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Abstract 16 

The maximum stomatal conductance (g), a major anatomical constraint on plant productivity, 17 

is a function of the stomatal area fraction (f) and stomatal space-use efficiency (e). However, f 18 

and g have been considered as equivalents, with e rarely considered, and their adaptation to 19 

the environment and their regulation of ecosystem productivity are unclear. Here, we analyzed 20 

the community-weighted mean, variance, skewness, and kurtosis of stomatal traits from 21 

tropical to cold-temperature forests. The variance of g and f was higher for arid sites, 22 

indicating greater functional niche differentiation, whereas that for e was lower, indicating 23 

convergence in efficiency. Besides, when other stomatal trait distributions remained 24 

unchanged, increasing kurtosis but decreasing skewness of g would improve ecosystem 25 

productivity, and f showed the opposite patterns. These findings highlight how the relative 26 

importance and equivalence of inter-related traits can differ at community scale. 27 

 28 

Keywords: stomata; community-weighted method; community, adaptation; ecosystem 29 
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Introduction 33 

Stomata are micropores on the leaf surface that regulate the exchange of water vapor and CO2 34 

between plants and the atmosphere (Edwards et al., 1998; HetheringtonandWoodward, 2003). 35 

Indeed, the evolution of stomata was necessary for plants to colonize terrestrial ecosystems 36 

and the diversification of stomatal traits enables plants to inhabit a wide range of 37 

environments (Haworth et al., 2011; Raven, 2002). The numbers of stomatal pores, and their 38 

area and depth determine the maximum stomatal conductance (g), which represent an 39 

anatomical constraint on the maximum rates of diffusion of carbon and water, and thereby 40 

their fluxes in given environments. Indeed, given that there is a close relationship between g 41 

and field-measured stomatal conductance (McElwain et al., 2016; Murray et al., 2019; 42 

XiongandFlexas, 2020), and g has been used to predict water vapor and CO2 fluxes 43 

(FranksandBeerling, 2009; McElwain et al., 2016; SackandBuckley, 2016). In turn, g can be 44 

considered a product of the fraction of leaf epidermal space that is allocated to the stomata 45 

(the stomatal area fraction; f) and the stomatal space-use efficiency (e), which is a function of 46 

stomatal size (see Methods). The f is more properly an index of the combined costs associated 47 

with the construction, operation and maintenance of the stomata, but it is often taken as a 48 

proxy for g (HollandandRichardson, 2009; Liu et al., 2018; Sack et al., 2003), especially as g 49 

and f are theoretically and empirically correlated with each other (de Boer et al., 2016; 50 

FranksandBeerling, 2009). Yet the relative importance and the equivalence of these traits have 51 

not been tested at a large scale.   52 

The importance of g and its determinants is especially critical for the understanding of 53 

the adaptation of diverse species of communities across gradients of aridity. A rich literature 54 
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shows contrasting trait values enables co-occurring species to exploit different resources, or 55 

the same resources on contrasting spatial or temporal scales (Gross et al., 2017; Hooper, 1998; 56 

Hooper et al., 2005), resulting in species-variation in tolerances of scarcity, e.g., drought 57 

(Grossiord, 2020), as well as facilitation (Callaway, 1995) and “selection effects”, i.e,. 58 

differential contribution to the community-weighted trait values (Loreau, 2000). Indeed, traits 59 

that contribute to resource partitioning, such as root stratification (Schwendenmann et al., 60 

2015) or differential stomatal regulation (West et al., 2012) can contribute not only to the 61 

mechanisms by which plants tolerate drought but also can improve species-specific soil 62 

moisture status by reducing competition for water among species. As a composite stomatal 63 

trait, g is coordinated with other plant hydraulic traits (Sack et al., 2003). Generally, a higher g 64 

should benefit species under selection for high productivity or competition (SackandBuckley, 65 

