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Abstract  24 

Individual and environmental health outcomes are frequently linked to changes in the diversity of 25 
associated microbial communities. This makes deriving health indicators based on microbiome 26 
diversity measures essential.  27 
 28 
While microbiome data generated using high throughput 16S rRNA marker gene surveys are 29 
appealing for this purpose, 16S surveys also generate a plethora of spurious microbial taxa. When 30 
this artificial inflation in the observed number of taxa (i.e., richness, a diversity measure) is 31 
ignored, we find that changes in the abundance of detected taxa confound current methods for 32 
inferring differences in richness.  33 
 34 
Here we argue that the evidence of our own experiments, theory guided exploratory data analyses 35 
and existing literature, support the conclusion that most sub-genus discoveries are spurious 36 
artifacts of clustering 16S sequencing reads. We proceed based on this finding to model a 16S 37 
survey's systematic patterns of sub-genus taxa generation as a function of genus abundance to 38 
derive a robust control for false taxa accumulation.  39 
 40 
Such controls unlock classical regression approaches for highly flexible differential richness 41 
inference at various levels of the surveyed microbial assemblage: from sample groups to specific 42 
taxa collections. The proposed methodology for differential richness inference is available through 43 
an R package, Prokounter.  44 
 45 
Package availability: https://github.com/mskb01/prokounter  46 
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1. Introduction  47 

Clinically relevant health outcomes are often accompanied by changes in the diversity of 48 
associated microbial communities. For instance, decreased gut microbiome diversity 49 
accompanies childhood diarrhea1, enteric infections2, and has been shown to predict the onset of 50 
infant type I diabetes3. Distinct intra-tumoral microbial diversity levels are associated with cancer 51 
sub-types4–6. Thus, inferring disease associated changes in microbiome diversity metrics is useful 52 
for characterizing disease pathology and progression. 53 

Among the various diversity measures, richness quantifies the number of taxonomic groups in a 54 
community7,8. Changes in species richness of biological communities have informed key 55 
environmental management practices that are relevant to public health and well-being7–23. Of the 56 
technologies available for characterizing microbial communities, 16S rRNA gene surveys are 57 
widely adopted for their high throughput and low cost. As a broad screening tool, they largely 58 
avoid the need for laborious culturing of microbes. This makes them especially attractive for 59 
deriving health metrics based on the microbiome.  60 

In this work, we focus on inferring changes in richness of microbial communities between sample 61 
groups (i.e., differential richness) with 16S survey data. 62 

To infer differential richness, one first estimates richness for the specific communities of interest 63 
in each survey sample. The estimated values are then compared between sample groups with 64 
either fixed or mixed effects models, or with non-parametric statistical tests, possibly adjusting for 65 
sampling effort24–27. There are two types of sample-level estimates of richness. Observed richness 66 
refers to the number of taxa observed in a sample. Asymptotic richness is obtained by adding an 67 
estimate of the number of unobserved taxa to the number of observed taxa. Approaches to 68 
estimate asymptotic richness vary, but often assume that relatively uncommon taxa are the most 69 
informative28. Both types of richness estimates enable valid comparisons among macro-70 
ecological communities24,25,28–30.  71 

However, direct application of the aforementioned richness estimates and comparisons to 16S 72 
microbiome data would ignore the plethora of uncommon and spurious taxa that inflate observed 73 
richness estimates in 16S survey data27,31–34. When this artificial inflation in observed richness is 74 
ignored, we find that differential abundance of detected taxa confounds current methods for 75 
differential richness inference. The problem is severe when between-sample richness 76 
comparisons are made at lower taxonomic levels, e.g., genus. Thus, direct application of classical 77 
methods to microbiome differential richness inference is unreliable.  78 

Attempts to overcome sequencing noise have been made. Chiu & Chao35, noting that singleton 79 
taxa are highly susceptible to sequencing noise, establish an improved estimator for undetected 80 
richness by relying on more abundant taxa (also see Willis36). However, the estimator is often 81 
numerically undefined at lower levels of the taxonomy, and still takes observed richness at face 82 
value.  83 

Our results indicate that the observed frequencies of spurious taxa are determined by the output 84 
abundances of input sequences, and thus need not be restricted to singleton frequencies alone. 85 
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We therefore aimed to develop a flexible differential richness inference procedure for 16S 86 
microbiome surveys — one that would not only allow investigators to seek sample-wide richness 87 
changes across experimental groups (as is commonly done in modern metagenomics), but also 88 
within genera or taxa collections of any particular interest, while accounting for false taxa 89 
accumulations.  90 

The paper is divided into several sections. Section 2.1, based on our own experiments and 91 
exploratory data analyses guided by theory, presents multiple lines of evidence supporting the 92 
view that most sub-genus taxa currently identified in 16S surveys are spurious. This allows us to 93 
exploit within-genus taxa accumulation data to derive a robust control for false taxa accumulations 94 
(Methods section). Section 2.2 illustrates the confounded differential richness inferences arising 95 
from current methods, when detected taxa exhibit a net non-zero relative abundance fold change 96 
between sample-groups. Section 2.3 applies the proposed procedure (Prokounter) to a variety of 97 
datasets and illustrates the value that differential richness inferences at lower taxonomic levels 98 
add to clinical and public health related microbiome data analyses. For example, application of 99 
Prokounter to a gut microbiome survey of a traveling individual2 identifies invading genera with 100 
increased richness in member taxa, during and after an enteric infection.   101 
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2. Results 102 

2.1 Most sub-genus taxa in 16S surveys are likely technical artifacts 103 

16S surveys reconstruct target microbial populations by clustering sequencing reads. Spurious 104 
microbial taxa occur when the clustering procedure’s error model fails to capture the entirety of 105 
sequence variation induced by the technical steps in 16S sequencing. These steps include, but 106 
are not limited to, PCR amplification of 16S material and sequencing (Fig. 1A). 107 

