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Abstract 25 

To determine whether the walking pattern of an organism is a Lévy walk or a Brownian walk, it has been 26 

compared whether the frequency distribution of linear step lengths follows a power law distribution or an 27 

exponential distribution. However, there are many cases where actual data cannot be classified into either of 28 

these categories. In this paper, we propose a general distribution that includes the power law and exponential 29 

distributions as special cases. This distribution has two parameters: One represents the exponent, similar to 30 

the power law and exponential distributions, and the other is a shape parameter representing the shape of the 31 

distribution. By introducing this distribution, an intermediate distribution model can be interpolated   32 

between the power law and exponential distributions. In this study, the proposed distribution was fitted to the 33 

frequency distribution of the step length calculated from the walking data of pill bugs. The autocorrelation 34 

coefficients were also calculated from the time-series data of the step length, and the relationship between 35 

the shape parameter and time dependency was investigated. The results showed that individuals whose step-36 

length frequency distributions were closer to the power law distribution had stronger time dependence. 37 

 38 
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Introduction 42 

Lévy walks are found in the migratory behavior of organisms at various levels, from bacteria and T cells 43 

to humans [1–6]. Lévy walks are a type of random walk in which the frequency of occurrence of a linear step 44 

length l follows a power law distribution   ,1 3p l l     . Compared to the Brownian walk, which is 45 

also a type of random walk (characterized by an exponential distribution   lp l e   of the frequency of 46 

occurrence of step length l), the Lévy walk is characterized by the occasional appearance of linear movements 47 

over very long distances, and why such patterns occur in biological migration has attracted attention [7]. 48 

To determine whether the gait pattern is a Lévy walk or a Brownian walk, a comparison is made concerning 49 

whether the frequency distribution of the linear step length follows a power law distribution or an exponential 50 

distribution [5,8–12]. In the comparison, the range of step lengths to be analyzed and the parameters of the 51 

model that best fit the data in that range, that is, the exponents μ and λ, are first calculated. The maximum 52 

likelihood estimation method is generally used to estimate the parameters. Next, a comparison is made to 53 

determine which model fits better, the power law distribution model, or the exponential distribution model. 54 

For comparison, Akaike information criteria weights (AICw), which considers the likelihood and number of 55 

parameters, are often used [11,12]. To verify whether the model fits the observed data, Clauset et al. [10] 56 

proposed goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic. In this way, judgments have 57 

been made as to whether the observed data follow a power law distribution or an exponential distribution 58 

model, but many actual data cannot be classified as either [3]. 59 

In this paper, we propose a general distribution such that the power law and exponential distributions are 60 

included as special cases. This distribution has two parameters: One represents the exponent, similar to the 61 

power law and exponential distributions, and the other is a shape parameter representing the shape of the 62 

distribution. In this distribution, if the shape parameter is set to a specific value, it represents the power law 63 

distribution, and if it is set to another specific value, it represents an exponential distribution. By introducing 64 
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this distribution, distributions that are intermediate between the power law and exponential distributions can 65 

be modeled. In this study, the proposed distribution was fitted to the walking data of pill bugs collected by 66 

Shokaku et al. [3] as specific observation data. Differently expressed, we estimated the exponent and shape 67 

parameters that best fit the observed data.  68 

 It has been asserted that there is a time dependency in the time series of the step length in human mobility 69 

behavior. For example, Wang et al. [13], Rhee et al. [14], and Zhao et al. [15] demonstrated that the temporal 70 

variation of step length is autocorrelated, which means that there is a trend in the time variation of step length, 71 

such that short (long) steps are followed by short (long) steps. In addition, it has been emphasized that the 72 

time dependence of step length is related to the frequency distribution of the step length following a power 73 

law distribution [13].  74 

In this study, to investigate the time dependence of the walking data of the pill bugs described above, we 75 

calculated the autocorrelation coefficient between the time series tl  of the step length and the time series 76 

tl   with time lag τ. When τ=0, the autocorrelation coefficient is 1 because the two time series are identical. 77 

Conversely, when τ>0, any random walk such as the Lévy walk or Brownian walk is theoretically 78 

uncorrelated. We investigated the relationship between the autocorrelation coefficient calculated from the 79 

time-series data of the linear step length and the shape parameter of the frequency distribution of the linear 80 

step length. The results showed that individuals whose frequency distributions were closer to the power law 81 

distribution than to the exponential distribution tended to show stronger time dependence. 82 