2016; Taylor et al., 2012), and thus, in communities with high water availability, we expected 66 

narrower functional niche differentiation of g than in communities of drier regions. Indeed, 67 

because plants can tolerate drought by maintaining low rates of water uptake and productivity 68 

as soils dry, i.e., “tolerance” and/or by achieving their growth primarily when water is 69 

available, i.e., “avoidance” (Grubb, 1998; HetheringtonandWoodward, 2003), we 70 

hypothesized that g values, which influence water uptake and productivity, would tend to be 71 

more variable in communities of drier regions. Notably, as g depends on f and e, where g is a 72 

proxy for the benefit of assimilated carbon, and f represents the cost of stomatal construction, 73 

maintenance and spatial allocation (de Boer et al., 2016), therefore e, which is g/f, is a 74 

benefit-cost ratio, i.e,. the maximum amount of CO2 that can diffuse through a unit of 75 

stomatal area per unit time. We thus hypothesized that that variability of e within communities 76 
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would be strongly constrained under water scarcity.  77 

Stomatal traits may be a model for plant traits that are important in determining 78 

ecosystem functions, as this role of traits has become a priority topic in ecological research 79 

(Reichstein et al., 2014). The effect of species’ traits aggregated at ecosystem scale is typically 80 

quantified using to the mass ratio hypothesis or the niche complementarity hypothesis. 81 

According to the mass ratio hypothesis the extent to which the trait of a given species affects 82 

ecosystem properties depends on its relative contribution to the total community biomass 83 

(Garnier et al., 2004), and many studies found correlations between ecosystem functions and 84 

community-weighted mean (CWM) values of plant traits (Garnier et al., 2004; Griffin-Nolan 85 

et al., 2018; MuscarellaandUriarte, 2016). According to the niche complementarity hypothesis, 86 

resource niches may be used more completely when a community is functionally more 87 

diverse (SchumacherandRoscher, 2009), and many studies reported that ecosystem function 88 

can be predicted by niche complementarity of traits, as quantified using community-weighted 89 

variance, skewness, or kurtosis of trait values (Gross et al., 2017; Le Bagousse-Pinguet et al., 90 

2017; Liu et al., 2020; Mensah et al., 2020; Zhang et al., 2019). Indeed, the global vegetation 91 

models predict ecosystem production based on the mean values of traits. It is still a missing 92 

picture that how trait distributions influence the prediction. Although stomatal traits are 93 

expected to influence ecosystem productivity given their essential role in controlling leaf 94 

water and CO2 fluxes (HetheringtonandWoodward, 2003; Wang et al., 2015), no studies have 95 

tested the relative importance of the distributions of stomatal traits (including 96 

community-weighted mean, variance, skewness, and kurtosis) in predicting ecosystem 97 

productivity across communities. We hypothesized a strong importance of these community 98 
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distribution metrics for g and potentially for its components, f and e, for regulating ecosystem 99 

productivity at community scale.  100 

We analyzed the community-weighted mean, variance, skewness, and kurtosis and 101 

relationships among these statistical moments, for g, f and e for 800 plant species from nine 102 

sites along a climatic gradient. We hypothesized that the community-weighted variance in g 103 

would increase with aridity, due to variability of f, rather than e. We also hypothesized that 104 

functional niche differentiation of g would be stronger for communities at higher aridity, and 105 

tested whether trait assembly of stomata followed the general assembly rule for maximization 106 

of trait diversity previously reported for drylands globally using specific leaf area and 107 

maximum plant height (Gross et al., 2017). We also hypothesized that stomatal distributions 108 

would predict differences in productivity across ecosystems. 109 

 110 

Results 111 

Relationships between stomatal trait moments and climate 112 

Stomatal traits were closely related to temperature, precipitation, and climatic aridity 113 

(Fig. 1). Overall, the relationships of community-weighted trait means and variances with 114 

climate variables were stronger than those of community-weighted skewness and kurtosis, 115 

and the aridity index was a stronger predictor of stomatal traits than temperature and 116 

precipitation. The community-weighted means and variances of g and f were strongly 117 

positively associated with climatic aridity whereas those of e were negatively associated with 118 

climatic aridity (Fig. 2).  119 

The correlations between community-weighted variance and kurtosis were also tested 120 
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(Fig. S1). For g and f, the community-weighted variance and kurtosis were negatively 121 

correlated; such correlations were not observed with e. At drier sites, g generally showed 122 

larger variance with lower kurtosis, whereas communities of wetter sites generally had 123 

smaller variance with a wide range of kurtosis. 124 

 125 

Skewness-kurtosis relationships (SKR) and random expectations 126 

In most cases, the distributions of stomatal traits differed substantially from normality (Fig. 3). 127 

