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Abstract 

Sensory adaptation is critical to extract information from a changing world. Taking 
advantage of the extensive parallel coding lines present in the olfactory system, we 
explored the potential variations of neuronal identities before and after olfactory 
experience. We found that at rest, the transcriptomic profiles of olfactory sensory 
neuron populations are already highly divergent, specific to the olfactory receptor they 
express, and are surprisingly associated with the sequence of these latter. These 
divergent profiles further evolve in response to the environment, as odorant exposure 
leads to massive reprogramming via the modulation of transcription. Adenylyl cyclase 
3, but not other main elements of the olfactory transduction cascade, plays a critical 
role in this activity-induced transcriptional adaptation. These findings highlight a broad 
range of sensory neuron identities that are present at rest and that adapt to the 
experience of the individual, thus providing a novel layer of complexity to sensory 
coding. 
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Introduction 
 
Mammals use various sensory tools to build a representation of the outside world. A 
precise and robust representation being critical for survival and reproduction, we 
evolved a considerable number of different receptors able to respond to external 
stimuli. This is particularly true for chemical recognition, for which most of us benefit 
from large odorant chemoreceptor gene repertoires, that range in the hundreds in 
humans and dogs, up to over a thousand in mice and elephants (Bear et al., 2016; 
Jiang and Matsunami, 2015; Niimura and Nei, 2006). Our understanding of olfactory 
information coding is based on the expression of a single chemoreceptor gene, 
stochastically chosen from a single allele, in each olfactory sensory neuron; this is 
referred to as singular expression (Chess et al., 1994; Dalton and Lomvardas, 2015; 
Mombaerts, 2004; Saraiva et al., 2015). Given the millions of olfactory sensory 
neurons present in a nasal cavity, large neuronal populations with identical agonist 
receptivity coexist with other populations that exhibit different response profiles. 
Olfactory receptors being able to bind various molecules and a volatile to be 
recognized by different receptors, to any given olfactory stimulus corresponds a 
specific pattern of activation. The term combinatorial coding has been coined to 
describe this encoding of chemical identities (Buck, 2004; Malnic et al., 1999). The 
odorant-dependent activation map is not just a concept, but is directly observable in 
the olfactory bulb, where axonal projections of olfactory sensory neurons coalesce into 
neuropil-rich structures, the glomeruli, that are each innervated by a specific sensory 
population. Following this first relay of olfactory processing and after being transmitted 
to cortical areas, olfactory information often translates into a percept, a smell. A series 
of parallel and invariable coding lines, defined by the expressed odorant receptor (and 
a few guidance molecules that may be differentially expressed between populations), 
is thus at the heart of the way we understand olfaction. 
 
The ability for neurons to adapt, to respond dynamically to the environment, both 
during development and later, is critical (West and Greenberg, 2011). Following 
perturbations of their surroundings, rapid and long-term changes thus occur in cells, 
which in sensory systems for example lead to sensory adaptation and to 
compensatory plasticity (Davis, 2006). Various mechanisms answering this need have 
been selected during evolution, among which the repression or activation of specific 
genes (Benito and Barco, 2015; West and Greenberg, 2011; Yap and Greenberg, 
2018). In the olfactory system, this question has been addressed in the past by various 
groups (Barber and Coppola, 2015; Cadiou et al., 2014; Coppola and Waggener, 
2012; Fischl et al., 2014; Ibarra-Soria et al., 2017; Wang et al., 2017; Zhao et al., 
2013). Almost without exception, these approaches have involved the silencing of 
neuronal activity via naris occlusion or activity mutants, thus adding various 
confounding factors to odorant-induced activity. Due to a lack of technology available 
at the time, most of these approaches explored the system at the level of the whole 
olfactory mucosa, precluding an evaluation of the response to a specific ligand of 
specific neurons or specific neuronal populations expressing a given odorant receptor. 
We recently reported that following in vivo odorant exposure of olfactory sensory 
neurons in the mouse, a decrease in the amount of mRNA encoding for the odorant 
receptor gene expressed by the activated neurons takes place (von der Weid et al., 
2015). Whether this odorant-induced decrease of mRNA concentration is limited to 
the receptor mRNA, remains to be determined. 
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Taking advantage of the rare opportunity offered by the mouse olfactory system, 
composed of large and numerous populations of neurons, each identifiable by the 
transcription of a specific chemoreceptor gene and thus activable at will by specific 
ligands, we explored, in the mouse, the organization and the potential modulation of 
population transcriptional identities. We characterized the transcriptomes of several 
thousand mouse olfactory sensory neurons and uncovered, at rest, an unexpected 
variability of profiles, each defined by the differential expression of numerous genes 
and dependent on the expressed chemoreceptor. Following neuronal activation, we 
found that a second layer of variability, that relies on adenylyl cyclase 3 and involves 
transcriptional modulation, is added to this initial diverse landscape. 
 
 
 
 
Results 
 
Variable transcriptomes among olfactory sensory neuron populations at rest 
 
The main determinant of an olfactory sensory neuron identity is the olfactory receptor 
gene it expresses. In addition to this functional characteristic, a few genes have been 
described to be unequally expressed in different olfactory populations. These latter 
are however thought to be shared by large numbers of sensory neuron populations 
(that is populations expressing different odorant receptors), and to be involved in the 
topographic organization of the olfactory sensory mucosa, in which neurons 
expressing a given odorant receptor are restricted to specific zones. 
As an initial approach to determine potential differences in the identity of the various 
sensory neurons populating the main olfactory epithelium, we performed a single-cell 
RNA-seq of dissociated cells extracted from the nasal cavity of 8 week-old male mice 
(Figure 1A). The data were clustered and visualized on a UMAP plot (Figure 1B). We 
obtained a total of 15’927 cells, from which mature olfactory sensory neurons 
(expressing the Omp and Adcy3 genes) were readily distinguishable from immature 
neurons and non-neuronal cells (Figure 1B and Figure S1A), in agreement with 
previous results(Fletcher et al., 2017). A total of 9’762 mature olfactory sensory 
neurons (composed of 811 olfactory sensory populations of at least three neurons 
(Figure S1D)) expressing the olfactory marker gene Omp were then selected, and 
clustered again. Specific subclusters were observed (Figure 1C and S1B,C), defined 
by the expression of certain marker genes (Calb2, Cd36 and others), as well as a clear 
separation between sensory neurons located ventrally (Nfix+) and dorsally (Nqo1+) in 
the nasal cavity (olfactory sensory neurons expressing specific odorant receptors are 
unequally scattered across the nasal epithelium (Buck, 1996)). We then explored the 
potential transcriptional proximity of neurons expressing the same odorant receptor. 
Their positions were visualized on the UMAP plot, which revealed a striking grouping 
of each of the different neuronal populations (Figure 1D,E), ranging from dense 
clustering of their transcriptomes (such as those expressing Olfr354 or Olf553), to 
populations exhibiting a larger variance in gene expression (such as Olfr1183). To 
quantify this observation we measured the pairwise transcriptomic distances between 
pairs of sensory neurons expressing the same receptor and found that neurons 
expressing the same receptor were significantly more similar transcriptionally than 
those expressing different receptors (Figure 1E). To determine the potential role 
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played by the expression of the odorant receptors themselves in this clustering, this 
latter was performed without taking the olfactory receptor expression data into 
account. Remarkably, the grouping of populations expressing the same 
chemoreceptor, irrespective of whether the analysis was performed on the whole 
sensory population or a given subcluster (Figures 1E and S2), was maintained. To 
explore this olfactory-receptor-associated population specificity, we identified specific 
genes that were differentially expressed between the different neuronal populations 
(Figure 1F). These included genes that were either transcribed or whose transcripts 
were absent in the different populations such as Cidea, or that were expressed in a 
graded manner across most populations, such as S100a5 (Figure 1F). These 
transcriptomic profiles were not merely reflecting different general types of sensory 
neurons, since they were not only observed to be different between subclusters, but 
also within subclusters (Figure 1G,H). At rest, that is without active olfactory 
stimulation, a transcriptomic code thus characterizes each odorant receptor-defined 
population.  
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Figure 1. Variable odorant receptor-associated transcriptomes among olfactory sensory 
populations 
(A) Schematic of the approach. 
(B) Visualization of MOE cell clusters on a UMAP plot. Inset: normalized expression levels of two mOSN 
gene markers, Omp and Adcy3. 
(C) Visualization of mOSN cell clusters on a UMAP plot computed after removing the olfactory receptor 
gene counts from the data. Inset: normalized expression levels of Nfix and Nqo1 (markers of neurons 
located ventrally and dorsally). 
(D) Visualization of the dispersion of OSN populations on the UMAP plot shown in (C). The color of 
each cell indicates the cluster to which the cells pertains. 
(E) Violin plots showing the density distribution of transcriptomic Euclidean distances (computed on the 
first 19 PCs) between pairs of OSNs expressing the same receptor (intra), different receptors (inter), 
and the same receptor after permutation of receptor identities prior to distance calculation (perm.) (n = 
1000 permutations, see methods). Data are plotted for all OSNs in (G) or ventral cluster OSNs in (H). 
Horizontal bars correspond to mean values and dots correspond to median values. *p<0.05; **p<0.01; 
***p<0.001; Wilcoxon rank sum test. 
(F) Violin plots showing mOSN population-specific distribution of selected markers (log-normalized 
UMI). OSN populations are ordered by their mean expression of S100a5. The color of each violin plot 
indicates the cluster to which the majority of the cells from the given population pertain. 
(G-H) Heatmap representation of the expression levels (scaled log normalized UMI) of the specific gene 
markers of the largest mOSN populations selected from each cluster (E) or from the ventral Dlg2-, 
Calb2-, Cd36- and Cd55- clusters (F). 
 