 83 

Methods 84 

A distribution interpolated between the exponential and power law 85 

distributions 86 

In this section, we propose a general distribution that includes exponential and power-law distributions as 87 
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special cases. First, let us consider the process of elongating the persistence length. This length can be a 88 

spatial distance or a time interval. For example, consider a process in which an organism continues to move 89 

in a straight line and reaches a distance of l, and then moves in the same straight line by a dl , for the total 90 

straight-line distance to increase to l dl . As a discrete example, consider the process of tossing a coin and 91 

getting "heads" l times, then getting "heads" again, and extending the period of consecutive "heads" to l+1 92 

times.  93 

Suppose that the probability of length l occurring is represented by p(l). Because l is a length, let l≥0. 94 

Because p(l) is a probability distribution, it satisfies  
0

1p l dl


  . Let us also denote by P(l) the 95 

complementary cumulative frequency distribution (CCDF) in which lengths greater than or equal to l occur. 96 

That is,  97 

    
l

P l p x dx


   (1) 98 

Based on this definition,    
0

0 1P p x dx


    is valid. Similarly, from the definition, the following 99 

relationship holds between p(l) and P(l). 100 

    dP l
p l

dl
   (2) 101 

We denote f(l) the probability that the length l will extend to l dl . f(l) can be expressed by: 102 

    
 

P l dl
f l

P l


  (3) 103 

In contrast, the probability that length l is reached and ends at l is denoted by g(l). g(l) can be expressed 104 

using p(l) and, P(l) as follows: 105 

    
 

p l
g l dl

P l
  (4) 106 

Here, an interval of length l can either extend further from l or end at l, therefore, f(l)+g(l)=1 holds. To 107 

consider the elongation process in the discrete case, that is, when dl=1, let us consider a situation in which a 108 
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coin is tossed repeatedly. We assume a situation in which the probability of “heads” in a coin toss is not 109 

constant, but varies depending on the number of times the same side appears consecutively. For example, 110 

after three consecutive "heads", the probability that the next is also "heads" is represented by f(3). Conversely, 111 

the probability that the next is "tails" is expressed as g(3)=1-f(3). 112 

The CCDF that the same side will continue for l+1 or more consecutively is expressed as follows: 113 

           1

1 1
1

l l

i i
P l f i f l f i f l P l



 
      (5) 114 

The probability that the same side continues consecutively for l times, that is, the probability of length l 115 

occurring, is expressed as follows: 116 

          1

1

l

i
p l g l f i g l P l




   (6) 117 

Now, let us consider Brownian and Lévy walks. For the Brownian walk, the probability of a step length l 118 

occurring and its CCDF is represented by the following exponential distribution with an exponent β. 119 

 
 
 

l

l

p l e

P l e





 



 



 (7) 120 

Conversely, for the Lévy walk, the probability of the occurrence of a step length l and the CCDF is 121 

expressed by the following power law distribution with the exponent β. 122 

 
   

 

1p l l

P l l





  



 



 (8) 123 

If the change rate at length l is defined as      
 

g l p l
l

dl P l
   , the change rates of the Brownian walk and 124 

the Lévy walk can be expressed as follows: 125 

    
 

0
l

l

p l e
l l

P l e





  



     (9) 126 

    
 

 1
1p l l

l l
P l l





 
 


    (10) 127 
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We now define the generalized rate of change to include the Brownian and Lévy walk as a special case, as 128 

follows: 129 

    
 

p l
l l

P l
     (11) 130 

The case of α=0 corresponds to the change rate of the Brownian walk, and the case of α=1 corresponds to 131 

the change rate of the Lévy walk.  132 

Equation (11) can be written as      dP l
l P l l

dl
     , and solving it for  P l  yields the following 133 

solution: 134 

   1exp
1

P l l 


      
 (12) 135 

If we put 1m    , then  P l  is expressed as follows: 136 

   exp mP l l
m

   
 

 (13) 137 

The probability p(l) of step length l occurring can be written as follows, using equation (2). 138 

 
   

1 expm m

dP l
p l

dl

l l
m

 

 

   
 