To identify the major parameters underlying false taxa accumulations, we mathematically model 108 
the nucleotide substitution errors introduced by a chain of PCR amplification and sequencing 109 
processes allowing for back mutations (Supplementary Note 1). Under reasonable assumptions, 110 
we find that the rate of falsely classifying an error variant of a source sequence (type I error) using 111 
a priori fixed sequence similarity thresholds, strongly increases with the source sequence’s 112 
recovered (i.e., output) abundance. The average recovered abundance is multiplicative in the 113 
source sequence’s apparent input abundance and the total sampling depth (Supplementary Note 114 
1). Thus, false sequence clustering decisions, and hence the resulting false clusters, increasingly 115 
accumulate with the true source sequence’s recovered abundance, and not necessarily sample 116 
depth. We therefore identify a mechanism through which spurious clusters of sequences are 117 
increasingly identified as microbial taxa, regardless of the underlying biological reality.  118 

Given the empirical observation that 16S genetic segments are mostly limited in resolution to 119 
prokaryotic genera37–44, we explored within-genus taxa accumulations (i.e., the number of 120 
detected sub-genus taxa as a function of recovered genus abundances), in several publicly 121 
available 16S surveys.  In general, we expect genera to vary in their true richness and the relative 122 
abundances of member taxa. This must accordingly induce biological variation in the genus-123 
specific taxa accumulation patterns. However, this expectation did not broadly hold in the several 124 
microbiome surveys analyzed here. Within-genus taxa accumulation patterns were highly 125 
concordant for several genera within study (Fig. 2A, Fig. S1-S3). Relative to the number of 126 
detected genera, which ranged from 60-400 across studies, a clustering analysis indicates that 127 
within-genus taxa accumulation data supports only 2-8 distinct accumulation patterns in each 128 
study (Table. S1). Multiple dominant genera can be clustered to the same accumulation pattern. 129 
In addition, relative to study specific covariates, a robust trend estimate of the within-genus taxa 130 
accumulation data explains the bulk of the variation in genus-specific and sample-wide taxa 131 
accumulations (Tables 1-2) in each study. Similar qualitative conclusions follow when genus 132 
recovered abundance is used as a predictor, instead of an estimated trend (Tables S2-S3). 133 
Finally, these qualitative and quantitative attributes of the accumulation patterns were obtained 134 
regardless of the 16S clustering approach used (Tables 1-2). These results indicate a strong 135 
within-study regularity in observed taxa accumulations across genera and sample groups - as if 136 
most genera have similar taxa richness and evenness -  suggesting a likely technical origin.  137 

Single colony experiment To further verify these conclusions, we conducted a 16S sequencing 138 
experiment on a target Pseudomonas aeruginosa population. The experimental sample was by 139 
itself overnight derived from a single P. aeruginosa colony (Supplementary Note 1). In a series of 140 
experimental samples, we varied both the input abundance of Pseudomonas cells and the PCR 141 
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amplification cycles. Our mathematical model (Supplementary Note 1), which tracked the 142 
probability distribution of cell division induced nucleotide substitutions over generations, indicates 143 
that under no selection pressure, we can expect one biological 16S genotype in our input. An 144 
upper bound on the number of our input taxa is given by the number of 16S genes generally found 145 
within the Pseudomonas genus (~ 4), times two for taxa clusters corresponding to forward and 146 
reverse complement strands. What we found was a rather different representation, rich with low 147 
abundant and poorly replicating taxa: the total numbers of observed Pseudomonas taxa were 148 
1050 and 300 for clustering methods based on sequence similarity with respective thresholds of 149 
99% and 97%. The bulk of the newly identified Pseudomonas taxa preferentially contributed to 150 
the low frequency regime of the taxa abundance histogram (Fig. S4), suggesting that they are 151 
likely clusters of rare, erroneous 16S sequencing reads generated during amplification and 152 
sequencing. Notably, taxa within-Pseudomonas, despite having a noisy occurrence with respect 153 
to amplification cycles and input cells (Fig. 3A), accumulated along the Pseudomonas genus 154 
recovered abundance axis in a clear, robust fashion (Fig. 3B). As expected, the stricter the 155 
sequence similarity threshold, the stronger the rate of taxa accumulations along the recovered 156 
abundance axis (Fig. 3B). Furthermore, taxa accumulations from several detected genera 157 
followed quantitatively similar patterns (Fig. 3C, Tables 1-2). From prior experiments in our 158 
laboratory and from control samples, we know Pseudomonas lab contaminants have very weak 159 
relative abundances. Restricting the above analysis to only those Pseudomonas taxa that track 160 
input cells, does not change the aforementioned conclusions qualitatively (Fig. S5). 161 

Similar results on taxa accumulation patterns were also obtained for the multiple-genera Oral and 162 
Gut mock communities of the microbiome quality control project, handling lab B (MBQC27). 163 

Because true taxa are expected to replicate across study samples, we next explored sub-genus 164 
taxa occurrence rates (Fig. S19). In all studies, we find that over 50% of sub-genus taxa in over 165 
50% of the detected genera did not replicate in more than 10% of the samples. Mock experimental 166 
communities are expected to represent a greater degree of homogeneity than real world 167 
communities as the latter may contain rare variants. Restricting analysis to experimental 168 
communities with single- and multiple- mock genera, we find that in eight out of nine datasets, 169 
over 50% of sub-genus taxa in over 50% of the mock genera replicated in less than 50% of the 170 
samples (Fig. S19). These results indicate poor within-study replicability of most sub-genus taxa. 171 

Finally, because we expect true taxa richness and evenness to vary along the taxonomic tree, we 172 
explored taxa accumulations for the various taxonomic levels (i.e., family, order, class and 173 
phylum) in each study. Remarkably, the total number of observed taxa at any level of the 174 
taxonomic tree, was strongly predicted by recovered abundance alone and was not dependent 175 
on the taxonomic level considered (Fig. 2A, Fig. S20). These results indicate a strong regularity 176 
in taxa accumulations across taxonomic levels.  177 

Taken together, our results indicate that most sub-genus taxa in 16S surveys are likely spurious. 178 

  179 
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2.2 Spurious taxa confound differential richness inference 180 

That observed spurious sub-genus taxa increasingly accumulate with genus recovered 181 
abundances leaves us with two expectations.  182 

First, without appropriate corrections, inferring differences in a genus’ number of associated taxa 183 
(i.e., genus-wise differential richness) are highly likely to be confounded by the genus’s respective 184 
difference in the recovered abundances (differential abundance). We observe that estimated 185 
genus-wise richness values from asymptotic estimators grew systematically with the genus-186 
specific recovered abundances (Fig. S6). In addition to observed richness, estimates of 187 
unobserved richness can exhibit similar behavior (Fig. S7). This in turn induces an artifactual 188 
positive correlation between the resulting genus-wise differential richness fold changes and the 189 
genus-wise differential abundance fold changes (Fig. 2B, S8).  190 