The community-weighted skewness2 and kurtosis of these three stomatal traits were strongly 128 

positively related. The skewness and kurtosis values generated by the null model were located 129 

within the constraint triangle imposed by the inequality Kurtosis � Skewness� � 1. The 130 

observed empirical skewness-kurtosis relationships (SKR) for g deviated strongly from the 131 

predictions of the two null models, with the slopes (β) were higher and intercepts (α) lower 132 

than would be expected by chance, based on Monte Carlo analyses (Table S6). The observed 133 

kurtosis values for both g and f were significantly closer than expected by chance to the lower 134 

boundary of the mathematical constraint triangle. In other words, after controlling for the 135 

degree of skewness of g and f, observed kurtosis within communities was minimal. 136 

Skewness-kurtosis relationships for e did not differ statistically from those generated by the 137 

two null models; thus, the D of e was not smaller than expected (Fig. 3).  138 

Although the skewness-kurtosis relationships of g and f cannot be explained by chance, 139 

the D of g and f was also influenced by climate. Specifically, drier communities had lower D 140 

values for g and f, while for e the D values showed no climatic trends (Fig. 4). 141 

 142 
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Stomatal trait moments and ecosystem productivity 143 

The distributions of stomatal traits regulated ecosystem productivity (Fig. 5). The amount of 144 

variance in ecosystem productivity explained by community-weighted skewness and kurtosis 145 

was greater than that explained by community-weighted mean and variance. 146 

Community-weighted skewness and kurtosis of g and f played different roles in optimizing 147 

ecosystem productivity: If the other independent variables were fixed, increasing the 148 

skewness of f but decreasing that of g, and increasing the kurtosis of g but decreasing that of f 149 

would improve ecosystem productivity (Fig. 6). Further, ecosystem productivity increased 150 

across communities positively with the mean of e. 151 

Overall stomatal traits explained up to 66% of the total variation observed in ecosystem 152 

productivity, which was greater than that explained by the distributions of stomatal traits 153 

generated by the two null models (Fig. S2). 154 

 155 

Discussion 156 

Maximum stomatal conductance (g) increases with climatic aridity at continental scale 157 

The linkage of g with low water availability has remained controversial. Indeed, plants 158 

may adapt to dry conditions with a low g that may enable sustained low rates of gas exchange 159 

under extended periods of lower water supply, with increased CO2 gain relative to water loss, 160 

i.e., higher water use efficiency (Franks et al., 2015). However, some studies have proposed a 161 

higher g and stomatal conductance can confer an advantage for plants in arid climates, 162 

enabling greater rates of photosynthesis in the shorter “pulses” when water is available 163 

(Grubb, 1998; Scoffoni et al., 2011; Wang et al., 2017), and thus “avoiding” drought with 164 
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opportunistic rapid growth during short periods of water availability. One of the major novel 165 

findings of this study was that the community-weighted mean value of g was positively 166 

related to climatic aridity across the continent, and thus that pulse-driven “avoidance” is the 167 

dominant trend for adaptation of communities with low water availability. Our findings 168 

extend to continental scale the hypothesis that plants and communities adapted to arid 169 

climates would generally maintain a low stomatal conductance, but given their high 170 

maximum stomatal conductance, can sharply increase stomatal conductance during pulses of 171 

rainfall availability to maximize growth (Grubb, 1998). This hypothesis is also consistent with 172 

reports that species with higher g tend to show greater sensitivity to changes in the external 173 

environment (Haworth et al., 2018; Siddiq et al., 2017). 174 

 175 

Greater functional niche differentiation of g under higher climatic aridity 176 

Environmental stress can restrict the variance of trait values, leading to convergence in 177 

the distribution of trait values among coexisting species (Kraft et al., 2008). Yet, for 178 

communities across a continental scale aridity gradient, the community-weighted variance of 179 

g increased with climatic aridity. Notably, this difference for g would be expected due to the 180 

ability of plants to close stomata; species with a high g are not obliged to maintain high 181 

stomatal conductance during stressful periods, as species with large stomatal pores areas can 182 

sharply reduce stomatal conductance and thus transpiration rates. The distance between 183 

observed kurtosis and minimum kurtosis (D) for g was lower than that generated by two null 184 

models (Table S1), consistent with a general assembly rule that trait diversity of g is 185 