 (14) 139 

In addition, because -α=m-1, the change rate in equation (11) can be written as follows: 140 

   1ml l    (15) 141 

Let us consider the meanings of m and β. As can be seen from equation (15), the change rate becomes 142 

smaller as the value of l increases, since m-1<0 holds in the range of m<1. Conversely, the longer this persists, 143 

the greater the probability that it will continue the next time. When m>1, the change rate increases as l 144 

increases. Differently put, the longer the value of l, the higher is the change rate. When m=1, the change rate 145 

is a constant value β, regardless of the value of l. Thus, m is a parameter that controls how the length of l, or 146 
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the past history of how long the same condition has lasted, is taken into account. 147 

Conversely, for β, if l and m are fixed, the larger β becomes, the higher the change rate becomes. Otherwise 148 

expressed, β is a parameter that controls the magnitude of the change rate.  149 

For m = 1, equation (14) is expressed as follows: 150 

    expp l l    (16) 151 

Put differently, it represents an exponential distribution of the exponent -β. Conversely, when m = 0, 152 

equation (14) cannot be defined because it involves division by zero. However, when m is sufficiently close 153 

to zero, this distribution can be approximated using the Maclaurin expansion, 1 logml m l   as follows: 154 

 

 

 

 

 

 

 

1

1

1

1

1

1

1

1

exp

exp 1 log

exp log

exp exp log

exp exp log

exp

exp

exp

m m

m

m

m

m

m

m

p l l l
m

l m l
m

l l
m

l l
m

l l
m

l l
m

l
m

l
m













 

 

















 

 

  

 

   
 

    
 
    
 
    
 
   
 
   
 

   
 
   
   (17) 155 

If we set 
1

expZ
m




   
 

 as the normalization constant, equation (17) can be rewritten as follows: 156 

    11
p l l

Z
   (18) 157 

Otherwise expressed, equation (14) represents the power law distribution of the exponent –(β+1) as an 158 

approximation. Thus, equation (14) can be said to be a distribution that includes not only the exponential 159 
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distribution but also the power law distribution as a special case, albeit as an approximation. Therefore, in 160 

this study, for convenience, the distribution of equation (14) is named the generalized distribution (GE). 161 

Furthermore, parameter m is called the shape parameter in the sense that it represents the shape of the 162 

distribution. 163 

 164 

Relationship between the generalized distribution (GE) and Weibull 165 

distribution 166 

We discuss the relationship between the GE and the Weibull distribution [16]. The Weibull distribution is 167 

used to describe the degradation phenomenon and lifetime of a component statistically, and is expressed as 168 

follows: 169 

 
1

( ) exp
m m

m l l
p l

  

     
          

 (19) 170 

Here,  is the scale parameter. Conversely, m is a parameter that determines the shape of the distribution 171 

and is called the shape parameter. The CCDF of the Weibull distribution is expressed as  172 

 ( ) exp
m

l
P l



  
      

 (20) 173 

In the Weibull distribution, if we set m=1 and η=1/λ, an exponential distribution with an exponent  is 174 

obtained as follows: 175 

 
1

1
( ) exp exp exp

m m
m l l l

p l l 
    

       
                  

 (21) 176 

In addition, if m=2 and 2  , the Weibull distribution represents the Rayleigh distribution as shown 177 

below: 178 
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1 2 2

2 2

2
exp exp exp

2

m m
m l l l l l l

p l
       

             
                              

 (22) 179 

Thus, the Weibull distribution includes exponential and Rayleigh distributions as special cases. Let us 180 

consider the relationship between the Weibull distribution and GE. If we set  
1

mm  , equation (19) can 181 

be transformed as follows:  182 

 

   

   

1

1

1

1 1

1

1

( ) exp

exp

exp

exp

exp

m m

m
m

m m

m
m

m m

m m

m
m

m m

m l l
p l

m l
l

m l
l

m m

m l
l

m m

l l
m

  

 

 

 













    
          

 
  

 
 
 
  
        

    
 

   
 

   
 

 (23) 183 

Expressed differently, it is consistent with GE. However, these two are not equivalent. As shown in 184 

equation (16), when m=1, GE represents an exponential distribution. In addition, if m=2 and 21  , then 185 