 
 
 
Transcriptomic proximity versus olfactory receptor identity  
 
What may determine the transcriptional distance between two neuronal populations 
expressing different odorant receptors? Considering olfactory sensory neuron 
maturation as a series of differentiation steps that at each increment determine more 
and more specific identities (Fletcher et al., 2017; Hanchate et al., 2015), 
transcriptomic distances between two mature sensory neuron populations may reflect 
how many of these steps they shared. If transcriptomic identity is largely determined 
prior to odorant gene choice, the closeness between two populations should be 
mirrored by their use of the same cis-regulatory element. These elements are known 
to be necessary for the choice of specific sets of odorant receptor genes and control 
small clusters of adjacent odorant receptor genes (Bozza et al., 2009; Fuss et al., 
2007; Khan et al., 2011; Nishizumi et al., 2007). Alternatively or in addition to this first 
hypothesis, one could envisage a direct role played by the receptor itself, which may 
define a basal activity level in neurons for example, and a corresponding 
transcriptomic profile. 
We tested the first hypothesis by evaluating whether olfactory receptor genes sharing 
a common enhancer are transcriptionally closer to each other than to those under the 
control of other cis-regulatory elements. We took advantage of two well defined cis-
regulatory elements acting on mouse odorant receptor genes (the H and P elements), 
whose olfactory receptor gene targets are quite dissimilar (Figure 2A,C,D), and have 
been well described (Bozza et al., 2009; Fuss et al., 2007; Khan et al., 2011; Nishizumi 
et al., 2007). Calculating a centroid-based Euclidian distance between olfactory 
sensory neuron population transcriptomes (Figure S2B, Figure S4A), we evaluated 
the similarity between the transcriptomes of sensory neurons subpopulations 
expressing olfactory receptor genes under the control of the same cis-regulatory 
elements, as well as their neighbors (Figure 2C,D). No increase in transcriptomic 
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similarity was observed between genes under the control of the H or P elements. To 
further explore this hypothesis, we took a global approach based on the possible link 
between the genomic distance separating odorant receptor genes and the difference 
in transcriptomic identity, the idea being again that since olfactory cis-regulatory 
elements act on adjacent genes, those located in proximity may also result closer 
transcriptionally. A weak positive association between genomic distance (Figure 2B) 
and transcriptomic proximity was observed in the first 30% of the genomic distance 
value range (Figure 2E, S4B). This association increased when looking at the first 10% 
(Figure S4C,D). This relationship was more visible when considering different equal 
width bins of the observed range of transcriptomic distances, in relation to the 
proportion of pairs of neighbouring genes (Figure 2F). 
We then evaluated our second hypothesis, which proposes that the odorant receptor 
themselves define transcriptomic profiles. We determined the levels of sequence 
homology between odorant receptors using Miyata scores (Figure 2B, S4E) and tested 
their potential association with the transcriptomic distances between the 
corresponding neuronal populations. We found a positive association between 
transcriptomic proximity and odorant receptor sequence similarity in the first 30% of 
the amino acid difference value range (Figure 2E, S4E), that was further supported by 
a clear overrepresentation of similar odorant receptor pairs in sensory populations that 
are transcriptionally close (Figure 2F, S4E). Given this last observation and knowing 
that odorant receptor genes tend to duplicate in cis, it is likely that sequence identity 
is a confounding factor when measuring genomic proximity. To reevaluate whether 
genomic proximity plays indeed a role in addition to receptor identity, we took 
advantage of evolutionary accidents that led duplicated odorant receptor genes to land 
in close vicinity or distantly from their princeps allele. We thus evaluated the potential 
differences in transcriptional proximity between neuronal populations expressing 
odorant receptors that are very similar and associated in the genome, and neuronal 
populations expressing odorant receptors that are very similar but located in different 
gene clusters. In parallel, we evaluated the transcriptomic distances of neuronal 
populations expressing odorant receptors that are dissimilar and are associated in the 
genome (Figure 2G). We found no difference in the average transcriptional distance 
between neurons expressing similar odorant receptor genes, whether these genes are 
located in proximity or are distant from each other. On the contrary, we found an 
increase in transcriptomic distances between dissimilar and similar odorant receptors 
associated in the genome, supporting our second hypothesis, that is a role played by 
the odorant receptor identity in transcriptome determination. 
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Figure 2. Association between transcriptomic distances and odorant receptor similarity levels 
(A) Phylogenetic reconstruction of 1152 mouse odorant receptor proteins. Colored bars at the tree tips 
show the transcriptomic identity of the olfactory sensory subpopulations expressing a given odorant 
receptor (labeled receptors are restricted to those detected in three cells or more in our scRNA-seq 
dataset). Colored dots show odorant receptors belonging to the gene clusters analyzed in C and D, 
(labeled receptors are restricted to those detected in 10 cells or more in our scRNA-seq dataset). 
(B) The transcriptomic distances between olfactory sensory populations expressing a given odorant 
receptor was calculated as the Euclidian distance between centroids in the principal component 
analysis of mOSN transcriptomes. Genomic distance was calculated as the distance in base pairs 
between the start codons of Olfr genes; amino acid differences were calculated as the sum of Miyata 
amino acid replacement scores from an olfactory receptor alignment. Each insertion was scored as the 
mean replacement score of the additional amino acid.  
(C) Pairwise transcriptomic distances between olfactory sensory populations characterized by the 
expression of Olfr genes under the control of the H element on chromosome 14, and their neighbors. 
H element-regulated Olfr genes are denoted by the box surrounding their names. Cells of the triangular 
matrix correspond to each pairwise comparison, with rows linking each possible pair. The dotted line 
encompasses comparisons between olfactory sensory populations expressing each of the H element-
regulated Olfr genes. Cells are colored according to the pairwise transcriptomic distance.  
(D) Same analysis as in (C) but for Olfrs under the control of the P element, on chromosome 7.  
(E) Distribution of transcriptomic distances per bins of either genomic distances (top) or amino acid 
differences (bottom), for all pairs of odorant receptor belonging to the same class and the same gene 
cluster. Spearman’s rank correlation (ρ) and associated p-value between the transcriptomic distance 
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and each of the different metrics was calculated for the pairs included in the three first bins. 
Transcriptomic distances and genomic distance: ρ=0.16, ***p<0.001, n=2761 pairs. Transcriptomic 
distances and genomic distance: ρ=0.34, ***p<0.001, n=233 pairs. 
(F) Closely related pairs of odorant receptors were identified relative to their genomic distance (95th 
percentile of the intergenic distances between neighboring Olfr genes) or sequence identity (5th 
percentile of the pairwise amino acid difference distribution). The proportion of these pairs was 
determined for each bin of pairwise transcriptomic distances.  
(G) Transcriptomic distance distribution of four categories of odorant receptor gene pairs defined by 
their genomic proximity and the sequence identity of their corresponding protein. Close pairs were 
defined as in F. In terms of genome proximity, distant pairs were defined as belonging to different gene 
clusters. In terms of sequence identity, distant pairs were defined as higher than the threshold value 
set for close sequences. ***p<10, ns p>0.05; Wilcoxon rank test. 
 
 
Activity induced transcriptomic modulation in Olrf151- and Olfr16-expressing sensory 
neurons 
 
Following the identification of specific transcriptomic identities characterizing the 
different olfactory neuronal populations at rest, we explored their potential evolution 
after agonist activation. To address this question, we determined the transcriptome of 
defined and well described neuronal populations following exposure to odorants 
(Figure 3A). We used two knockin mouse lines, Olfr151GFP/GFP and Olfr16GFP/GFP, in 
which olfactory sensory neurons expressing the Olfr151 (M71) and the Olfr16 
(MOR23) odorant receptor genes are modified such that when transcribed, a green 
fluorophore is coexpressed. These olfactory receptors have very different sequences 
(Miyata score=273.24), are expressed in different zones of the olfactory epithelium 
(Figure 3B,D), are expressed in different basoapical layers (Figure 3C-F), and respond 
to different agonists. 12 live and freely moving mice were exposed for 5 hours to 
acetophenone and lyral, two known agonists of Olfr151 and Olfr16, respectively 
(Bozza et al., 2002; Touhara et al., 1999) (Figure 3A). To extract the most possible 
transcriptomic information, we did not opt here for a scRNA-seq approach but rather 
for the bulk sequencing of purified neuronal populations. Following exposure, 
fluorescent Olfr151- and Olfr16-expressing neurons were isolated by FACS, and their 
transcriptomes were determined and analyzed. Significant and robust transcriptomic 
modulations were observed for both olfactory populations after agonist exposure, with 
645 and 752 genes upregulated and downregulated respectively for Olfr151, and 419 
genes upregulated and 356 downregulated for Olfr16 (Figure 3H-K,L,N,O and Table 
1). The foldchange modulation ranged from 0.032 to 1505 for Olfr151 and from 0.056 
to 517 for Olfr16 (Figure 3I,K). 
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Figure 3. Odorant-induced massive transcriptomic modulations.  
(A) Schematic of the experiment. After being exposed to their cognate ligand for 5 hours, fluorescent 
neurons from Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA was sequenced.  
(B) Coronal section of an Olfr151GFP/GFP mouse olfactory epithelium stained with DAPI (blue). The 
schematic on the lower left indicates the antero-posterior position of the section and the white square 
the region magnified in (C). Scale bar, 0.5 mm. 
(C) Section of an Olfr151GFP/GFP mouse olfactory epithelium containing GFP-expressing neurons (green, 
endogenous GFP). The white square highlights the cell magnified in the image on the right. Scale bars, 
20 µm (left) and 5 µm (right). 
(D) Scatter plot showing mean normalized counts resulting from the differential expression analysis 
(exposed versus non-exposed Olfr151GFP/GFP mice). Blue and orange dots: significantly downregulated 
and upregulated genes, respectively.  
(E) Volcano plot showing differentially expressed genes (DEGs) between exposed and non-exposed 
Olfr151GFP/GFP mice. The x-axis is the log2 scale of the gene expression fold change. Negative values 
indicate downregulation and positive values upregulation. The y-axis is the minus log10 scale of the 
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adjusted pvalues. Blue and orange dots: significantly downregulated and upregulated genes, 
respectively.  
(F) Distribution of the differentially expressed genes between exposed and non exposed Olfr151GFP/GFP 
mice based on their fold change (log2). 
(G) Heatmap showing differentially expressed genes between exposed and non-exposed Olfr151GFP/GFP 
mice. 
(H) Coronal section of an Olfr16GFP/GFP mouse olfactory epithelium stained with DAPI (blue). The 
schematic on the lower left indicates the antero-posterior position of the section and the white square 
the region magnified in (C). Scale bar, 0.5 mm. 
(I) Section of an Olfr16GFP/GFP mouse olfactory epithelium containing GFP-expressing neurons (green, 
endogenous GFP). The white square highlights the cell magnified in the image on the right. Scale bars, 
20 µm (left) and 5 µm (right). 
(J) Scatter plot showing mean normalized counts resulting from the differential expression analysis 
(exposed versus non-exposed Olfr16GFP/GFP mice). Blue and orange dots: significantly downregulated 
and upregulated genes, respectively.  
(K) Volcano plot showing differentially expressed genes (DEGs) between exposed and non-exposed 
Olfr16GFP/GFP mice. The x-axis is the log2 scale of the gene expression fold change. Negative values 
indicate downregulation and positive values upregulation. The y-axis is the minus log10 scale of the 
adjusted pvalues. Blue and orange dots: significantly downregulated and upregulated genes, 
respectively.  
(L) Distribution of the differentially expressed genes between exposed and non exposed Olfr16GFP/GFP 
mice based on their fold change (log2). 
(M) Heatmap showing the differentially expressed genes between exposed and non-exposed 
Olfr16GFP/GFP mice. 
 