Second, inferring differential richness between sample-groups (i.e., sample-wide differential 191 
richness) are highly likely to be confounded by a net non-zero relative abundance fold change of 192 
detected genera. Straightforward simulations where spurious taxa are generated in an abundance 193 
dependent fashion illustrate this behavior (Fig. S6). Interestingly, illustrative examples of the same 194 
were rare in several 16S surveys, suggesting that spurious taxa accumulations are comparable 195 
at the sample-level. Indeed, in many datasets, the relative abundance log fold changes of member 196 
genera were symmetric and concentrated around zero (Figs. S9-S10). Nevertheless, exceptions 197 
with asymmetric relative abundance log fold change distributions exist and a case in point is 198 
offered by the long-term time series study discussed below (Fig. S11).    199 

In Supplementary note 2, we model the abundance dependent generation of spurious taxa in 16S 200 
surveys within the sample theoretic framework of Chao29 and Harris45 and find that the above 201 
observations agree with theory. 202 

2.3 Prokounter enables flexible differential richness inference 203 

To overcome the aforementioned biases when applying current richness estimators to 16S 204 
surveys and to establish a flexible differential richness inference approach, we developed 205 
Prokounter and applied it to several microbial communities including those from a long-term time 206 
series study, hydrocephalus cohort, waste-water treatment plant and our pseudomonas dilution 207 
experiment. 208 

While zero-truncated statistical models offer one route to modeling member inclusions in a 209 
population survey, the same can be achieved by incorporating appropriate predictors in a 210 
regression context46. The former is the approach taken by some classical richness estimators to 211 
model species abundance28,47. We take the latter view and proceed as follows. Based on the 212 
results from section 2.1, we assume that most sub-genus taxa in 16S surveys are false. This 213 
allows us to exploit a 16S survey’s overall sub-genus taxa accumulation trend, along with any 214 
systematic genus-specific effects, as a sampling effort dependent control for false taxa 215 
accumulation (Methods). This control is exploited within standard regression methods for 216 
differential richness inference.  217 
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With a few 16S surveys, we illustrate the insights offered by the proposed procedure, Prokounter, 218 
in achieving genus-specific and sample-wide differential richness inferences.  219 

Unlike other estimators analyzed here (Chao129, ACE48 and Breakaway49), the uncorrelatedness 220 
of Prokounter’s richness statistics with genus-wide differential abundance statistics is clear in 221 
each dataset (Fig. 2B,C, Fig. S12). Breakaway’s estimates were the most variable, often 222 
accompanied by wide confidence intervals. On several occasions, genus-specific differential 223 
richness estimates were not well defined in numerical value when using current richness 224 
estimators for numerical, and not necessarily statistical identifiability reasons. Sample-wide 225 
inferences agreed among all methods in most cases, except when detected genera exhibited a 226 
net non-zero relative abundance fold change distribution.  227 

In all surveys below, asymptotic genus-wise and sample-wide richness estimates heavily tracked 228 
their respective observed richness values (97-100% Pearson correlations, Figs. S13-S17).  229 

Long-term time series study Based on a clustering analysis of abundance profiles, David et al.,2 230 
identified that a distinct sub-group of the phyla Firmicutes replaced another Firmicutes  sub-group, 231 
post-enteric infection, in the gut microbiome of an individual relocating to a different country. 232 
Prokounter refines this result further by identifying several Firmicutes genera (Faecalibacterium, 233 
[Ruminococcus], Oscillospora) that are less rich post-infection. On the other hand, Dorea and 234 
Coprobacillus, members of Firmicutes, were found to have significantly increased richness in 235 
infection and post-infection samples. The genus Acinetobacter from the phylum Tenericutes was 236 
found to have significantly higher richness in samples collected during infection, while this was 237 
not the case post-infection. Thus, differential richness adds another state variable to the 238 
microbiome state specifications of the original study. 239 

In David et al’s dataset, sample-wide inferences disagreed among the methods compared. 240 
Prokounter produced negative richness inferences for both infection and post-infection samples 241 
consistent with antibiotic exposure. Chao1/Betta and ACE/Betta indicated reduced richness post-242 
infection with a relatively weak significance for reduced richness in infection samples. 243 
Breakaway/Betta failed to reject any of the corresponding null hypotheses (p-value=0.99 infection 244 
and p-value=0.74 post-infection), potentially owing to the very high variability of Breakaway 245 
estimates. As established in the previous subsection, these differences in inferences likely stem 246 
from the asymmetric differential abundance of detected genera in the samples collected during 247 
infection.  248 

Pathogenesis We applied Prokounter to a 16S survey of the cerebrospinal fluid from 249 
hydrocephalus children hypothesized to have infectious (PIH) and non-infectious (NPIH) origins50. 250 
We intuitively expected, and observed, that the cerebrospinal fluid enveloping the central nervous 251 
system to register lower richness compared to laboratory controls. PIH samples had relatively 252 
lower richness compared to clinical control samples.  253 

A genus that is positively differentially abundant, along with a negative differential richness 254 
estimate might indicate invasion of a sub-species. Genus-specific differential richness inference 255 
with Prokounter yields two genera as having lowered richness in the PIH samples: Paenibacillus 256 
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and Streptococcus. Paenibacillus was the dominant pathogenic genus identified with the PIH 257 
phenotype using 16S data50.  258 

Waste-water treatment To demonstrate an ecological monitoring application, we applied 259 
Prokounter to 16S data arising from a waste-water treatment plant51. The method indicates that 260 
relative to the effluent, sample groups from each of the post-treatment stages have significant 261 
negative microbial richnesses. These results readily agree with our expectation of a publicly 262 
implemented waste water treatment protocol. Chao1/Betta, ACE/Betta produced similar results. 263 
Breakaway/Betta failed to reject the null for sample groups corresponding to effluent (p=.065) and 264 
inlet to pumphouse (p=.692). 265 

