and severe COVID-19, we 

find neutrophils are significantly different between healthy controls and moderate and severe  

bronchoalveolar lavage samples from COVID-19 patients (Figure 1f). These studies highlight the 

different types of analysis that can be performed using the propeller functions. 

 

5. Conclusions 

Propeller is a method for testing for differences in cell type proportions from single cell data. It 

takes account of sample-to-sample variability, which is large due to both technical and biological 

sources. Features of propeller include: 

● Easy implementation suitable for novices and experienced users 

● Data extraction from Seurat and SingleCellExperiment class objects 

● Options for different transformations of proportions 

● Ability to model complex experimental designs, including mixed effects models 

● Empirical Bayes variance estimation 

● Interpretable output 

● Plotting functions for cell type counts and cell type proportion dispersion estimates 

● Extensive user guide in the form of a vignette 
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Figure 1. Analysing cell type proportions from single cell RNA-seq data with propeller. a. Barplot 

showing high levels of variability of cell type proportion estimates between nine samples in a human 

heart development snRNA-seq dataset. b. Mean-variance relationship for 27 cell types in 12 healthy 

PBMC scRNA-seq samples showing that cell type counts are over-dispersed. The plot is produced using 

the plotCellTypeMeanVar function in the speckle package. c. Heatmap showing the proportion of 

simulated datasets with p-value < 0.05 for each of the seven cell types for each of the 5 methods. For the 

true positives, dark red indicates greater power to detect significant cell type differences between two 

groups (proportion is high). For the true negatives, dark blue indicates good false discovery rate control 

(proportion is low). The methods tested are propeller with arcsin square root transform, propeller with 

logit transform, beta-binomial regression, negative binomial regression and quasi-likelihood negative 

binomial regression. d. There is a statistically significant difference in the proportions of CD8 naive cells 

between young and old PBMC samples, taking sex into account. e. Treating developmental stage as a 

continuous variable, the cardiomyocyte populations show a relative decline across development in human 

heart samples. f. Neutrophils are statistically significantly different between healthy control, moderate and 

severe COVID-19 bronchoalveolar lavage samples.  
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