GE represents the Rayleigh distribution. 186 

  
2

2
2 2

exp exp
2 2

l l
p l l l


 

       
   

 (24) 187 

Thus, for m=1 and m=2, the GE is similar to the Weibull distribution. However, when m is close to zero, a 188 

difference is observed. When m is close to zero, the Weibull distribution can be approximated using the 189 

Maclaurin expansion 1 logml m l   as follows: 190 
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1

1

1

1

1

1

( ) exp

1 log
exp

1
exp log

1
exp exp log

1
exp exp log

1
exp

m

m

m m

m
m m

m
m m m

m
m m m

m

m
m m

m

m
m m

m l l
p l

m m l
l

m m
l l

m m
l l

m
l l

m
l l





  

 

  

  

 

 















    
           

 
  

 
 

   
 
   

     
   

  
         

 
  

 


1

1

1
exp

1
exp

m

m
m

m m

m m

m
l

m
l



 

 

 



 
 
 
 

  
 

 (25) 191 

If we set 
1

exp
m

m
Z

m



 

  
 

 as the normalization constant, equation (25) can be rewritten as follows: 192 

   11
p l l

Z
  (26) 193 

When m is sufficiently close to zero, the Weibull distribution can be approximated as a power law 194 

distribution with an exponent of -1. Put differently, the Weibull distribution only represents the power law 195 

distribution with the exponent -1, regardless of the value of . Conversely, GE can approximate the power 196 

law distribution of any exponent with –(β+1)as a parameter, as shown in equation (18).  197 

 198 

Parameter Estimation 199 

The GE has two parameters: m and β. In this section, we describe a method for estimating these parameters 200 

from the observed data. The first objective of this section is to find the minimum minl  and maximum maxl  201 

of the observed data that should be fitted to the GE model. The second objective is to find the parameters 202 
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m  and   of the GE model that best fit the data in the range min maxl l l   . Suppose we are given N 203 

observed data  1 2, , , ND l l l   in the range of min maxl l l  . The model for the data must be satisfied 204 

 max

min

1
l

l
p l dl  . For this reason, we multiply equation (14) by a constant term and redefine the GE model 205 

as follows: 206 

 
 

 
max

min

max

min

min max

1

1

1

min max

1
; , , ,

1
exp

exp

1
exp

exp exp

l

l

m m

l m m

l

m m

m m

p l m l l p l
p x dx

l l
m

x x dx
m

l l
ml l

m m







 









       
 

             
   




 (27) 207 

When the observed data are discrete, such as natural numbers, they are defined as follows: 208 

 

 
 

 
max

min

max

min

min max

1

1

1
; , , ,

1
exp

exp

l

i l

m m

l m m

i l

p l m l l p l
p i

l l
m

i i
m















       
 





(28) 209 

In addition, because the CCDF of  min max; , , ,p l m l l  must satisfy  min 1P l  , we redefine it as follows: 210 

 min max

min

exp exp
; , , ,

exp exp

m m
max

m m
max

l l
m m

P l m l l
l l

m m

 


 

        
   
        
   

 (29) 211 

When the observed data is discrete, the CCDF is defined as follows: 212 

  
max

max

min

1

min max
1

exp
; , , ,

exp

l m m

i l

l m m

i l

i i
m

P l m l l
i i

m












  
 
  
 




(30) 213 

The log-likelihood of the observed data D was calculated using the following equation (27) as follows:214 
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min max min max
1

1
min max

1

min max
1

ln , ; , ln ; , , ,

ln exp exp ln ln ln exp

ln exp exp ln 1 ln

N

i
i

N
m m m m

i i
i

N
m m m

i i
i

L m l l p l m l l

l l l l
m m m

l l m l l
m m m

 

  

  











                      
       

                       





 

 

1

1

1 ln

1 ln

N
m

i i
i

N
m

i i
i

C m l l
m

NC m l l
m








     
 

     
 







 (31) 215 

   216 

Here min maxln exp exp lnm mC l l
m m

               
    

. The log-likelihood when the observed data are 217 

discrete can be replaced by max

min

1ln exp ln
l m m

i l
C i i

m

 


       
  

 . 218 

The model parameters that best fit the observed data are m  and  , which maximize the log-likelihood. 219 