Using differential abundance analysis, the original study highlighted the persistence of Legionella 266 
and Mycobacterium in post-treatment samples calling into question the efficacy of the treatment 267 
process. Performing genus-specific differential richness analysis with Prokounter indicates that 268 
the treatment plant reduces the richness associated with several types including Mycobacterium. 269 
We did not detect Legionella as reduced in richness in the effluent.  These results indicate that 270 
waste-water treatment has been effective with removing Mycobacterium sub-types.  271 

Pseudomonas dilution study  The Pseudomonas dilution experiment varied two parameters of a 272 
16S experimental pipeline: amplification cycles, and input cells of a single colony derived 273 
microbial population.  274 

Increased amplification cycles can allow increased sampling of both contaminant and input 275 
genera. Thus, within further sampling constraints imposed by the multiplexed nature of the 276 
experiment, we expect sample-wide richness to grow with amplification cycles. Sample-wide 277 
differential richness inference from all methods matched this expectation.  278 

It is well known that the abundance of lab contaminants falls with input loads [34]. If the dynamic 279 
range in input loads is sufficiently high, we can expect inferred sample-wide richness to fall with 280 
input Pseudomonas cells. Results from Prokounter, Chao1/Betta and ACE/Betta matched this 281 
expectation. Breakaway/Betta failed to reject the corresponding null hypotheses (p=0.4).  282 