 
 
Common activity-induced transcriptomic adaptation in Olfr151- and Olfr16-expressing 
sensory neurons 
 
Taking advantage of our double approach and to potentially extract general rules, we 
compared the transcriptomic modulations of the Olfr151 and Olfr16 populations after 
agonist exposure (Figure 4A). In accordance to our initial observations describing 
significant transcriptomic distances between populations expressing different 
receptors, we first observed that the transcriptomes of Olfr151- and Olfr16- expressing 
neurons were significantly dissimilar (882 genes were differentially expressed 
between the two neuron populations, Figure 4B-E). We then compared the activity-
induced modulated genes between the Olfr151 and Olfr16 populations (Figure 4F-H), 
that without surprise, showed again a significant difference between populations. A 
principal component analysis of the Olfr151 and Olfr16 transcriptomic sets, before and 
after agonist exposure, showed 39% of variance explained by cell identity, and 20% 
of variance by activity. The overlap between the activity-induced responses of the 
Olf151 and Olf16 populations was further explored by comparing their potentially 
common down and upregulated genes. A significant proportion of these genes were 
shared, 215 (51.3%) and 134 (37.6%) of them being commonly upregulated and 
downregulated, respectively (Figure 4I). In both Olfr151- and Olfr16- activated 
populations, the dispersion of downregulated genes decreased, while it increased for 
upregulated genes; this was also true for the genes shared by both populations (Figure 
S5). Finally, we aimed to functionally interpret our data by attributing Gene Ontology 
(GO) terms to the activity-dependent modulated genes common to the Olfr151 and 
Olfr16 populations. Among the very significantly enriched terms, we found signaling 
and G-protein-coupled receptor activity in the GO biological processes terms, 
molecular transducer activity in the GO molecular functions category, and plasma 
membrane and cell periphery in the GO cellular components category (Figure 4J and 
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Table 2). A pattern thus emerged, pointing to actors of the transduction cascade being 
modulated by agonist exposure. 
 
 

 
 
Figure 4. Shared odorant-induced transcriptomic modulations between different olfactory 
populations. 
(A) Schematic of the experiment. After being exposed to their cognate ligand, fluorescent neurons from 
Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA was sequenced.   
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(B) Two dimensional PCA representing the differences in gene expression between two populations of 
olfactory sensory neurons in their basal state (non-exposed) and after exposure to their cognate ligand. 
Each dot represents a pool of 4 mice. 
(C) Scatter plot showing the differential expression analysis between Olfr15- and Olfr16- expressing 
neurons in their basal state. Dark and light green dots: genes expressed significantly higher in Olfr15- 
and in Olfr16-expressing neurons, respectively.  
(D) Volcano plot showing differentially expressed genes in Olfr151- and in Olfr16-expressing neurons 
in their basal state. Dark and light green dots: genes expressed significantly higher in Olfr15- and in 
Olfr16-expressing neurons, respectively. 
(E) Distribution of the differentially expressed genes between Olfr151- and in Olfr16-expressing neurons 
in their basal state. 
(F) Scatter plot showing the differential expression analysis between Olfr151- and Olfr16- expressing 
neurons after exposure to their respective cognate ligands. Dark and light green dots: genes expressed 
significantly higher in Olfr151- and in Olfr16-expressing neurons after activation, respectively. 
(G) Volcano plot showing differentially expressed genes in Olfr151- and in Olfr16-expressing neurons 
after agonist exposure. Dark and light green dots: genes expressed significantly higher in Olfr15- and 
in Olfr16-expressing neurons, respectively. 
(H) Distribution of the differentially expressed genes between Olfr151- and in Olfr16-expressing 
neurons after agonist exposure. 
(I) Volcano plot showing differentially expressed genes in Olfr151- and in Olfr16-expressing neurons 
after exposure to their respective cognate ligands. Orange and blue dots: genes significantly 
upregulated and downregulated in both Olfr151- and Olfr16-expressing neurons, respectively, after 
agonist exposure. Light orange and blue dots represent genes modulated in either Olfr151- and in 
Olfr16-expressing neurons, respectively. 
(J) Gene Ontology analysis of the common differentially expressed genes in Olfr151- and in Olfr16-
expressing neurons. The dashed line corresponds to the significant threshold (FDR adjusted p<0.05). 
 
 
 
Modulation of transcription following odorant exposure 
 
Modulations in mRNA concentration may result from various processes. Among them 
and first in line, the regulation of transcriptional activity and the modulation of mRNA 
half-life. Our previous work has pointed to a very rapid downregulation of odorant 
receptor gene mRNA concentration following odor exposure (as fast as 20 minutes), 
and in some cases an almost absence of odorant receptor mRNA 5 hours after 
stimulation (von der Weid et al., 2015). This nearly immediate modulation and 
complete loss of messenger is suggestive, or at least compatible with an active 
degradation of cytosolic mRNAs. To explore this question, we took advantage of the 
different characteristics of nascent and mature mRNAs, namely the presence and lack 
of intronic sequences, respectively. We first analyzed the exonic versus intronic reads 
of the modulated genes that we identified after odorant exposure of Olfr151 and Olfr16 
neurons (Figure 5A). Following agonist exposure, a large portion of the genes whose 
modulation was determined after analysis of exonic reads, were also modulated, both 
up and down and in both Olfr151- and Olfr16-expressing neurons, when restricting the 
analysis to intronic reads (Figure 5B-G). To further explore this question, we exposed 
wild type mice to ethyl isobutyrate (Figure 5H), an agonist for which we previously 
determined a set of highly responsive odorant receptor genes, among which Olfr60, 
Olfr166 and Olfr169, whose corresponding mRNA concentrations drastically decrease 
after exposure. We evaluated this potential modulation at the level of nascent mRNAs. 
We observed a downregulation of odorant receptor mRNAs that was similar using 
exonic and intronic reads as readouts (Figure 5I). Finally, we looked at the cellular 
localization of transcripts (Figure 5H). We took advantage of the very high level of 
odorant receptor transcription that makes nascent transcripts easily visualized using 
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in situ hybridization. Since odorant receptors are transcribed monoallelically, a single 
nuclear transcriptional spot corresponding to their expressed odorant receptor gene is 
observed in the nucleus of each sensory neuron (Figure 5J). We exposed wild type 
mice to ethyl isobutyrate and performed in situ hybridizations with a probe specific for 
Olfr171, whose mRNA we previously showed to be modulated following ethyl 
isobutyrate stimulation. We quantified the intensity of the nuclear signal, before and 
after agonist exposure, and found a significant decrease in signal intensity after ethyl 
isobutyrate exposure (Figure 5J). Taken together, these data all point to an odorant-
induced modulation of transcription, and not to a mechanism involving degradation or 
stabilization of mature mRNAs.  
 

 
 
Figure 5. Odorant-induced modulations of mRNA levels result from transcriptional regulation 
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(A) Schematic of the experiment. After being exposed to their cognate ligand, fluorescent neurons from 
Olfr151GFP/GFP and Olfr16GFP/GFP mice were FAC-sorted and total mRNA was sequenced.   
(B) Scatter plot showing fold changes observed using exonic or intronic reads of FAC-sorted Olfr151-
expressing neurons. Each gene is represented by a dot. 
(C) Examples of downregulated genes in Olfr151-expressing neurons (shown in (B)) after 
acetophenone exposure, whose fold change relative to control conditions were measured using exonic 
and intronic sequences. **p<0.01, ***p<0.001, two sample independent t test using a linear model in R 
adjusted for FDR multiple comparisons. 
(D) Examples of upregulated genes in Olfr151-expressing neurons (shown in (B)) after lyral exposure, 
whose fold change relative to control conditions were measured using exonic and intronic sequences. 
*p<0.1, **p<0.01, two sample independent t test using a linear model in R adjusted for FDR multiple 
comparisons. 
(E) Scatter plot showing fold changes observed using exonic or intronic reads of FAC-sorted Olfr16-
expressing neurons. Each gene is represented by a dot. 
dot. 
(F) Examples of downregulated genes in Olfr16-expressing neurons (shown in (B)) after acetophenone 
exposure, whose fold change relative to control conditions were measured using exonic sequences. 
*p<0.1, **p<0.01, two sample independent t test using a linear model in R adjusted for FDR multiple 
comparisons. 
(G) Examples of upregulated genes in Olfr16-expressing neurons (shown in (B)) after lyral exposure, 
whose fold change relative to control conditions were measured using exonic and intronic sequences. 
**p<0.01, ***p<0.001, two sample independent t test using a linear model in R adjusted for FDR multiple 
comparisons. (H) Schematic of the experiment where after exposure of wild type mice to ethyl 
isobutyrate, the olfactory transcriptome was either analyzed by RNA sequencing (I) or the main olfactory 
epithelium was sectioned and hybridized in situ with probes recognizing Olfr171 transcripts (J and H). 
(I) The downregulation of three odorant receptor transcripts (corresponding to receptors activated by 
ethyl isobutyrate) was observed at the level of both intronic and exonic reads. ***p<0.001, two sample 
independent t test using a linear model in R adjusted for FDR multiple comparisons. 
(J) Representative images of a control (top) and ethyl isobutyrate-exposed (bottom) olfactory sensory 
neuron, hybridized with an Olfr171 probe. Dashed lines delimit the nucleus, and arrowheads point 
towards the site of transcription of Olfr171. Scale bar, 10 um.  
H) Fluorescence intensity within the transcription foci. Each dot represents an ethyl isobutyrate-exposed 
neuron. Fluorescence intensity was divided by the mean of all control neurons (median +/- 25th to 75th 
percentile). **p=0.0017, unpaired t test with Welch’s correction. 
 