In this paper, m varies from 0.01 to 1.0 and β from 0.01 to 4.0 in increments of 0.01, and the parameters m  220 

and   for which equation (31) is maximized are obtained numerically. When m = 0, equation (31) cannot 221 

be defined; therefore, we set the number sufficiently close to 0, m = 0.01. 222 

To evaluate the model’s goodness of fit to the observed data, we used the Kolmogorov-Smirnov statistic 223 

 min max,D l l , which represents the distance between the CCDF,  min max; ,S l l l , calculated from the 224 

observed data D and the theoretical CCDF expressed in equation (29) or equation (30). 225 

      
min max

min max min max min max, max ; , ; , , ,
l l l

D l l S l l l P l m l l
 

   (32) 226 

In this paper, let maxl  be the maximum maxl  of the observed data.  227 

 228 
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If maxmaxl l  , then  maxmin ,D l l  can be considered as a function of minl . minl , which minimizes 229 

 maxmin ,D l l , is numerically calculated from within the observed data. That is, 230 

  min maxarg min ,
l D

l D l l


   (33) 231 

As shown above, minl , m , and   can be obtained numerically using equations (31) and (33). 232 

 233 

Autocorrelation coefficient 234 

Suppose we are given T time-series data  1 2, , , Tl l l . In this case, the autocorrelation coefficient r(τ) with 235 

time lag τ is expressed as follows: 236 

 

    
   

1, 1 ,1

2 2

1, 1 ,1 1

1
1,

1
1 ,

T

t T t Tt

T T

t T t Tt t

T

tt
T

T

tt
T

l l l l
r

l l l l

l
l

T

l
l

T


  

 
  


















  

 
   











 


 








 




(34) 237 

When τ=0, we take the correlation coefficient between the same time-series data r(0)=1. We calculated the 238 

autocorrelation coefficients of the time-series data of linear step length to investigate the time dependence of 239 

the pill bugs’ walking data. In this study, the autocorrelation coefficient was obtained in the range of τ = 1–240 

100. The autocorrelation coefficients for every individual are averaged from r(1) to r(100) and are expressed 241 

as r . 242 

 
 100

1

100

r
r 


  (35) 243 

The programs for the parameter estimation and autocorrelation coefficient calculation described above 244 

were developed using C++. The compiler was MinGW 8.1.0 64-bit for C++ [17]. The Qt library (Qt version 245 
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Qt 5.15.2 MinGW 64-bit) was also used for development [18]. 246 

 247 

Statistical analyses 248 

Wilcoxon's rank sum test was used to test the difference in means. For all analyses statistical significance 249 

was set at p < 0.01. The following analysis was performed using the R 3.6.1 statistical software (2019-07-05) 250 

[19] unless otherwise specified. We used the R packages of exactRankTests version 0.8.31 for the Wilcoxon 251 

rank sum test. The operating system used was Windows 10.  252 

 253 

Application 254 

We applied the method described above to the pill bug’s gait data. It is known that pill bugs have a habit 255 

termed turn alternation, following which they turn to the right (left), left (right), and so on [20]. The 256 

mechanism underlying turn alternation is assumed to be based primarily on proprioceptive information 257 

from the previous turn and arises from bilaterally asymmetrical leg movements that occur when turning 258 

[21]. During one turn, the outer-side legs travel further than the inner ones. After completing the turn, the 259 

relatively rested inner-side legs exert more influence on subsequent movements than the outer-side ones 260 

and bias the animal to turn in the opposite direction at the next step. 261 

By alternating turns, pill bugs can maintain a straight course to avoid an obstacle. Moving in a straight 262 

course is considered the most adaptive strategy when precise information about environmental resources or 263 

hazards is absent [22]. However, when pill bugs were examined in successive T-mazes, they sometimes 264 

turned in the same direction as they had at the previous junction (turn repetition). For example, in an 265 

experiment on 12 pill bugs using 200 successive T-mazes (for approximately 30 min), three individuals 266 

maintained a high rate of turn alternation, four a low rate, and the remaining five spontaneously increased 267 
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and decreased the rate [23]. Why some pill bugs did not maintain a high rate of turn alternation, that is, 268 

generate turn repetition at a rate other than low, is still unclear. 269 

Shokaku et al. developed an automatic turntable-type multiple T-maze device to observe the appearance 270 

of turn alternation and turn repetition in pill bugs over a long period and to investigate the effects of these 271 

turns on gait patterns [3]. This is a virtually infinite T-maze that uses a turntable. The pill bug turns to the 272 

left or right at a T-junction, goes straight ahead, and then crosses another T-junction, and so on. Using this 273 

device, Shokaku et al. observed 34 pill bugs for more than 6 h each. An example of a walking pattern in the 274 