The genus of principal interest in this experiment is Pseudomonas. The genus-wide differential 283 
richness results from Prokounter indicated a decrease in richness with respect to input cells and 284 
an increase with respect to amplification cycles. This is in line with our expectations as we expect 285 
the detection rate of lab contaminant Pseudomonas species to grow with amplification cycles, 286 
and fall with input Pseudomonas loads. In direct contrast, Chao1/Betta and ACE/Betta, 287 
confounded by input Pseudomonas’s increasing abundance, indicated a Pseudomonas richness 288 
increase with input cells (p=0 for both), and Breakaway/Betta failed to reject (p=0.251).   289 
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3. Discussion  290 
 291 
Summary: 16S microbiome surveys reconstruct target microbial populations by clustering 292 
sequencing reads. Spurious microbial taxa occur when the clustering procedure’s error model 293 
fails to capture the entirety of sequence variation induced by the technical steps in 16S 294 
sequencing (Supplementary Note 1, Fig. 1A). We have shown that the false taxa thus generated 295 
not only inflates the estimate of a (microbial) community’s richness (Supplementary Note 2, Fig. 296 
S6), but they also cause taxa differential abundance to confound differential richness inferences 297 
(Fig. 2B, S8). This occurs because every false taxon is generated through errors from one or a 298 
few true (i.e., input) taxa, and hence, their rates of production increase with the output abundance 299 
of the corresponding source taxa (Supplementary Note 1). Based on our result that most sub-300 
genus discoveries are likely false (Section 2.1), we have established abundance dependent 301 
controls for false taxa accumulations using a given survey’s within-genus taxa accumulation data 302 
(Methods, Fig.2C, S2, S18). We have shown that our strategy overcomes the confounding 303 
problem (Fig. 2C, S12). And we have illustrated the utility of differential richness inferences in 304 
individual and public health related microbiome data analyses (Section 2.3).  305 
  306 
Assumption: Our approach assumes that most sub-genus taxa in 16S surveys are spurious and 307 
are poor representatives of the underlying microbial community. We have provided several lines 308 
of evidence to support this conclusion: First, our mock experiment of an overnight derived 309 
microbial population indicated that observed richness can be severely inflated (Fig. 3, S5). Our 310 
expectation was set in part by a mathematical model of cellular reproduction, where we tracked 311 
the probability distribution over substitutions, over generations (Supplementary Note 1). Second, 312 
in a manner similar to what we would expect of low probability errors, most sub-genus taxa in 313 
both controlled mock and real world datasets are rare and show poor replicability across samples 314 
(Fig. S19). Third, within-genus taxa accumulation patterns in several publicly available datasets, 315 
including those from single- and multi-genera mock experiments, appear remarkably regular as if 316 
most genera in 16S surveys have similar richness and taxa evenness (Fig. 2-3, S1-S3, Tables 1-317 
2, S2-S3). Fourth, the total number of taxa observed for any taxonomic level was strongly 318 
determined by the category’s recovered abundance alone and was not dependent on the level 319 
itself (Fig. 2, S20). Finally, the literature offers abundant support for abundance dependent false 320 
taxa generation in 16S surveys, of which we note a closely related few. Kunin et al.,32 demonstrate 321 
the large number of false Escherichia taxa that arise in a 16S survey of a target E.coli population 322 
(also see Degnan and Ochman52, Pinto and Raskin53). Based on the empirical observation that 323 
the number of false taxa generated are sampling effort dependent, Schloss et al.,54 recommend 324 
that community-level comparisons be made at comparable sampling depths. Haas et al.,55 325 
illustrate the predictable, abundance dependent generation of false chimeric taxa within genera 326 
in mock communities.   327 
 328 
Implications for richness theory and automated ecological surveys: False microbial taxa in 329 
16S surveys arise because automated procedures to reconstruct taxa misclassify sequencing 330 
reads from their true types. In Supplementary Note 1, we analyzed the influence of amplification 331 
and sequencing induced substitutions in causing misclassifications (also see Schloss56, and Sze 332 
and Schloss57). In Supplementary Note 2, we mathematically modeled the false taxa that arise 333 
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through misclassification and showed in part that a traditional asymptotic richness estimator 334 
(Chao129) is biased under this more general sampling scenario. The severity of bias is determined 335 
by sampling parameters. Together with the results mentioned in the previous paragraphs, we 336 
conclude that classical richness theory, which predominantly focuses on estimating undetected 337 
richness while assuming observed richness at face value, should be generalized for observed 338 
species misclassifications in modern high throughput and highly automated surveys.  339 
 340 
Asymptotic richness estimators track observed richness values in 16S surveys: In the 341 
several 16S surveys considered here, asymptotic richness estimates tracked observed richness 342 
values both sample-wide and at within-genera levels (Fig. S13-S17). Our mathematical models 343 
and simulations that incorporate false taxa accumulations within the sampling theoretic framework 344 
of Chao29 and Harris45 indicate that such tracking can arise when the apparent richness (i.e, the 345 
true plus false richness) and not necessarily true richness, is undersampled in a survey 346 
(Supplementary Note 2). This explains the observed tracking in the Pseudomonas genus in the 347 
Pseudomonas dilution experiment, where we do not expect undersampling of the true 348 
Pseudomonas community (Fig. S13).  349 
 350 
False discovery control in differential richness analysis, confounding with differential 351 
abundance: Hughes et al.,58 argue that traditional macroecological richness estimators continue 352 
to enable robust sample-wide richness comparisons in 16S surveys. Our analysis identifies 353 
exceptions (Section 2.3, Long-term time series study) and clarifies the practical conditions under 354 
which controlling for spurious discoveries become important. In particular, we find that false taxa 355 
accumulations cause abundance dependent inflation in observed taxa numbers and their 356 
frequencies (Supplementary Note 1, 2), causing differential (relative) abundances of detected 357 
taxa to confound differential richness inference with traditional methods (Fig. 2B, S6-S8, S11). 358 
When spurious taxa accumulations are comparable across contrasted experimental groups, no 359 
such confounding arises (Fig. S9-S10). Our empirical analyses indicate that such an assumption 360 
is too strong for making differential richness inferences at lower taxonomic levels (e.g., genus-361 
specific) of a microbial assemblage (Fig. 2B).  362 
 363 
Relaxing microbiome richness comparisons to taxonomic groups: Microbiome analyses 364 
frequently restrict richness comparisons to the entire microbial assemblage obtained in study 365 
samples (sample-wide richness inference). From the perspective of deriving health and ecological 366 
indicators based on community assemblages, analysis of a community’s finer organization levels 367 
is equally interesting2,8,10–12,17. Our genus-wise differential richness results (Section 2.3) indicate 368 
that contrasting richness for taxonomic sub-groups can enable practically useful inferences and 369 
add interesting dimensions to microbiome state space descriptions.  370 
 371 
Within-genus taxa accumulation structure and the trend estimator: Our results document 372 
reliable across-genera regularity in the patterns of within-genus taxa accumulations, across many 373 
studies and genus-specific experiments (Fig. 2-3, S1-S3, Tables 1-2, S2-S3). We speculate that 374 
genus abundances, in contrast to sampling depth, more accurately track the sampling rate of false 375 
sequence variation in 16S surveys for at least two reasons. First, commonly exploited 16S rRNA 376 
target segments are limited in resolution beyond genus level37–44. Second, genus recovered 377 
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abundances, unlike total sampling depth, normalize for the sampling rates of distinct genera. This 378 
restricts us from mixing taxa accumulation statistics over truly disparate input biological 379 
sequences from distinct genera, while allowing us to preserve any systematic genus specific 380 
effects. We used a robust trend estimate of the within-genus taxa accumulation data to model 381 
spurious taxa accumulation (Methods, Fig. 2-3, S1-S3). The coherent accumulation of a large 382 
number of detected taxa translated to low estimation uncertainties. These curves were not 383 
necessarily linear in the recovered genus abundances (Fig. S1-S3).  The systematic genus-384 
specific contributions to this trend can arise due to between-genera variation in both detectable 385 
true input sequence diversity (copy number43 or number of distinct cell types) and 16S sequencing 386 
noise56,57.  387 
 388 
Abundance dependent control in bioinformatic sequence analysis: Beyond differential 389 
richness inference, there is a need for recovered abundance dependent control in other 390 
(meta)genomic sequence analyses e.g., sequencing read mapping and taxonomic annotation, 391 
which exploit fixed sequence similarity thresholds. Probabilistic methods have a natural 392 
incorporation of abundance in clustering/mapping decisions. In all cases however, poor error 393 
models would continue to drive false taxa accumulations. It must be noted that we have not 394 
analyzed false negative rates in this study59,60.  395 
 396 
Limitations of differential richness inference Observed (and reportedly, asymptotic61) richness 397 
estimates cannot forecast crossing over of species accumulation curves that can in principle occur 398 
with additional sampling effort. However, differential analysis of both these estimates over realized 399 
sampling effort is still useful for detecting perturbations to the evenness of a biological 400 
community58,62, and is thus effective for deriving predictors of individual and environmental health.  401 
 402 
Future work. There are several avenues for future research. First, an integrated estimation 403 
procedure of false taxa accumulation rates and differential richness fold changes would lead to 404 
more appropriate p-values under the assumed statistical models. Second, development of 405 
ecological richness estimators in the presence of species misclassifications would be a valuable 406 
addition to the literature. Supplementary Note 2 considers a simple but a useful special case. 407 
Third, 16S surveys on mixtures of microbial species with varied relatedness and controlled input 408 
richness levels, would enable a joint characterization of detectable 16S resolution, taxa 409 
reconstruction algorithms and richness estimators. Fourth, control for multiple testing over tree 410 
structured hypotheses can be incorporated if one wishes to automate hypothesis testing over taxa 411 
collections defined by subtrees of a taxonomic tree63,64. Finally, all our empirical observations 412 
were based on a set of 16S surveys that operate over partial 16S gene targets.  Because full 413 
length 16S surveys also involve amplification, and sequencing protocols41, we expect the 414 
qualitative nature of our results to generalize to such surveys, perhaps at a lower taxonomic level 415 
(e.g., species), and this can be explored.  416 
 417 
Taken together, this paper significantly clarifies the dynamics of spurious discovery accumulation 418 
in 16S surveys, presents strategies for modeling their generation, demonstrates the need to 419 
control for the observed false discoveries in microecological surveys while deriving differential 420 
richness inferences, and offers a flexible practical solution to achieve the same. 421 
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4. Methods  422 

Prokounter  423 

Our proposed procedure for differential richness inference works in two steps. A control for false 424 
taxa accumulation is established first. The estimated control is subsequently exploited within 425 
standard generalized linear models for differential richness inference.  426 

Let 𝑛!" denote the reconstructed number of taxa for genus 𝑔 in sample 𝑗, 𝑦!" denote the 427 
corresponding recovered abundance (i.e., genus’s total count in the sample), and 𝜏 represent the 428 
sample depth.  429 

Let 𝑓#(𝑙𝑜𝑔 𝑦!") indicate the logged technical contribution to taxa accumulation for a given genus 430 
and its recovered abundance level. This function is used to model the log of the expected false 431 
taxa accumulation. Its estimate 𝑓+#	(𝑙𝑜𝑔 	𝑦!") is obtained using within-genus taxa accumulation data 432 
as follows.  433 