 
 
Adenylyl-cyclase-dependent activity-induced transcriptomic adaptation 
 
Following our identification of the nucleus as the source of the activity-dependent 
modulation of mRNA levels, we aimed at identifying the molecular events that underlie 
this phenomenon. We hypothesized that the canonical olfactory transduction cascade, 
which is well understood and involves multiple players, was likely involved (Figure 6B). 
We thus genetically dissected the cascade to evaluate the role that each element may 
play in the odorant-induced transcriptional response. We used several transgenic mice 
that were deficient in specific cascade elements (colored in Figure 6B), exposed these 
mice in vivo to ethyl isobutyrate for 5 hours, extracted their olfactory mRNAs, and used 
as a main readout the downregulation of the odorant receptor genes known to be 
affected by odorant exposure (Figure 6A,C). We evaluated the odorant-induced 
transcriptomic response of a null mutant of arrestin b2 (Arrb2del/del), a guanine 
nucleotide-binding protein g8 subunit null mutant (Gng8del/del), an Omp null mutant 
(Ompdel/del), a null mutant of the cyclic nucleotide gated channel subunit a4 
(Cnga4del/del), a conditional, olfactory-specific, null mutant of the cyclic nucleotide 
gated channel subunit a2 (Ompcre;Cnga2 flox/Y), and a conditional, olfactory-specific 
null mutant of adenylyl cyclase 3 (Gng8cre;Adcy3flox/flox). To the exception of 
Gng8cre;Adcy3flox/flox mutants, none of the mutant lines bearing transduction cascade 
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null alleles exhibited any deficiency in the downregulation of the known ethyl 
isobutyrate-responsive odorant receptor genes (Figure 6E-H). Gng8cre;Adcy3flox/flox 
mutants showed a complete absence of activity-induced transcriptional modulation of 
the genes of interest (Figure 6I). Since the approach involved whole tissue RNA 
extraction, the evaluation of the downregulated genes was limited to odorant receptor 
genes, the downregulation of other genes being invisible due to their expression in 
non-responsive neurons and their lack of downregulation in these latter (Figure S6A). 
We however expanded our analysis by evaluating the expression of genes (Krsr2, 
Srxn1, Mustn1, S100a5, Cd24a and Epha5) that we found strongly upregulated after 
agonist exposure of both Olfr151 and Olfr16-expressing neurons (Figure S6B). We 
reasoned that 1) these genes were also likely to be upregulated after ethyl isobutyrate 
exposure and 2) that despite the transcription of these genes in ethyl isobutyrate non-
responsive neurons and thus a significant dilution of the upregulation (Figure S6A) (a 
dilution of over 120x if 10% of the sensory neurons respond to ethyl isobutyrate), we 
may still be able to detect some signal. According to our prediction, we found these 
genes upregulated in the olfactory epithelium of ethyl isobutyrate-exposed mice 
(Figure S6B). When the same protocol was applied to Gng8cre;Adcy3flox/flox mice, the 
upregulation was abolished (Figure S6B). Adenylyl cyclase 3 thus plays a critical role 
in the odorant-induced modulation, a modulation that does not involve the downstream 
cyclic-nucleotide gated channel. 
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Figure 6. Adenylyl cyclase 3 as a critical player in the odorant-induced transcriptomic 
reprogramming.  
(A) Schematic of the experiment. Wild-type and mutant mice lacking different elements of the olfactory 
transduction cascade were exposed to ethyl isobutyrate. The modulation of gene expression levels of 
known non-responsive and responsive odorant receptor genes, and genes we found modulated after 
activation of both Olfr151- and Olfr16-expressing neurons, was evaluated by RT-qPCR.  
(B) Schematic of the olfactory transduction cascade. All elements highlighted in colors were individually 
targeted. 
(C) Transcriptional downregulation of odorant receptor genes in wild-type mice exposed to ethyl 
isobutyrate. Olfr983 and Olfr151 were known not to respond to this ligand, while Olfr167, Olfr166 and 
Olfr170 were previously shown to respond to this ligand. *p<0.1, **p<0.01, ***p<0.001 (FDR adjusted), 
two sample independent t test using a linear model. 
(D-I) Transcriptional downregulation of OR genes in mutant mice lacking elements of the olfactory 
transduction cascade. *p<0.1, **p<0.01, ***p<0.001 (FDR adjusted), two sample independent t test 
using a linear model. 
 
 
 
 
 
Discussion 
 
 
We took advantage of the unique opportunity provided by the mouse olfactory 
epithelium, which contains hundreds of singular cell subpopulations, each defined by 
the expression of a known chemoreceptor gene and thus specifically activable at will 
in vivo, to explore the diverse signals that may determine and modulate neuronal 
transcriptional identities. Our results point to an unexpected tuning of cell identities in 
this sensory system. We found that the transcriptomic identity of mouse olfactory 
sensory neurons is remarkably variable, a variability that results from the interplay of 
two dimensions: a first, steady state transcriptomic identity that characterizes each 
population, to which a second may be added, driven by the recent activity of the 
sensory neuron.  
 
How different are the hundreds of olfactory sensory neuron transcriptomes at rest? 
These transcriptomic dissimilarities can be divided into two categories. First, those 
that involve genes whose mRNA levels are relatively narrowly tuned and specific for 
any given population, providing a range of expression which is barely overlapping 
between populations. Then those that involve genes whose expression may be very 
high in some neurons, and completely absent in others. The combination of these two 
criteria generates a code, which is exclusive to every odorant-expressing population. 
Following odorant-mediated activation, we found a significant overlap between 
modulated genes. These represent late responsive genes (in opposition to early 
response genes). Late regulated genes typically encode proteins that regulate 
dendritic growth, synapse elimination or spine maturation (West and Greenberg, 
2011). In our case, which possibly reflects the peculiarly ordered and relatively 
invariant olfactory circuitry, they mostly pertain to signal transduction categories. 
Interestingly, among the main genes involved in the olfactory transduction cascade, 
including those coding for odorant receptors, Gna1, Adcy3, Cnga2, Cngb1b or Cnga4, 
none were upregulated after odorant-mediated activation, and most were 
downregulated (data not shown). Such transcriptomic contraction affecting all 
members of the olfactory cascade suggests a functional transcriptional adaptation, 
leading to a decreased response to the experienced odor. 
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The expressed odorant receptor appears to be the main determinant in the 
establishment of the olfactory sensory population transcriptomic identities, both for 
steady-state and odorant-induced identities. Indeed, for this latter, the response profile 
of a neuron to agonists depends on the functional of the chemoreceptor it expresses, 
and thus on its sequence. Relative to steady state identity, our data show that 
transcriptomic similarities are better predicted by receptor similarities than by shared 
regulatory sequences represents a strong argument in favor of a direct role played by 
the olfactory receptor in basal transcriptomic identity.  
But how to explain such critical role played by the odorant receptor in neurons at rest? 
Naturally, the resting state in a laboratory setting is an imperfect proxy of an odor void, 
a few sensory neurons always firing in a nose even without specific experimental 
stimulation, since some volatile molecules are always present in the environment. But 
without specific exposure to an odorant source, most olfactory sensory neurons are 
silent, thus preventing the establishment of a readable molecular dynamic range 
across neuronal populations that may accommodate for hundreds of specific cellular 
states (that are necessary to translate into hundreds of different transcriptional 
profiles). An interesting candidate mechanism for the generation of such odorant-
receptor-dependent and odorant-independent graded cellular states is the agonist-
independent natural basal activity of GPCRs. G-coupled receptors are indeed known 
to spontaneously oscillate between two conformations, one active and the other 
inactive, in the absence of ligands (in the presence of these latter, the receptors are 
stabilized in an active state (Kobilka and Deupi, 2007)). This effect was first observed, 
over 30 years ago, with the delta opioid receptor (Costa and Herz, 1989). Since then, 
and despite being often considered as noise, many more examples of such 
constitutive GPCR activity have been reported (with some receptors exhibiting very 
high levels of agonist-independent activity such as the Ghrelin receptor (Damian et al., 
2012)), as well as various diseases associated with GPCR mutations affecting this 
constitutive activity. In the olfactory system, constitutive odorant receptor activity has 
been described and plays an important role: it regulates anterior-posterior targeting of 
olfactory sensory neurons during development (Nakashima et al., 2013). Constitutive 
odorant receptor activity thus appears to produce several different cellular states, 
whose number would be sufficient for defining enough non-overlapping neuronal 
categories to which distinctive rostro-caudal projection positions are assigned. 
 
cAMP is a major player in olfaction, and the broad and evolutive transcriptional 
landscape we describe here appears to also involve this second messenger. cAMP 
function is pivotal at the level of the establishment of the system, as well as for its 
function, and is possibly directly involved in the transcriptional modulations we report 
here. First, cAMP plays a role in the process that leads to restricting odorant receptor 
genes to a single gene and allele (Dalton et al., 2013; Lyons et al., 2013) (although its 
critical role in this exclusion mechanism is debated (Movahedi et al., 2016)), a process 
involving a negative feedback signal resulting from the expression of the chosen 
receptor gene (Lewcock and Reed, 2004; Serizawa et al., 2003). Second, cAMP is 
essential to the establishment of a spatial map in the olfactory bulb, that requires, late 
during olfactory neuron maturation, the expression of glomerular segregation 
molecules such as Kirrel 2 and 3 (Nakashima et al., 2013; Serizawa et al., 2006). This 
process used the canonical olfactory transduction cascade, which is somehow 
activated during development. This cascade involves, after receptor activation, the 
release of Gaolf subunits which activate adenylyl cyclase 3, whose product (cAMP) 
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then facilitates the opening of multimeric cAMP-activated Na+/Ca++ ion channels 
composed of CNGA2, CNGA4 and CNGB1b. The following influx of calcium ions leads 
to the opening of calcium-activated chloride channels, to the efflux of Cl- from the 
neurons, and to action potentials.  Third, via this very cascade, cAMP is part of the 
odorant-induced signal transduction in mature neurons. The cascade involves, after 
receptor activation, the release of Gαolf subunits which activate adenylyl cyclase 3, 
whose product (cAMP) then facilitates the opening of multimeric cAMP-activated 
Na+/Ca++ ion channels composed of CNGA2, CNGA4 and CNGB1b. The following 
influx of calcium ions leads to the opening of calcium-activated chloride channels, to 
the efflux of Cl- from the neurons, and to action potentials. This olfactory cascade is 
possibly involved in the activity-driven transcriptional reprogramming we report here, 
since Adcy3 null mice are immune to the odorant-induced transcriptomic adaptation. 
However, if true, given the maintenance of the odorant-induced transcriptional 
responses in CNG channel mutants, the following steps of the canonical cascade are 
not part of the transcriptional modulation process. In fact, action potentials are not 
even required for agonist-dependent transcriptional modulation, Cnga2del/del olfactory 
neurons being silent. A last and independent role of cAMP is played earlier, during 
olfactory circuit formation, at the time of the targeting of olfactory sensory neurons to 
the olfactory bulb (Chesler et al., 2007; Dal Col et al., 2007; Imai et al., 2006; 
Nakashima et al., 2013; Zou et al., 2007). During neuronal maturation, different levels 
of cAMP are produced in different immature sensory neuron populations, which 
translate in the differential expression of guidance genes, in particular Nrp1 (Dal Col 
et al., 2007; Imai et al., 2006). These different levels result from the basal activity of 
olfactory odorant receptors we previously discussed (Nakashima et al., 2013). 
 