maximized within forest plant communities, as previously demonstrated for global drylands in 186 
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analyses of specific leaf area and maximum height (Gross et al., 2017). Further, the D values 187 

of g was lower for drier communities, suggesting that this assembly rule applies more 188 

strongly with increasing aridity. Similarly to root stratification (Oram et al., 2018), diversity in 189 

g and associated stomatal regulation strategies might improve species-specific soil moisture 190 

status (West et al., 2012) and increase species partitioning water resources in space and/or 191 

time, thus increasing overall water utilization (Naeem et al., 1994). We observed a negative 192 

relationship between community-weighted variance and kurtosis of g (Fig. S1); communities 193 

characterized by low variance and low kurtosis values were only observed in the wetter 194 

regions, indicating that community assembly process of g was more strictly constrained under 195 

lower water availability. The strong patterns linking the stomatal traits of communities with 196 

climate at continental scale highlights the importance of these traits across the background of 197 

other structural and physiological adaptations to aridity, including specialized xylem anatomy, 198 

plant allometry, rooting strategy, dormancy and the ability to recover after dieback (Grossiord, 199 

2020). 200 

 201 

Limited variability of stomatal space-use efficiency (e) under water scarcity 202 

Stomatal space-use efficiency (e) was first defined in this study, and, by contrast with g 203 

and f, community-weighted mean values of e were not statistically constrained by climatic 204 

aridity, supporting theory that this efficiency should be generally maximized 205 

(FranksandBeerling, 2009). For g and f, the overall negative correlation community-weighted 206 

mean trait values with aridity was consistent with the expected trends based on adaptation 207 

(GarnierandNavas, 2012; Garnier et al., 2004; Grime, 1998). Likewise, given that 208 
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community-weighted mean values of e were highly conservative, the narrow 209 

community-weighted variance of e would reflect adaptation in which co-occurring species 210 

tend to converge in e to a narrow range of optimal values. Our results supported the 211 

hypothesis that the variability of e was especially strongly constrained under arid climates, 212 

consistent with the expectation of greater cost-effectiveness of investment in stomata under 213 

lower water availability than under high water availability, where selection would likely be 214 

weaker. 215 

 216 

Coordinated adaptation of g and f across a climatic gradient 217 

For both g and f , the community-weighted mean and variance increased with the climatic 218 

aridity, whereas D decreased, and the trait diversity was maximized. Thus, the distributions of 219 

g and f were synchronous in adapting to the environment. Given that g is determined as the 220 

product of f and e, and that variation in g was primarily caused by f rather than e, it is clear 221 

that the shifts in stomatal area fraction are more typical for the adaptation and assembly of g 222 

than shifts in e, which remains constrained. As e is inversely proportional to stomatal size (see 223 

Supplementary Note 1 for detailed information), its constraint is consistent with previous 224 

studies reporting that stomatal size is less variable than stomatal density or f (Beaulieu et al., 225 

2008; Jordan et al., 2015; XiongandFlexas, 2020).  226 

 227 

Contrasting roles of g and f in optimizing ecosystem productivity 228 

Selection for higher g (the benefit) involves a trade-off to minimize f (the cost) (de Boer et al., 229 

2016), and such cost-benefit relationship is also involved in how stomatal traits regulate 230 
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ecosystem productivity. Decreasing the skewness of g and increasing the skewness of f meant 231 

that species with high g and/or low f values were more dominant within communities; thus, 232 

the optimization of stomata on ecosystem productivity was economical through decreasing the 233 

skewness of g and increasing the skewness of f. A previous study also argued that high 234 

kurtosis in leaf traits indicated strong trait optimization (Umaña et al., 2021). Here, the high 235 

kurtosis of g meant that co-occurring species of g were convergent toward an optimal value. 236 

Nevertheless, the high kurtosis and lower skewness of g coupled with lower kurtosis and 237 

higher skewness of f would result in improved e, i.e., the benefit-cost ratio (de Boer et al., 238 

2016), which was positively correlated with ecosystem productivity. Therefore, contrasting 239 

regulations of g and f on ecosystem productivity were associated with stomatal cost-benefit 240 

relationship. 241 

 242 

Materials and Methods 243 

Study sites and climate data 244 

Nine study sites were selected along the 3700-km north–south transect of China 245 