T-maze is shown in Fig. 1.  275 

 276 

Fig. 1 Trajectory of an individual's gait. 277 

 278 

When the turns are repeated regularly, alternating left and right, the pill bug is considered to move 279 

straight. Conversely, if the same turn is repeated, such as right and right, it is considered to have changed 280 

direction. 281 

In this classification of gait patterns, the pill bug is considered to decide whether to continue or abort 282 

straight-ahead movement each time it encounters a T-intersection. The straight-line distance l was 283 

calculated using the method shown in Fig. 2. Using this method, time-series data of the straight-line 284 

distance l for each individual were obtained. 285 

 286 

Fig. 2 Sample calculation of step length l. The black polygonal line with the arrow represents a turn; L 287 

represents a left turn, R a right turn. The red line represents an approximate linear movement. The L-R-L-R 288 

pattern shown in this figure represents linear movement with a step length of 4 (l=4). 289 

 290 
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Results 291 

Figure 3 shows an example of a discrete case, that is, the GE represented by equation (28). Figure 3(a) and 292 

3(b) show the cases of m=1.0, and m=0.01, respectively. Figure 3(a) shows a single logarithmic graph with 293 

the vertical axis on a logarithmic scale and Figure 3(b) shows a double logarithmic graph with both axes on 294 

a logarithmic scale. In these figures, the GE for the case 0.5,1.0, 2.0    is shown. In Fig. 3(a), the 295 

exponential approximation curve is shown, and in Fig. 3(b), the power approximation curve is shown. From 296 

the figure, we can see that the GE for m=1.0, can be approximated by an exponential distribution with an 297 

exponent -β. Conversely, the GE for m = 0.01 can be approximated by the power law distribution with 298 

exponent –(β+1). 299 

 300 

Fig. 3 Examples of GE. (a) For m=1.0, the GEs are shown for β=0.5, 1.0 and 2.0. The vertical axis is shown 301 

logarithmically. The exponential approximation curves are also shown. (b) For m=0.01, the GE for β=0.5, 302 

1.0 and 2.0 are shown. Both axes are shown logarithmically. The power approximation curves are also shown. 303 

 304 

Figure 4 shows examples of walking data for three individual pill bugs. Figure 4(a) shows the time series 305 

of the step length of subject 4 in the experiment of Shokaku et al [3]. Figure 4(b) shows the CCDF of the step 306 

length. Figures 4(c) and 4(d) show the data for subject 15, and Figures 4(e) and 4(f) show the data for subject 307 

14. Figures 4(b), (d), and (f) also show the results of fitting the CCDF of the GE model expressed in equation 308 

(30)  to the observed data. Figures 4(b), 4(d), and 4(f) are double logarithmic graphs with both axes displayed 309 

in logarithmic form. Note that in these figures,  min 1P l   is based on the definition of equation (30). 310 

 311 

Fig. 4 Step length data for three individuals. (a) Step length time series for individuals of subject 4. (b) 312 

CCDF of subject 4. min max3, 30, 0.01, 1.68l l m        (c) Step length time series for individuals of 313 
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subject 15. (d) CCDF of subject 15. min max10, 81, 0.24, 0.82l l m       (e) Step length time series for 314 

individuals of subject 14. (f) CCDF of subject 14. min max7, 127, 0.44, 0.42l l m        315 

 316 

 Figure 5 shows the relationship between the autocorrelation coefficient r  of the time-series data of step 317 

length and the shape parameter m when the GE fits the frequency distribution of each individual’s step length.  318 

 319 

Fig. 5 Relationship between shape parameters and autocorrelation coefficients. (a) Scatter plots between 320 

shape parameters and autocorrelation coefficients. The regression line is also shown. (b) Box plot for the case 321 

of grouping individuals with m=0.01 and m>0.01. (c) Correlogram for each group. The vertical axis 322 

represents the mean value of the autocorrelation coefficient of the individuals in the group. The error bars 323 

represent the standard errors. 324 

 325 

The autocorrelation coefficient shown on the vertical axis represents the average value from r(1) to r(100). 326 