To further explore the molecular players involved in the cAMP-dependent 
transcriptomic modulation, some potential targets of cAMP appear obvious. In 
particular the cAMP response element-binding protein (CREB), a transcription factor 
critical for activity-dependent neuronal plasticity (West and Greenberg, 2011) and 
involved in the activation-induced prolonged lifespan of olfactory sensory neurons 
(Watt et al., 2004) (the evaluation of the role played by this factor may however prove 
difficult to explore, due to the known redundancy of other members of the CREB 
family). Interestingly, a histone H2B variant termed Hist2H2BE exhibits levels of 
expression in olfactory sensory neurons that are associated with the identity (defined 
by the expressed odorant receptors) of the different neuronal populations. Its 
expression modulates neuronal longevity, is reduced after sensory activity, and 
possibly participates in activity-dependent changes (Santoro and Dulac, 2012). This 
downregulation of Hist2H2BE is dependent on adenylyl cyclase 3 (Ac3) function, 
which again, means on cAMP. 
 
The mammalian olfactory mucosa thus represents a multifunctional sensor whose 
neuronal elements, that use olfactory receptors as internal and external probes, are in 
constant evolution, adapting to the world via the activation of large-scale 
transcriptomic programs. Whether this extreme transcriptomic diversity and dynamics 
functionally parallels the one recently observed in some central circuits (Saunders et 
al., 2018; Tasic et al., 2016; Tasic et al., 2018; Zeisel et al., 2018), and whether the 
molecular tools involved in transcriptomic adjustments are shared between different 
circuits, remains to be explored. Given the extraordinary transcriptomic diversity of 
neurons in the mammalian brain and knowing that 90% of non-sensory GPCRs are 
expressed in mammalian brains, the question is worth asking. 
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Experimental model and subject details 
 
Animals 
C57BL/6J male mice were purchased at 5-7 weeks of age from Charles River 
Laboratories. Upon arrival, they were housed in groups of 4-5 animals in standard type 
II cages with access to food and water ad libitum. The following transgenic mouse 
lines were employed: Adcy3flox, Cnga2flox, Gng8cre, Ompcre, OmpGFP, 
MOR23(Olfr16)GFP, M71(Olfr151)GFP (Assens et al., 2016; Li et al., 2004; Matsuo et 
al., 2015; Potter et al., 2001; Skarnes et al., 2011; Vassalli et al., 2002). The Cnga4del 
allele was generated by homologous recombination of a targeting vector lacking the 
sequences encoding for the 3rd and 4th transmembrane domains, the channel pore, 
the cyclic nucleotide-binding regions and the intervening introns 3, 4 and 5. The 
resulting deletion is 2528bp long, and starts with an AvrII site in intron 3 and ends with 
a XhoI site in exon 6. Routine experiments were performed in a room with a 12 hours 
light-dark cycle, the light phase lasting from 6:30 a.m. to 6:30 p.m. All animals were 
housed and treated in accordance with the veterinary guidelines and regulations of 
the University and of the state of Geneva. 

 

Method details 

10X single-cell RNA sequencing  
Cell isolation, sorting and sequencing 
8-weeks-old male C57BL/6J mice were used (n=4). All experiments were performed 
during daytime. Mice were euthanized with intraperitoneal injection of pentobarbital 
(150 mg/Kg) and their olfactory epithelia were immediately extracted and processed 
for tissue dissociation using the Papain Dissociation System (cat #LK003150; 
Worthington® Biochemical Corporation, New Jersey, USA) following the 
manufacturer’s protocol. Cell suspensions were then incubated with 2 μg/ml of 
Hoechst 33342 (a UV fluorescent adenine-thymine binding dye; #H1399, Life 
Technologies) at 37°C for 15 min. Before fluorescence activated cell sorting (FACS) 
and to exclude dead cells, 1 μM of DRAQ7TM (a far-red fluorescent DNA intercalating 
dye; #DR71000, BioStatus) was added to the cell suspensions. Approximately 80’000 
Hoechst+/DRAQ7- cells were collected from each sample, each in a final volume of 
100 μl. After FACS sorting, cell suspensions were concentrated at 800 cells/μl. The 
targeted cell recovery was set to 10’000. In accordance with the Cell Suspension 
Volume Calculator Table of 10X Genomics, 22.6 μl of nuclease-free water was added 
to 20.6 μl of cell suspension and the samples were loaded on the 10X Genomics 
Chromium controller. GEM generation and barcoding, cDNA amplification and cDNA 
library construction were performed following the 10X Genomics Chromium Next GEM 
Single Cell 3' v3.1 protocol (dual index libraries). The cDNA libraries from each sample 
were then pooled and loaded at 2 nM on 2 lanes of the Illumina HiSeq 4000 system 
for paired-end sequencing. 
 
scRNA-seq mapping and counting 
fastq files were pre-processed with Cell Ranger version 6.0.1 (Zheng et al., 2017) with 
default settings. Reads were mapped on the Mus musculus genome primary assembly 
reference 38 (GRCm38) using the STAR aligner (Dobin et al., 2013) implemented in 
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Cell Ranger. A modified version of the Ensembl release 102 of the Mus musculus GTF 
annotation was used. This GTF file was updated with the re-annotation of the 3'UTR 
of olfactory receptor genes. The filtered feature-barcode matrices were used for 
downstream analysis. These matrices included a total of 21,809 cells (sample 1: 5,364 
cells; sample 2: 5,696 cells; sample 3: 4,756 cells; sample 4: 6,004 cells). 
 
scRNA-seq data filtering 
Single-cell RNA sequencing data analyses were performed on R version 4.0.5 using 
the Seurat R package version 4.0.1 (Butler et al., 2018; Satija et al., 2015). Seurat’s 
functions were used with default settings unless specified. The standard analysis 
consisted of the following steps. First, the four 10X gene expression matrix files were 
individually loaded into R using the Read10x function of Seurat. The 10X data were 
then converted to Seurat objects using the CreateSeuratObject function of Seurat. The 
gene expression data was then normalized using the SCTransform function of Seurat 
(Hafemeister and Satija, 2019), and the top 5,000 variable genes were determined for 
datasets integration (Hao et al., 2021; Stuart et al., 2019). Following the integration of 
the four datasets, a preliminary clustering was performed without any additional cell 
filtering in order to identify and remove cell clusters composed of blood, immune or 
suffering cells (i.e. cells exhibiting high expression levels of mitochondrial genes). 
Principal component analysis (PCA) was performed on the integrated assay of the 
Seurat object using the RunPCA function of Seurat. A visual inspection of their 
explained standard deviation led to the selection of the top 9 PCs for subsequent cell 
clustering. To construct a shared nearest-neighbor graph, the above-mentioned PCs 
were used as input to the FindNeighbors function of Seurat (dims = 1:9). Cell clusters 
were then identified using the FindClusters function of Seurat with a clustering 
resolution of 1. This preliminary clustering yielded 27 cell clusters. Cluster-specific 
gene markers were then identified for cluster annotation. Briefly, the raw dataset 
containing cells sampled from all four mice was normalized by library size, scaled to 
104 and natural-log-transformed after adding a pseudocount of 1 using the 
NormalizeData function of Seurat. This normalized data was then used for differential 
expression analysis computed between each cell cluster and all other clusters taken 
together using the Wilcoxon rank sum test implemented in the FindAllMarkers function 
of Seurat (test.use = "wilcox"; only.pos = TRUE). Only genes with an adjusted p-value 
below 0.05 were considered. A blood cell cluster (n = 1) was identified based on its 
high expression of hemoglobin chain complex genes such as Hba-a1 and Hba-a2. 
Immune cell clusters (n = 7) were identified based on their high expression of known 
immune cells markers such as Igkc, Cd52, Cybb, Ctss and Tyrobp. Suffering cell 
clusters (n = 4) were identified based on their high percentage of mitochondrial gene 
counts. This preliminary clustering led to the removal of 12 cell clusters from the 
dataset (n = 4,376 cells). Furthermore, cells were also filtered out if their percentage 
of mitochondrial counts exceeded 10% of their total counts or if they expressed less 
than 1,000 genes (n = 1,506 cells). This preliminary analysis resulted in retaining 
15,927 cells. 
 