Estimating the technical contribution 𝒇𝒕.   We explored two strategies to estimate a robust 434 
within-genus accumulation trend. 435 

A semi-parameteric smoothing spline model is assumed on 𝑧!" =𝑙𝑜𝑔 𝑛!", 436 

𝑧!"|𝑔, 𝑦!" = 𝜂(𝑔, 𝑦!") + 𝜀!" = 𝜅 + 𝑓&(𝑙𝑜𝑔 𝑦!") + 𝑓'(𝑔) + 𝑓'&(𝑔,𝑙𝑜𝑔 𝑦!") + 𝜀!"                             (1)       437 

with 𝜀!" ∼ 𝑁(0, 𝜎(), and appropriate side conditions are placed on 𝑓⋅(⋅) (Chapters 2-365). Here 𝜅 438 
and 𝑓&(⋅) denote the intercept and recovered abundance dependent components; 𝑓' and 439 
𝑓'& 	indicate the genus and its respective interaction functions with the recovered genus 440 
abundance.  441 

Briefly, 𝜂 is estimated as a unique solution to the penalized optimization problem: �̂� =442 
	𝑎𝑟𝑔	𝑚𝑖𝑛*∈, 	𝑙(	ℎ	|	𝑦B⋅, 𝑥⋅) 	+ 	𝜆	𝐽(ℎ), where 𝑙(⋅ |𝑦B, 𝑥⋅) is the negative log likelihood, 𝜆 is a 443 
regularization parameter and 𝐽(⋅)is a roughness penalty that penalizes overfitting of ℎ to the data. 444 
The specification of 𝐽(⋅) involves, in part, integrals of squared second order derivatives of the 445 
estimand over the range of 𝑙𝑜𝑔 𝑦!", thereby enforcing smoothness. Supplementary Note 4 offers 446 
more details on the model construction and an exact correspondence to example 2.7 in Gu81. 447 
Numerical optimization is performed using the R package gss65. Supplementary figures S2 and 448 
S18 offer examples of the fits that result. 449 

The technical contribution to taxa growth is estimated as 𝑓+#(𝑔,𝑙𝑜𝑔 𝑦!") = 𝜅 + 𝑓+&(𝑙𝑜𝑔 𝑦!") + 𝑓+'(𝑔). 450 
Only the significant genus effects are retained after multiple testing correction with the Benjamini-451 
Hochberg procedure. When the genera contributions are null or similar, as we observed 452 
empirically in several datasets (e.g., Fig. S9, S10), 𝑓+#(𝑔,𝑙𝑜𝑔 𝑦!") ∝ 𝑓+&(𝑙𝑜𝑔 𝑦!").   453 

The latter observation inspires the following alternative strategy: estimate 𝑓+#(⋅) as a net average 454 
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within-genus accumulation curve using the loess smoother. Both options are made available in 455 
our software. As expected, inferences arising and the results in tables 1-2 are similar with both 456 
approaches. Fig. S3 offers examples of the fitted trends. The spline strategy does offer better 457 
control in the presence of systematic genus effects (Fig. S18).  458 

For consistency, in this paper, we have chosen the spline strategy.  459 

The fitted 𝒇𝒕.  can be used to control for false taxa accumulation in standard differential richness 460 
inference procedures. In Prokounter, we incorporate it through the models presented below.  461 

Differential richness inference  We use Greek letters to indicate regression parameters. A ⋅in 462 
the subscript indicates vectorizing over the subscript. X denotes the experimental design matrix. 463 
Genus-specific, sample-wide and taxa collection models are presented in equations (2)-(4) 464 
below. In each case, given the quantity modeled, reasonable transformations of the estimated 465 
logged technical contribution, 𝒇𝒕. , based on eqn. (1), are used. Terms involving X below can be 466 
viewed to approximate the effects arising from genus-recovered abundance interaction terms 467 
from eqn. (1).  468 

Genus-specific differential richness inference the conditional mean of the observed richness is 469 
modeled through the link: 470 

𝑙𝑜𝑔 𝐸[𝑛!"	|	𝑦!⋅, 𝑋, 𝑓#(⋅)] = 𝑋"-𝜇!	 +	𝜈!𝑓#(𝑙𝑜𝑔 𝑦!")                        (2)                                                                471 

where the right hand side is an approximate form for the log of the conditional expectation of the 472 
right hand side of eqn. (1).  473 

Sample-wide differential richness inference For inference across sample groups, we posit:  474 

𝑙𝑜𝑔 𝐸[𝑛."	|	𝑦!⋅, 𝑋, 𝑓#(⋅)] = 𝑋"-ζ + 	𝛾 𝑙𝑜𝑔 ∑ 𝑒 	/!(12!3"#)!:3"#67                             (3)                                              475 

where the + indicates summation over a subscript. As in eqn.(2) the right hand side of eqn.(3) is 476 
an approximate form for the log of the conditional expectation of the right hand side of eqn.(1), 477 
now summed over 𝑔. The net sample-wise technical contribution is modeled as a simple sum of 478 
the technical contributions from the genera detected in the sample. Although eqn.(3) does not 479 
immediately arise from eqn.(2), we find the simplicity and emphasis on dominant contributors to 480 
the sum, the more abundant genera, appealing. In addition, we often find that 𝜈! ≈ 1 and 𝛾 ≈ 1in 481 
applications.    482 

Differential richness inference for arbitrary collections of genera  For an arbitrary taxonomic group 483 
𝑘 (e.g., phyla), with a set of member genera 𝐺8, we assume :  484 

𝑙𝑜𝑔 𝐸[𝑛8"	|	𝑦!⋅, 𝑋, 𝑓#(⋅)] = 𝑋"-𝜓8 	+ 	𝛾8 𝑙𝑜𝑔 ∑ 𝑒 	/!(12!3"#)!∈'$∩	3"#67                                               (4)         485 

As with the sample-wide model, here too we have modeled the sample-wise technical contribution 486 
for each collection 𝑘 based on the sum of genus-level technical contributions, but now restricted 487 
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only to those genera considered within the collection. 488 