In calculating the shape parameter m, only individuals with max minl l   value of 5 or higher were included in 327 

the analysis. The autocorrelation coefficients were calculated from 1 to 100 for the time lag, and only 328 

individuals with more than 200 time-series data were included in the analysis. A total of 27 individuals were 329 

analyzed. The mean ± standard deviation (SD) of the number of time-series data of the step lengths of these 330 

individuals was 601.22 ± 285.77. The minimum and maximum values of the data were 213 and 1244, 331 

respectively. Figure 5(a) shows a scatter plot of the shape parameters and autocorrelation coefficient. There 332 

was no significant correlation between the two parameters (r=-0.47, p =0.014, n=27). Figure 5(b) is a box 333 

plot showing the autocorrelation coefficients for each group when the population was divided into two 334 

groups: Group 1 (n=19) with m=0.01 and Group 2 (n=8) with m>0.01. The Wilcoxon rank-sum test revealed 335 

a significant difference between the two groups (p = 4.05×10-5, W = 145). Figure 5(c) shows the correlogram 336 

for each group. The horizontal axis represents the time lag τ. The vertical axis represents the average 337 
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autocorrelation coefficient for the τ of each individual in each group. The error bars represent the standard 338 

error.  339 

Figure 6 shows the relationship between the GE shape parameter m and exponent β for the 27 individuals 340 

described above. Figure 6(a) shows a scatter plot for both. There was a significant negative correlation 341 

between the two (r=-0.67, p =1.2×10-4, n=27). Figure 6(b) contains a box plot showing the exponent of the 342 

GE for each group. The Wilcoxon rank-sum test showed that there was a significant difference between them 343 

(p = 9.2×10-4, W = 135). 344 

 345 

Fig. 6 Relation between shape parameters and exponent parameters. (a) Scatter plot of the shape 346 

parameter and the exponent parameter. The regression line is also shown. (b) Box plot for the case of grouping 347 

individuals with m=0.01 and m>0.01.  348 

 349 

 350 

Discussion 351 

This paper proposes a generalized distribution that includes exponential and power law distributions as 352 

special cases. By using this approach, a model can be created that better fits the observed data than the 353 

exponential or power law distributions, that is, a model with a higher likelihood. However, this distribution 354 

contains two parameters while the exponential and power law distributions only have one parameter. The 355 

model most suitable for the relevant data must be determined comparatively by using AICw that considers 356 

both likelihood and the number of parameters of the model. 357 

The proposed model handles the intermediate distribution between the exponential and power law 358 

distributions. We defined the change rate   1ml l    as shown in equation (15) to connect the exponential 359 

and power law distributions. However, the change rate has countless definitions. Therefore, it is necessary to 360 
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verify the validity and suitability of this definition in the future. 361 

In this study, the proposed GE was applied to the walking data of pill bugs. A significant difference resulted 362 

between the autocorrelation coefficients of Group 1, which followed an approximate power law distribution 363 

with a shape parameter of m=0.01, and Group 2, which followed the other distributions with shape parameters 364 

of m>0.01, as shown in Fig. 5(b). However, this difference is nontrivial. For example, if we randomly shuffle 365 

the order of the time-series data as shown in Fig. 4 (a), the time dependence disappears, but the value of the 366 

shape parameter is unchanged because the probability distribution, as shown in Fig. 4 (b), is not affected by 367 

the shuffling. 368 

As equation (15) shows, the smaller m is, the smaller the change rate becomes as the step length increases. 369 