scRNA-seq clustering and analysis of main olfactory epithelium cells 
The retained cells were used to identify cell clusters composing the mouse main 
olfactory epithelium (MOE). The corresponding dataset was normalized and integrated 
as described in the previous paragraph (see scRNA-seq data filtering) with the 
following differences: the first 15 PCs were used for the FindNeighbors function of 
Seurat and a resolution of 0.3 was used for the FindClusters function of Seurat. This 
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analysis led to the identification of 13 cell clusters. Cluster identities were then 
determined from the differentially expressed genes in each cluster (see above for more 
details). The markers described in Fletcher et al. 2017 (Fletcher et al., 2017) were 
used for the annotation of the mouse MOE cell types. From the 13 clusters, 5 
corresponded to mature OSNs (mOSNs) based on their high expression of Omp, 
Cnga2 and Gng13 but not Gap43 (Figure S1A) These clusters were then merged 
together into only one cluster of mOSN (Figure 1B). To visualize the resulting 9 cell 
clusters on a 2-dimensional plot, the uniform manifold approximation and projection 
(UMAP) (Becht et al., 2018; McInnes et al., 2018) plot was computed using the 
RunUMAP function of Seurat and the first 15 PCs previously selected (dims = 1:15) 
(Figure 1B). 
Mature OSNs were selected from the main olfactory epithelium dataset for 
downstream analyses (n = 10,737 cells). For each mOSN, the detected olfactory 
receptors were ordered based on their expression levels: 7,178 OSNs displayed the 
expression of a single olfactory receptor, 2,701 OSNs displayed the expression of two 
olfactory receptors and 702 OSNs displayed the expression of at least three olfactory 
receptors. To remove cells that could correspond to multiplets (among those co-
expressing multiple olfactory receptors), the distribution of the expression levels of the 
highest expressed receptors was analysed using the log normalized data. An “is 
expressed” cutoff was set at three median absolute deviations from the median of the 
levels of expression of the highest expressed receptors. OSNs whose highest 
expressed receptor had an expression level below this cutoff were removed from the 
dataset (n = 223 cells). Moreover, OSNs that expressed more than one receptor at an 
expression level higher than this cutoff were also filtered out from the dataset (n = 358 
cells). Finally, roughly 1.5% of the mOSNs (n = 156 cells) did not show receptor 
expression and were also discarded from the dataset. The OSN population identity of 
each of the remaining cells (n = 10,006 cells) was then determined based on the 
olfactory receptor that displayed the highest expression level in that given cell. This 
led to the identification of 955 odorant receptor (OR)-expressing OSN populations (n 
= 9,959 cells) and 7 TAAR-expressing OSN populations (n = 44 cells), as well as a 
Gucy1b2-expressing OSN population (n = 3 cells). OSN populations represented by 
at least 3 cells in the dataset were included for clustering and downstream analyses 
(n = 9762 cells).  
Two parallel analyses were carried out: by keeping or removing the olfactory receptor 
genes from the count matrix. The corresponding datasets were normalized and 
integrated as described above (see scRNA-seq data filtering) with the following 
differences: the percentage of mitochondrial gene counts were used as confounder 
variables in the SCTransform function of Seurat (vars.to.regress = “percent.mt”); the 
first 18 or 19 PCs were used for the FindNeighbors and RunUMAP functions of Seurat 
for the analyses including or not the olfactory receptor genes, respectively; and a 
resolution of 1.9 or 1.7 was used for the FindClusters function of Seurat for the 
analyses including or not the olfactory receptor genes, respectively. These concurrent 
analyses led to the identification of 25 (including olfactory receptor genes) or 23 (not 
including olfactory receptor genes) cell clusters, respectively. Cluster identities were 
then determined from the differentially expressed genes in each cluster (see Data 
filtering for more details). After cluster merging, a total of 10 clusters were retained, 
which were then subdivided into groups of “dorsal” or “ventral” clusters based on their 
complementary expression of Nqo1 (a dorsal mOSN gene marker) or Nfix (a ventral 
mOSN gene marker), respectively. These broad clusters were each composed of five 
sub-clusters characterized by their expression of specific markers genes or absence 
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of them: Dlg2+, Calb2+, Cd55+, Cd36+ and Dlg2-;Calb2-;Cd55-;Cd36- clusters. The 
clustering similarity between the two analyses (i.e. including or excluding the olfactory 
receptor genes) was computed with the normalized mutual information metric using 
the compare function of the igraph R package version 1.2.6 (method = “nmi”).  
The pairwise transcriptomic Euclidean distances between pairs of OSNs was 
computed on the first 19 PCs of the mOSN dataset (computed from the sctransform-
normalized and integrated count matrix; see Data filtering for more details). Euclidean 
distances were then split into two categories: distances between pairs of OSNs 
expressing the same olfactory receptor (intra) or pairs expressing different receptors 
(inter). In order to test if the difference in the distributions of Euclidean distances 
between pairs OSNs expressing the same or different olfactory receptors was not a 
random effect, we permutated the cell identities (and hence the corresponding 
olfactory receptor identities) of the PCs prior to distance calculation (n = 1000 
permutations). The Wilcoxon rank sum test was then used to compare these 
distributions and the p-values were adjusted for multiple comparisons using the 
Bonferroni correction method. 
Similar to what was performed per cluster, OSN population-specific gene markers 
were identified using the log normalized UMI counts and the FindAllMarkers function 
of Seurat (test.use = "wilcox"; only.pos = TRUE). In Figure 1G, the largest OSN 
population from each cluster was selected and the gene expression levels of its cells 
were compared to those of all other cells from the dataset. In Figure 1H, the six largest 
OSN populations from the Dlg2-, Calb2-, Cd36-, Cd55- ventral cluster were selected 
and for each of these populations the gene expression levels of their cells were 
compared to those of all other cells from that specific cluster. Only genes expressed 
in at least 70% of the cells of the given population and that yielded an adjusted p-value 
below 0.05 were considered. For plotting, the log normalized data was scaled and 
centered using the ScaleData function of Seurat, and the extreme values were clipped 
and set to the lower and upper limit values of the 95% confidence interval of the data 
using the clip.data function of the fsbrain R package version 0.4.3 (lower = 0.025; 
upper = 0.975). 
 
Transcriptomic, genomic and amino acid distances 
Functional OR gene identification and OR phylogeny 
The functional OR phylogeny was partly built from the same sequence set as used in 
(von der Weid et al., 2015). To constitute this set, OR coding sequences were 
identified de novo in the mouse genome assembly GRCm38 using TBLASTN 
searches with previously annotated mouse OR protein sequences as queries. The hits 
were manually curated to filter out putative non-functional receptors. The criteria to 
consider an OR to be functional was the conservation of evolutionary constrained 
residues (Niimura, 2013), the integrity of the seven transmembrane domains and the 
absence of intron within the coding sequence (de March et al., 2015), resulting in a 
set of 1141 putatively functional OR. After this filtering, 11 filtered out ORs were 
retrieved as they were found to be expressed in a monoallelic fashion in one or more 
OSNs, in our scRNA-seq data. For these ORs, we used coding sequences as 
annotated in Ensembl version 102. Notably, 8 of these 11 ORs have their coding 
sequence spanning two exons, with most of the coding sequence (covering the seven 
transmembrane domains) included in the last exon. 
A multiple sequence alignment including the resulting OR protein sequence set was 
obtained with Clustal Omega v1.2.4 (Sievers et al., 2011), using the --full and --full-iter 
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options. The resulting alignment was trimmed to keep the sites between the most 
conserved start methionines and the last position with less than 90% of gaps. 
The maximum likelihood phylogeny of the mouse functional ORs was calculated with 
Phyml version 20120412 (Guindon et al., 2010) using the following parameters: -d aa 
-m JTT -f e -v e -c 4 -a e -s BEST -o tlr. The resulting tree was rooted on the node at 
the origin of class I and class II ORs. 
 
Transcriptomic identity of mature OSN populations and pairwise distance metrics 
OSN populations are referred to as OSNs expressing the same Olfr genes in a 
monogenic manner. Each OSN population was assigned to the transcriptomic cluster 
to which the majority of cells belong to. In case of equivalences, we assigned the 
transcriptomic cluster randomly. In Figure 2A, OSN populations with three or more 
cells are displayed around the phylogeny, whereas in Figure 2C and on, we kept OSN 
populations represented by 10 or more OSNs to reduce noise in pairwise distance 
statistics. Transcriptomic identities of these populations were defined as the centroids 
of the population transcriptomes in the same PCA that was used for the transcriptome 
clustering including as well the top 19 PCs. Pairwise transcriptomic distances between 
OSN populations were obtained by calculating the Euclidian distance between their 
respective centroids.  
Pairwise genomic distance between Olfr genes was measured as the distance in base 
pairs between start codons of Olfr genes. For the 8 Olfr genes that have their start 
codon on another exon, we instead used the first position of the last coding exon. 
Genomic distances were only obtained between genes in the same chromosome. 
Pairwise distances between adjacent genes were used to aggregate Olfr genes in 
cluster. For this, the sorted distances were split into two groups using the Jenks natural 
break optimization for k=3. In that manner, the middle break is used to separate 
unbiasedly two categories of distances: the smaller distances representing the 
intracluster distances and the longer distances representing the intercluster distances. 
Next, we calculated the mean and the standard deviation of the intracluster distances 
and defined the clustering threshold as the mean plus 3 times the standard deviation. 
Finally, gene clusters were obtained by aggregating neighboring genes whose 
genomic distance was closer to each other than the clustering threshold.  
Pairwise amino acid difference was measured on the protein alignment that was used 
for the phylogenetic reconstruction. For a given pair of aligned sequences, each 
substitution was scored according to the Miyata amino acid replacement matrix 
(Miyata et al., 1979). Insertions were scored as the mean replacement scores of each 
additional amino acid. The sum of these scores gave the pairwise amino acid 
difference. 
In Figure 2F, we defined thresholds of genomic distance and amino acid difference to 
attribute pairs of OSN populations as being close in terms of genomic proximity 
between the Olfr genes they express or in terms of sequence identity between their 
respective OR. For genomic proximity, we evaluated all intergenic distances between 
neighboring ORs belonging to the same cluster and chose the 95th percentile of this 
distribution as the threshold value for a pair to be considered close. For sequence 
identity, we evaluated all pairwise amino acid differences between ORs belonging to 
the same class and chose the 5th percentile of this distribution as the threshold value 
for a pair to be considered close. For Figure 2G, a pair was considered distant in terms 
of genomic proximity when the corresponding Olfr genes were located in different Olfr 
gene cluster. A pair was considered distant in terms of sequence identity when the 
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amino acid difference between their corresponding ORs was higher than the threshold 
used to identify the close pairs. 
 
Chemicals 
Odorants were directly purchased from Sigma-Aldrich, ethyl isobutyrate (W242802), 
acetophenone (42163). Lyral was obtained as a generous gift from Dr. Christian 
Margot (Firmenich). 

Odorant exposure 
For all odorant exposures, on the day preceding the odorant exposure mice were 
isolated and single-housed in a standard type II long cage. Exposure assays started 
at 8:00 a.m. and lasted 5 hours. For the exposed condition, a cotton swab was imbibed 
with 200µL of 5% odorant in a DMSO solution and was placed in the cage, while for 
the control condition, a cotton swab was imbibed with 200µL of DMSO only and was 
placed in the cage. 