Keeping to the traditional theme of continuous Poisson mixtures driving sample-wide species 489 
accumulations, we chose Negative Binomial variance functions when performing sample-wide 490 
inferences, and Poisson variance functions for genus-specific richness inferences. For the several 491 
studies considered here, the estimated overdispersion coefficients for sample-wide Negative 492 
Binomial models were in the range of 10:; to 10:<.  For well expressed genera, inferences and 493 
model diagnostics were not sensitive to the two distribution assumptions. Parameter estimation 494 
and inference on the regression parameters 𝜇!, 𝜁and 𝜓8	were performed using R’s glm function. 495 
Maximum likelihood estimation with iteratively reweighted least squares converges rapidly in 496 
about ten iterations or less. Speaking to the explanatory power of 𝑓#. , as implied by tables 1-2, the 497 
residual deviance is often small, on the order of the residual degrees of freedom. To gauge 498 
reproducibility of inferences over fitted 𝑓+#(⋅), confidence intervals based on the bootstrap t66 are 499 
also available for the regression coefficients of the sample-wide differential richness inference 500 
model. 501 

The above models, which were used to generate the results in the applications section, exploit 502 
observed richness as response variables and are therefore non-asymptotic in nature. In the 503 
several 16S surveys considered here, asymptotic genus-wise and sample-wide richness 504 
estimates heavily tracked their respective observed richness values (97-100% Pearson 505 
correlations, Figs. S13-S17). We therefore propose the same regression models above for 506 
standard inverse variance weighted regression analyses of asymptotic richness estimates. As 507 
expected, results from such a procedure were similar to those obtained with observed richness 508 
as the response variable. Also see reference26 for a heterogeneity test of potential interest.  509 

We implement these procedures in an R package Prokounter. Supplementary Note 2 presents 510 
further discussions on the regression models above.  511 

Package and code availability:  512 

The R package Prokounter is available from the link: https://github.com/mskb01/prokounter 513 

Code for the paper is available from the link : https://github.com/mskb01/prokounterPaper 514 

Richness estimators and differential analyses: Estimates and standard errors for 515 
Chao1 and ACE estimators were calculated using the R package vegan67. Breakaway estimates 516 
and standard errors were obtained using the R package Breakaway.  Differential richness 517 
inferences corresponding to the three estimators were obtained with the R package Betta26.  518 
Rarefaction based interpolated and extrapolated richness estimates and standard errors were 519 
obtained using the package iNext68. The R package doParallel69 was used for several parallel 520 
computing tasks.   521 

The following datasets and study design variables were used to construct design matrices for 522 
sample-wide and genus-specific differential analyses reported in the applications section.  523 

1. Hydrocephalus50 (PIH100 FST97) - Control and Case.  524 
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2. Wastewater51 (WW FST99) -  Influent, Effluent, Before UV treatment, After UV treatment, 525 
Pond storage, and Inlet to pumphouse for subsequent spray irrigation.  526 

3. MBQC, Handling lab B (MBQC-HLB) - Gut mock, Oral mock, the rest of the stool samples 527 
were typed as Other. 528 

4. Time series study2 (TS FST97, Donor B) - based on the original study, three time windows 529 
were established to define sample groups: days up to to 150 were categorized as pre-530 
infection, days from 151 upto 159 as infection, and days post 159 were typed as post-531 
infection.  532 

5. Pseudomonas dilution study (Pseudomonas FST97) - number of cycles and logged 533 
number of input Pseudomonas cells.  534 

Dilution experiment: A monoisolate was prepared overnight from a Luria-Bertani (LB) agar 535 
plate into a 5 mL LB liquid, which grew to 109 cells. A ten fold serial dilution of cells from 105 to 10 536 
cells in phosphate buffer saline (PBS) was generated. DNA was isolated, 16S amplified and 537 
sequencing libraries were prepared as previously described50. Briefly, DNA was isolated using 538 
the Zymobiomics DNA miniprep kit following manufacturers protocol with bead beating and 539 
proteinase K treatment. For 16S amplification, primer-extension polymerase chain reaction (PE-540 
PCR) of the V1-V2 region was performed using an M13 tagged 336R universal primer as 541 
previously described70 and amplification cycles were varied. Briefly, target DNA was mixed with a 542 
10 μl of 10X buffer, and annealed with M13 tagged 336R by first heating to 95°C and then cooling 543 
to 40°C slowly. The annealed product was extended using Klenow polymerase (5U/μl and primers 544 
digested with 20U/μl  Exo I (NEB, USA), then amplified with 500 nM primers (805R and M13) 545 
using the MolTaq 16S Mastermix (Molzym GmbH & Co Kg, Germany). Library preparation was 546 
done with the Hyper Prep Kit (KAPA Biosystems, USA) following the manufacturer’s protocol and 547 
libraries were sequenced on MiSeq using the 600 cycle v3 kit.  548 
 549 
16S datasets and taxa reconstruction pipelines: The mouse microbiome 16S data 550 
was obtained from the R/Bioconductor package metagenomeSeq71. The moderate to severe 551 
diarrheal 16S survey was obtained from the R/Bioconductor package msd16S72. The long-term 552 
time series 16S survey2 was obtained from the supplementary data of the corresponding paper. 553 
The wastewater 16S survey51 was obtained on request from the authors of the original study. 554 
MBQC handling laboratory B’s (HL-B) sequencing reads was obtained from the Microbiome 555 
Quality Control (MBQC) project27.  556 
 557 
We generated three varieties of taxa count data from each of the Pseudomonas, PIH100 16S and 558 
MBQC HL-B (handling lab B) sequencing data. These include sequence similarity threshold 559 
based taxa clustering methods for 99% and 97% sequence similarities (Qiime1), and a 560 
probabilistic taxa clustering method (Dada2) as follows.  561 
 562 
Quality filtering of sequencing reads: Paired-end reads were processed with Trimmomatic73 563 
(v0.38) to remove universal adapters and low-quality reads. Reads with ambiguous bases were 564 
removed or truncated using Dada2’s filterAndTrim74 function. The 16S V1-V2 regions in both our 565 
Pseudomonas and PIH100 data were sequenced using 2x300bp paired-end reads. Based on 566 
sequencing read quality score profiles, we retained the first 240bp and 210bp in the forward and 567 
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reverse reads for the Pseudomonas dataset. These numbers were respectively 200bp and 190bp 568 
for PIH100. For HL-B, we removed the first 2bp following the primers in the forward and reverse 569 
reads. This allowed us to neglect the trailing low quality bases adversely affecting the taxa 570 
reconstructions, while still allowing for sufficient overlap to merge paired-end reads.   571 
Reads with either the designed primers or their reverse complements were filtered using 572 
cutadapt75. The quality filtered reads were then clustered with Qiime176 and Dada274 as below.  573 
 574 
Qiime 1 : Quality filtered forward and reverse reads were merged using Pear77, and then clustered 575 
using pick_open_reference_otus.py (Qiime1 version 1.9.1), which implements the Qiime1 open 576 
reference OTU clustering algorithm. Briefly, closed reference clustering of merged reads were 577 
performed against the Silva132 database at 97% and 99% sequence similarity thresholds, using 578 
Uclust78 v.1.2.22q . Reads that did not map to the database were subsampled and used as new 579 
centroids for a de novo OTU clustering step at the respective sequence similarity thresholds. 580 
Remaining unmapped reads were subsequently close clustered against the de novo OTUs. 581 
Finally, another step of de novo clustering was performed on the remaining unmapped reads. 582 
Taxonomy was assigned to taxa representative sequences with Uclust based on the Silva13279 583 
database . These sequences were filtered with Pynast80, and OTU tables generated.  584 
  585 
Dada2: Dada2 allows denoising forward and the reverse reads independently. Error rates were 586 
estimated separately for the quality filtered forward and reverse reads for each sample. This 587 
estimation step is based on a sample of reads for computational tractability. Reads were 588 
deduplicated and sequence clusters inferred based on the estimated error rates. Taxa from 589 
forward and reverse reads were merged at the end of the workflow. Chimeric taxa were removed 590 
with the function removeChimeraDenovo. The resulting taxa were assigned taxonomic labels 591 
based on the Silva132 database, using their naïve Bayes classifier.   592 
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Figures 597 