Conversely, the smaller the value of m, the higher is the probability that the step length will be further 370 

elongated when the step length increases. This means that when m is small, the occurrence of a long step 371 

length becomes more frequent. 372 

As shown in Fig. 6(a), there is a negative correlation between the shape parameter and the exponent 373 

parameter of the GE. Otherwise expressed, the exponent parameter tends to increase as the shape parameter 374 

decreases. As equation (15) shows, when the exponent parameter increases, the overall change rate increases, 375 

and the frequency of the short step length increases. Thus, individuals with small shape parameter values can 376 

be said to have a relatively higher frequency of short and long step lengths than those with intermediate step 377 

lengths. 378 

Ross et al. [24] demonstrated that in human hunting behavior, the mode of exploration changes depending 379 

on encounters with prey. In particular, they indicated that in response to encounters, hunters more tortuously 380 

search areas of higher prey density and spend more of their search time in such areas; however, they adopt 381 

more efficient unidirectional, inter-patch movements after failing to encounter prey soon enough. This type 382 

of search behavior is called an area-restricted search (ARS) [24,25]. In ARS, searches with short travel 383 

distances within patches are combined with searches with long travel distances between patches, so there 384 

may be a tendency for relatively short and long straight distances to appear more frequently than intermediate 385 
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straight distances, that is, distributions with small shape parameters may be more likely to appear. In addition, 386 

the time dependence of the step length may appear because the search within a patch continues for a while 387 

after encountering the food, or conversely, the search between patches continues for a while when the food 388 

is not found. It may be that the power law distribution and time dependence tend to appear simultaneously 389 

when the search between different levels is combined hierarchically, such as intra-patch and inter-patch 390 

searches.  391 

The result of the significant difference between the autocorrelation coefficients of Group 1 and Group 2 is 392 

consistent with the result of Wang et al. [13], who found time dependence in the time-series data of step 393 

length when the frequency distribution of the step length follows a power law distribution. However, it is 394 

unclear why the shape parameter is associated with the time dependence. The shape parameter of the 395 

distribution takes into account the history of the distance traveled in a straight line, that is, how long the same 396 

process has lasted when elongating the straight-line distance, and is related to the process within single 397 

straight-line behavior. Conversely, the time dependence of the time-series data of straight-line distance is 398 

associated with the relationship between multiple straight-line behaviors. In the future, why this correlation 399 

is observed between the two, must be clarified theoretically and experimentally. 400 

It is also unclear why this association was observed in pill bugs and may have a completely different cause 401 

than in humans. The question whether this relationship also manifests in the migratory behavior of animals 402 

other than pill bugs requires further research. 403 
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Fig. 1 Trajectory of an individual's gait. 

-100

-50

0

50

100

150

-100 -50 0 50 100 150

Y
 

X 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.11.29.470497doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.29.470497
http://creativecommons.org/licenses/by/4.0/


 

26 
 

  472 

 
Fig. 2 Sample calculation of step length l. The black polygonal line with the arrow represents a turn; L 

represents a left turn, R a right turn. The red line represents an approximate linear movement. The L-R-

L-R pattern shown in this figure represents linear movement with a step length of 4 (l=4). 
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474 

 
(a) 

 
(b) 

Fig. 3 Examples of GE. (a) For m=1.0, the GEs are shown for β=0.5, 1.0 and 2.0. The vertical axis is 

shown logarithmically. The exponential approximation curves are also shown. (b) For m=0.01, the GE 

for β=0.5, 1.0 and 2.0 are shown. Both axes are shown logarithmically. The power approximation curves 

are also shown. 
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(a)                                            (b)  

  
(c)                                            (d)   

  
(e)                                            (f)   

Fig. 4 Step length data for three individuals. (a) Step length time series for individuals of subject 4. 

(b) CCDF of subject 4. min max3, 30, 0.01, 1.68l l m       (c) Step length time series for individuals 

of subject 15. (d) CCDF of subject 15. min max10, 81, 0.24, 0.82l l m       (e) Step length time series 

for individuals of subject 14. (f) CCDF of subject 14. min max7, 127, 0.44, 0.42l l m        
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(c) 

Fig. 5 Relationship between shape parameters and autocorrelation coefficients. (a) Scatter plots 

between shape parameters and autocorrelation coefficients. The regression line is also shown. (b) Box 

plot for the case of grouping individuals with m=0.01 and m>0.01. (c) Correlogram for each group. The 

vertical axis represents the mean value of the autocorrelation coefficient of the individuals in the group. 

The error bars represent the standard errors. 
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(a) 

 
(b) 

Fig. 6 Relation between shape parameters and exponent parameters. (a) Scatter plot of the shape 

parameter and the exponent parameter. The regression line is also shown. (b) Box plot for the case of 

grouping individuals with m=0.01 and m>0.01.  
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