FACS-seq 
Cell isolation, sorting and sequencing 
Olfr16GFP/GFP and Olfr151GFP/GFP mice, corresponding to mice carrying the 
Olfr16irestauGFP/irestauGFP (Olfr16tm2Mom) and Olfr151irestauGFP/irestauGFP (Olfr151tm26Mom) 
alleles respectively (Potter et al., 2001; Vassalli et al., 2002), were used to isolate 
single fluorescent OSN populations from the whole MOE. 7-week-old Olfr16GFP/GFP 

and Olfr151GFP/GFP were exposed as described above to lyral and acetophenone, 
respectively. Control mice from each transgenic line were exposed to DMSO only. For 
each condition, there were 3 samples, where each sample was constituted by a pool 
of 4 mice. After odorant exposure, mice were euthanized by intraperitoneal injection 
of pentobarbital (150mg/Kg), the whole MOE was extracted and OSNs were 
dissociated by adapting the protocol described in Kaur et al., 2013 (Kaur et al., 2013). 
Briefly, the collected epithelia were minced inside a tube containing a dissociation 
buffer (D-csyteine-HCl 1M, EDTA 100mM, Papain 0.3U/µL, DNAse I (Ambion) 2U/µL 
and DNAse I 10x buffer (Ambion), dissolved in freshly prepared and oxygenated cold 
aCSF). The aCSF composition was the following: 118mM NaCl, 25mM NahCO3, 
10mM D-glucose, 2mM KCl, 2mM MgCl2, 1.2mM NaH2PO4, 2mM CaCl2. Samples 
were then placed at 37°C for a total of 25 minutes allowing enzymatic dissociation of 
the tissues, during which they were subjected to a trituration step every 5 minutes 
using polished glass pipettes. At the end of the dissociation, each sample was filtered 
through a 20µm Nylon filter (Falcon), and centrifuged for 5 minutes at 200G. The 
supernatant was discarded and replaced with ice-cold aCSF. Before FAC-sorting, 
samples were incubated at 37°C for 20 minutes with Hoechst 33342 (1mg/mL) to label 
live cells. Cell-sorting was performed on an AriaII (BD Biosciences) cell-sorter, gated 
on Hoechst and GFP fluorescence. Cells were collected directly in lysis buffer from 
the Qiagen RNeasy plus micro kit. For the Olfr16GFP/GFP mice, 100 cells were collected 
per individual, resulting in 400 cells per biological pool. For the Olfr151GFP/GFP mice, 50 
cells were collected per individual, resulting in 200 cells per biological pool. The 
difference in the total number of cells collected per experiment derives from the original 
respective OSN population sizes in the epithelium (Bressel et al., 2016). The RNA 
extraction was performed according to the Qiagen RNeasy plus micro kit protocol. The 
SMARTer™ Ultra Low RNA kit from Clontech was used for reverse transcription and 
cDNA amplification (12 PCR cycles) according to the manufacturer’s specifications, 
starting with a total volume of 9.5 µL per sample as total RNA input. 200 pg of cDNA 
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were used for library preparation using the Nextera XT kit from Illumina. Library 
molarity and quality was assessed with the Qubit and Tapestation using a DNA High 
sensitivity chip (Agilent Technologies). Libraries were pooled at equimolarity and 
loaded at 11 pM for clustering on a Single-read Illumina Flow cell for the Olfr16GFP/GFP 
experiment. Reads of 50 bases were generated using the SBS HS v3 chemistry on an 
Illumina HiSeq 2500 sequencer. Deep sequencing of the Olfr16 dataset yielded a 
mean of 37.2M (± 1.3M) short single-reads for the control condition, and a mean of 
35.4M (± 4M) short single-reads for the exposed condition. For the Olfr151 experiment, 
libraries were loaded at 2 nM for clustering on an Illumina HiSeq 4000 sequencer. 
Deep sequencing of the Olfr151 dataset yielded a mean of 58.5M (± 1.5M) short 
single-reads for the control condition, and a mean of 62.1M (± 1.3M) short single-reads 
for the exposed condition.  
 
FACS-seq mapping and counting 
STAR (v.2.7.0, Dobin et al., 2013) was used to map the generated reads on the 
Ensembl Mus musculus genome primary assembly reference 38 (GRCm38) that 
included the IRES-tau-GFP sequence. Gene expression quantification was carried out 
using featureCounts version 1.6.3 (Liao et al., 2014).  
 
FACS-seq data filtering 
To filter out lowly- and non-expressed genes for each OSN population (Olfr16 and 
Olfr151), a count threshold was determined to exclude all genes with expression 
values below this threshold across either the 3 control or 3 exposed samples. Briefly, 
the density distribution of gene counts was used to calculate the local minimum and 
this value was set as the threshold.  
 
FACS-seq gene expression analysis 
The DESeq2 package (v.1.30.1) was then used to perform differential expression 
analysis. After fitting a negative binomial generalized linear model (GLM), the Wald 
test (two-tailed) was used to test for significance of gene expression at a log2 fold 
change threshold of 0.5. To control the false discovery rate, the Wald test p-values 
were adjusted for multiple comparisons using the Benjamini-Hochberg procedure 
(Benjamini and Hochberg, 1995).  
 
Gene Ontology enrichment analyses 
All Gene Ontology (GO) enrichment analyses were performed testing GO terms 
mapped to the differentially expressed genes (DEGs) common to both analyzed OSN 
populations (Olfr16 and Olfr151) against a background of GO terms mapped to all 
other genes commonly expressed in both OSN populations. DEGs were analyzed for 
Gene Ontology (GO) enrichment by the topGO package using the runTest function 
with the “classic” algorithm and the Fischer statistics. To control the false discovery 
rate, the p-values were adjusted for multiple comparisons using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). The result of the GO terms 
analysis were then plotted with the ggplot2 function in R. 

 
RNA extraction for bulk RNA sequencing and RT-qPCR 
After odorant exposure, mice were euthanized by intraperitoneal injection of 
pentobarbital (150mg/Kg). From each animal, total olfactory epithelia (lateral and 
septal) from each side were collected and transferred to a tube containing 500 µL of 
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ice-cold lysis buffer (Quickgene RNA tissue kit SII), 5 µL of β-mercaptoethanol and an 
RNAse free stainless steel bead measuring 0.5 cm in diameter. Samples were 
homogenized for 30 s at 6 ms-1 with a FastPrep-24 instrument (MP Biomedicals). After 
homogenization, samples were either flash frozen at -80°C for future RNA extraction 
or directly processed. For RNA extraction prior to bulk RNA-seq and RT-qPCR, we 
followed the manufacturer’s protocol from the Kurabo QuickGene RNA tissue kit SII. 
At the final elution step, 50 µL of RNAse-free water was added to each column. 
Samples were then treated with DNAse as per the Life Technologies Ambion I DNAse 
kit protocol and stored at -80°C.For FACS-seq and single-cell RNA-seq, RNA 
extraction protocols are described in the corresponding sections.  

Bulk RNA-seq 
Sequencing 
Mice were exposed to ethyl isobutyrate as described above. After RNA extraction, 
cDNA libraries were generated with the Truseq RNA and DNA sample preparation kits 
after selection of polyA-containing mRNAs. Adapters for RNA-seq multiplexing were 
added to the cDNAs. The cDNA libraries were sequenced with a HiSeq2500 
Sequencing system, where 100-bp reads were generated. The raw data generated in 
this experiment was previously published in Von der Weid et al. (von der Weid et al., 
2015).  

Bulk RNA-seq mapping and counting 
The mapping and counting of bulk RNA-seq data was performed exactly as described 
for FACS-seq data above (FACS-seq mapping and counting, data filtering and 
expression analysis).  
 
RT-qPCRs 
RNA quantitation 
Wild-type and mutant mice were exposed to ethyl isobutyrate and RNA was extracted 
as described above. RNA quantitation was performed using a Nanodrop, and the RNA 
quality was assessed with the Agilent Technologies 2100 Bioanalyzer. The reverse 
transcription was performed with the Takara PrimeScript RT Reagent kit (RR037A) 
with 500 ng of starting RNA in a total volume of 10 µL. Specific primers were designed 
to amplify exon-exon junctions (if feasible) and to generate a 80-150 bp amplicon 
(Table 3). Each qPCR reaction, was run in technical triplicates for each sample and 
took place in a total volume of 10 µL composed of 2.5 µL of cDNA at 4 ng/µL and 7.5 
µL of PowerUp SYBR Green master mix from Thermofisher® together with primers at 
300 nM. A QuantStudio5 machine with the following qPCR program parameters was 
used: 2 minutes at 50°C, 10 minutes at 95°C, 40 cycles each lasting for 15 s at 95°C 
and 1 minute at 60°C.  

RT-qPCR data analysis 
Raw data were then analyzed using the ThermoFisher Cloud algorithm, setting 
manually a detection threshold at ∆Rn = 0.3 (this value fits the exponential 
amplification phase). Dissociation curves were required to have a single peak to 
ensure primers specificity. The cycle thresholds (CTs) were normalized using 3 
olfactory tissue-specific reference genes (i.e. Adcy3, Gap43 and Gng8). When 
knockout mouse lines for one of these genes were analyzed (i.e. Adcy3flox/flox;Gng8wt/cre 
or Gng8del/del), the corresponding gene was omitted and the data was normalized using 
the two remaining genes. Triplicates with outliers with a standard deviation of their 
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normalized CTs superior to 0.25 were manually discarded. Normalized CT values 
were converted to relative quantities (Rq) by dividing each sample’s CT to that of a 
randomly chosen control sample. To calculate the mRNA levels of exposed mice 
compared to control mice, the relative mRNA quantity of each exposed sample was 
divided by the mean of control samples. The statistical significance of the differences 
in Rq values between the groups was tested using a linear model in R, with the 
individual Rq values of each sample as the response variable and the group labels 
(i.e. exposed and non-exposed) as the predictor variable. Each gene was tested 
separately, and all tests were adjusted for multiple comparisons using the false 
discovery rate method. 
 
 
Exon-intron split analysis 
Using the STAR read aligner tool (v.2.7.0 ;  (Dobin et al., 2013)), reads from the FACS-
seq and bulk RNA-seq experiments were mapped to the Mus musculus Ensembl 
transcriptome reference (GRCm38 from Ensembl). The annotation file used for this 
analysis only contained protein coding gene annotations. Gene expression 
quantification was carried out using featureCounts (Liao et al., 2014) version 1.6.3. To 
quantify intronic reads for a specific gene, we subtracted the reads mapped on the 
exon from the reads mapped to the entire transcript. Transcriptional downregulation 
of intronic and exonic features in exposed mice was tested by a two sample 
independent T test using a linear model in R adjusted for FDR multiple comparisons. 