 598 
Figure 1. Within-genus false taxa accumulation structure. (A) Sequences in input samples 599 
are subjected to various technical steps during 16S sequencing (gray shade). The output reads 600 
from 16S sequencing are clustered for sequence similarity using a methodology of choice. Of the 601 
number of taxa (clusters) thus reconstructed, some are true, i.e., equal in sequence to those in 602 
the input sample, the rest are spurious i.e., false (red). (B) For every genus, the accumulation is 603 
determined as a function of its recovered abundances. Notation: 𝑛!7 the respective true number 604 
of taxa associated (true richness), 𝑦!the genus recovered abundance, 𝑓#(⋅) the abundance 605 
dependent technical component driving false taxa accumulations within-genus.  606 
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 607 
Figure 2. Concordant taxa accumulations across genera, confounded differential richness 608 
inference and the Prokounter strategy. (A) Sample-wide taxa accumulations are visualized 609 
with respect to sample depth (left). Within-genus taxa accumulations are visualized with respect 610 
to the total recovered genus abundances for two genera, i.e., the sum of the abundances of all 611 
taxa within the genus (center). Dataset-wide taxa accumulations for any taxonomic level is 612 
strongly predicted by recovered abundance alone (right). Red line illustrates a linear fit. (B) 613 
Differential richness log-fold changes (LFC, y-axis) track differential relative abundance fold 614 
changes (LFC, x-axis) in the waste-water treatment survey. (C) Prokounter exploits within-genus 615 
accumulation data to model false taxa accumulation rates. When exploited in a standard Poisson 616 
regression setting, the resulting differential richness fold changes are uncorrelated with genus-617 
wide differential abundance statistics (right). Dashed lines represent confidence intervals. Points 618 
colored in red are the genus-specific differential richness inferences for the waste-water treatment 619 
survey.  620 
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 621 
Figure 3. False microbial discoveries accumulate along the recovered abundance axis in 622 
the Pseudomonas dilution study. (A) For each taxa clustering method, the observed variation 623 
in within-genus Pseudomonas taxa accumulations are driven by experimental and technical 624 
parameters. Contaminant Pseudomonas are expected to fall with input loads, indicating false 625 
discovery accumulations at higher recovered Pseudomonas abundances. (B) The genus 626 
recovered abundance axis offers a succinct representation for taxa accumulations. Average and 627 
the 95% point-wise confidence intervals for the logged within-Pseudomonas taxa accumulation 628 
trends are shown with colored lines for each method, with colored circles indicating the respective 629 
observations. (C) An overlay of taxa accumulations across multiple detected genera in the study. 630 
Colors indicate genera.   631 
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Tables 632 

 633 

Table 1: Relative to study variables, within-genus taxa accumulation trends capture bulk 634 
of the systematic variation in 16S surveys’ genus-specific taxa accumulations. For each 635 
16S survey dataset mentioned in column 1, the year of publication is listed in column 2, the partial 636 
16S segment targeted, machine technology and sequence clustering approach used are specified 637 
in column 3.  FST.x refers to sequence clustering at an a priori fixed sequence similarity threshold 638 
of x%. McFadden's pseudo-𝑅(	 for explaining genus-specific taxa accumulations with two 639 
negative binomial regressions (NB) are listed in columns 4 and 5. The fourth column is obtained 640 
when the NB regression includes within-genus taxa accumulation trend (𝑓+&(⋅), Methods) alone as 641 
predictor. The fifth column additionally includes the genus identifier, total sample depth, and 642 
experimental design matrix for each dataset as predictors (methods). Corresponding Akaike 643 
Information Criteria (AIC) are listed in columns 6 and 7. 644 
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 645 

Table 2: Relative to study variables, within-genus taxa accumulation trends capture bulk 646 
of the systematic variation in 16S surveys’ sample-wide taxa accumulations. For each 16S 647 
survey dataset mentioned in column 1, the year of publication is listed in column 2, the partial 16S 648 
segment targeted, machine technology and sequence clustering approach used are specified in 649 
column 3.  FST.x refers to sequence clustering at an a priori fixed sequence similarity threshold 650 
of x%. McFadden's pseudo-𝑅(	 for explaining sample-wide taxa accumulations with two negative 651 
binomial regressions (NB) are listed in columns 4 and 5. The fourth column is obtained when the 652 
NB regression includes within-genus taxa accumulation trend (𝑓+&(⋅), Methods) alone as predictor. 653 
The fifth column additionally includes the total sample depth, and experimental design matrix for 654 
each dataset as predictors (methods). Corresponding Akaike Information Criteria (AIC) are listed 655 
in columns 6 and 7.  656 
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