In situ hybridization 
Mice were exposed to odorants for 1 hour, after which they were euthanized. Heads 
were placed in 10% formalin, purged of gaz, left overnight at 4°C, transferred to 15% 
sucrose for 12 hours, followed by 30% sucrose for 12 hours. They were embedded in 
OCT and frozen. The main olfactory epithelium was cut in 16–18 μm coronal sections 
with a cryostat-microtome. Slides were conserved at −80 °C until use. RNA probes 
were designed to have a maximum identity with aspecific targets of 80% over a 100-
bp window. Primers to amplify the probe for Olfr171 were: 
AGTGCCTTCTCTTGGCAGT (forward) and GAGTGTGGGTGTCAGGATGG 
(reverse). The probe was transcribed with fluorescein-labeled UTP using the Roche 
RNA Labeling Kit and In-Vitro Transcription Kit following the manufacturer’s protocol. 
Slides were post-fixed in 10% formalin for 15 minutes, and washed for 3 minutes in 
PBS. Slides were incubated in 0.1% H2O2  for 30 minutes and then washed twice in 
PBS for 3 minutes. Slides were then treated with 10 μg/ml proteinase K in TE for 5 
minutes, followed by an incubation in 10% formalin for 10 minutes and washed in PBS 
for 3 minutes. 0.2 M HCl was then added to the slides for 10 minutes, followed by a 3 
minutes PBS wash. Then the slides were pre-incubated in 0.1 M triethanolamine HCl, 
pH 8 for 1 minute and incubated in 0.1 M triethanolamine HCl with acetic anhydride 
for 10 minutes, followed by a 3 minutes PBS wash. Probes were denatured for 7 
minutes at 70 °C and diluted 1:400 in 50% formamide, 10% dextran sulfate, 1 μg/μl 
tRNA and 1× Denhardt’s solution in nuclease-free water. Slides were incubated in the 
hybridization buffer for 14–18 hours at 65 °C. Slides were washed 2× 30 minutes at 
65 °C and 1× 30 minutes at 20–25 °C in 1× SSC, 50% formamide, 0.1% Tween-20 , 
H2O DEPC. They were then pre-incubated 30 minutes with 1× MABT with 2% 
Blocking Reagent (Roche, ref. 11 096 176 001). Roche Anti-Fluorescein POD (Fab 
fragments, ref. 11426346910) was diluted 1:200 in pre-incubation mix and slides were 
covered with the antibody solution for 30 minutes. Slides were washed 3× 5 minutes 
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in TNT (150 mM NaCl, 100 mM Tris, HCl to pH 7.5 in 10 L, 0.05% Tween-20), treated 
with PerkinElmer Biotinylated Tyramide 1:50 in Amplification Diluent for 30 minutes, 
and washed 3× 5 minutes in TNT. Finally they were treated with Alexa-488–labeled 
Streptavidin (Life Technologies) 1:100 in PerkinElmer Amplification Diluent for 30 
minutes, washed 3× 5 minutes in TNT and then incubated with PBS. Fluorescence 
intensity was assessed by measuring the total fluorescence of a disk with an area of 
1.8 μm2 in diameter that comprised the transcription foci using the ImageJ software. 
Fluorescence intensity ratios were calculated by dividing the fluorescence level of 
each exposed neuron to the mean fluorescence of control neurons that had been 
processed in parallel.  
 
 
 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.468971doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.468971


Supplementary figures and tables 
 

 
Figure S1. Cluster-specific markers 
(A) Violin plots showing cluster-specific distribution of selective marker genes characteristic of the 
different cell types populating the nasal cavity (log normalized UMI).  
(B) Violin plots showing cluster-specific distribution of selective marker genes characteristic of the 
identified mature olfactory sensory neuron (mOSN) subclusters (log normalized UMI).  
(C) Violin plots showing cluster-specific distribution of selective marker genes characteristic of the 
identified mOSN subclusters (log normalized UMI) in various olfactory neuron sensory (OSN) 
populations. OSN populations are ordered by their mean expression of S100a5. The color of each violin 
plot indicates the cluster to which the majority of the cells from the given population pertain. 
D) Bar plot showing the amount of cells per OSN population composed of at least 3 cells. Olfactory 
receptor genes are phylogenetically organized. 
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Figure S2. Clustering of OSN populations without odorant receptor data 
(A-B) Visualization of MOE cell clusters on a UMAP plot computed (A) with or (B) without the inclusion 
of olfactory receptor genes in the count dataset. The normalized mutual information (NMI) score 
indicates the clustering similarity between (A) and (B). 
(C-N) Visualization of the dispersion of OSN populations on the UMAP plot reported in (A) (left) and (B) 
(right). 
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Figure S3. Transcriptomic Euclidian distances between OSNs 
(A-C) Violin plots showing, per cluster, the density distribution of transcriptomic Euclidean distances 
(computed on the first 19 PCs) between pairs of OSNs expressing the same receptor (intra) or different 
receptors (inter). perm. corresponds to the distribution of Euclidean distances between pairs of OSNs 
expressing the same receptor after permutation (n = 1000 permutations) of receptor identities prior to 
distance calculation (see methods). Horizontal bars correspond to mean values and dots correspond 
to median values. *p<0.05, **p<0.01, ***p<0.001, Wilcoxon rank test. 
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Figure S4. Density distributions of pairwise distance metrics  
(A) Density distribution of pairwise transcriptomic distances for all pairs of OSN population expressing 
ORs from the same class and the same Olfr gene cluster. White lines delineate bins which cut the value 
range in 10 windows of equivalent width. 
(B) Density distribution of pairwise genomic distances for all pairs of ORs from the same class and the 
same Olfr gene cluster. White lines delineate bins, which cut the value range in 10 windows of 
equivalent width. The red line indicates the 95th percentile of all intergenic distances between adjascent 
Olfr genes, which is the maximum genomic distance of a pair to be considered close in terms of genomic 
proximity. 
(C) Same distribution as in (B) but with a different bin definition. In this case, the right limit of the first 
bin is defined as four times the average intergenic distance between adjascent Olfr genes. The 
subsequent limits are calculated as multiplication by 2 of the precedent value. 
(D) Pairwise transcriptomic distance distribution for each range of pairwise genomic distance values 
defined by the binning described in D. Spearman’s rank correlation (ρ) was calculated for values 
comprised in the 3 first bins: ρ=0.28, ***p<0.001, n=1792 pairs. 
(E) Density distribution of pairwise amino acid differences for all pairs of ORs from the same class and 
the same Olfr gene cluster. White lines delineate bins, which cut the value range in 10 windows of 
equivalent width. The red line indicates the 5th percentile of the data, which is the threshold to separated 
close and distant pairs in terms of sequence identity.  
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Figure S5. Dispersion analysis of the modulated genes in Olfr151(GFP/GFP) and 
Olfr16(GFP/GFP) populations 
(A) Dispersion analysis in Olfr151(GFP/GFP) and Olfr16(GFP/GFP) populations. The left violin plots 
(purple) correspond to genes significantly downregulated after odorant exposure. The right violin plots 
(orange) correspond to genes significantly upregulated after odorant exposure. The y-axis represents 
the dispersion, calculated as log(variance/mean) per modulated gene.  
(B) Dispersion modulation in the exposed samples relative to the non-exposed samples, calculated as 
the mean of the dispersion in the exposed samples divided by the mean of the dispersion of the non-
exposed samples in the modulated genes. Blue dot: relative dispersion of the downregulated genes. 
Orange dot: relative dispersion of the upregulated genes.  
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Figure S6. Activity-dependent upregulation of genes depends on adenylyl cyclase 3 
(A) Schematic showing the significant differences of sensitivity, when using mRNA quantification of 
whole olfactory epithelium extracts, to identify transcriptomic modulations of genes exclusively 
expressed in responsive neurons or also expressed in non-responsive neurons. 
(B) Genes found to be upregulated in Olfr151 and Olfr16-expressing neurons after acetophenone and 
lyral exposure, respectively, were also found upregulated following ethyl isobutyrate exposure. This 
upregulation was abolished in Adcy3 null mice. *p<0.5, two-way RM-ANOVA. 
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Table 3. Primers used for RT-qPCR analysis 

gene 
 

forward primer reverse primer 

Adcy3 GGTGCCTTCCAAGTACTCCA AGTGTTCGGGCCAGTTTTTC 
Gap43 TCAAAGGCGAGAAGAAGGGT CATCGGTAGTAGCAGAGCCA 
Gng8 ATCGATCGCATGAAGGTGTC TGCAAAAGAGTCGCTTGTCG 
Cnga2 CGTTGGTTGTTTGTCATTGCC GAGAAGTAATCCAGCACCAGC 
Olfr15 CACAAGTCTCAATGAGGCGG AAGAGACCAGGATGACGCTT 
Olfr166 AGTATCAACCCAGTGCTGCT GTGGGACGATCCCTTTCTCT 
Olfr167 ATTCTAGGGCGGGGAAGAAG AGGTGTAAGCAAATGGTGCG 
Olfr169 TATTGATGGGTGCTGCACATTT AAATAAGCCAGTCAGTGTGTGAA 
Olfr170 CACAACACACTATGAGCAAGGA GCCCCTGATGAGTGCATTTG 
Olfr171 TGAATCCAGAGGATAAAGTGTGC AAAAGTGTAGTTCTCACGTTCCA 
Olfr983 ACCTGCAGCTCTCACATGAT ATCCACTGACCCAACAGGAG 
Ksr2 ACAGAAGAGGACAAGCTCCC 

 
CTGGTTGGGTCTTGAATGGC 
 

Srxn1 CGGTGCACAACGTACCAATC TTGATCCAGAGGACGTCGAT 
Mustn1 CATACCAGGTCATGCGGGA CAAAGACTGTCTCGGTGCCT 
S100a5 AGCAAGCTGACCCTGAGTAG TGGTCGCTGTTTTTGTCCAG 
Cd24a AAGTCCAGCCACCACTGAAT TTTGGTGCTTGTGGTGAGTG 
Epha5 TGGTTCCCATCTGCATTTGTTT TTAGGGGATACCAAGTAGGACAA 
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