(NSTEC), which were designated as Huzhong, Liangshui, Changbai, Dongling, Taiyue, 246 

Shennongjia, Jiulian, Dinghu, and Jianfengling. The nine study sites extend from 18.7 °N to 247 

51.8 °N latitude, and represent examples of most of the forest types in the northern 248 

hemisphere, including cold-temperate coniferous forest, temperate deciduous forest, 249 

subtropical evergreen forest, and tropical rain forest (He et al., 2019). Along the NSTEC 250 

transect, the mean annual temperature (MAT) ranges from –3.67 to 23.2 °C, and mean annual 251 

precipitation (MAP) from 472 to 2266 mm (He et al., 2020). Soil types range from 252 
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cold-temperate brown soils with high organic matter content to tropical red soils with low 253 

organic matter content.  254 

 255 

Sample collection and analysis 256 

The field survey was conducted in July–August 2013, the peak period of growth for all 257 

species. Sampling plots were located within well-protected national nature reserves with 258 

relatively continuous vegetation, which is representative of the given forests. Three or four 259 

experimental plots (30 m × 40 m) located least 100 m apart were established in each site. 260 

Geographical information (latitude, longitude, and altitude), plant species composition, and 261 

community structure were recorded for each plot. The number, height, diameter at breast 262 

height (DBH) of trees, basal stem diameter of shrubs, and aboveground live-biomass of all 263 

herbs were measured (He et al., 2018). 264 

Leaves were collected from trees, shrubs, and herbs within the plots. For each species, 265 

more than 20 mature leaves were collected from the top of the canopy of four healthy 266 

individuals and mixed as a composite sample. The leaves were collected from trees using 267 

long-handle shears or handpicked by climbing the trees. About half of the leaves were placed 268 

in sealed plastic bags, immediately stored in a box with ice, and others were used to measure 269 

leaf morphological traits (Li et al., 2018).  270 

After sampling, leaf size was measured using a scanner (Cano Scan LIDE 100, Japan) 271 

and Photoshop CS software (Adobe, United States). These leaves were subsequently dried to 272 

constant mass in an oven before measuring leaf dry mass, and specific leaf area as the ratio of 273 

leaf area to leaf dry mass. Eight to ten leaves from the pooled sample were cut into small 274 
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pieces (1.0 × 0.5 cm) along the main vein and were fixed in 75% alcohol: formalin: glacial 275 

acetic acid: glycerin (90:5:5:5).  276 

Stomatal traits were imaged using a scanning electron microscope (S-3400N, Hitachi, 277 

Japan), using the same leaf samples as previously studied for stomatal density, size and 278 

stomatal area fraction (Liu et al., 2018). Three small pieces were selected from the pooled 279 

sample, and each replicate was photographed twice on the lower surface at different positions. 280 

Given our use of scanning electron microscopy and investigation of a large number of species 281 

across communities, the labor and expense did not allow measurements of the upper 282 

epidermis, and we focused on the lower epidermis (Liu et al., 2019). The herbaceous species 283 

in closed forests typically have more stomata on their adaxial surfaces, whereas trees and 284 

shrubs tend to have few or no stomata on the adaxial surface (Muir, 2015; Muir, 2018). Thus, 285 

sampling only the lower epidermis results in some uncertainty, but the community level 286 

findings are expected to be robust. 287 

The number of stomata in each photograph was recorded, and stomatal density (SD) was 288 

calculated as the number of stomata per unit area (Liu et al., 2018). In each photograph, five 289 

typical stomata were selected to measure stomatal length (SL), stomatal pore length (PL), and 290 

stomatal width (SW) by using MIPS (Optical Instrument Co., Ltd., Chongqing, China). We 291 

used the above stomatal traits to calculate f and g (FranksandFarquhar, 2001). 292 

� � �
4 · SD · SW · SL 

� � SD · ���

� � · ����

� � 0.5 · "� · ����#�.� 

where Dw is the diffusivity of water in air, v is the molar volume of water vapor, amax is the 293 

maximum pore area (estimated as the area of the ellipse with major axis PL and minor axis 294 
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0.5PL), and l is the depth of the stomatal pore, which was approximated as guard cell width. 295 

We then calculated e as the ratio of g to f. Notably, e depends inversely on stomatal size, 296 

because smaller stomata, having shorter depths, are more efficient for transport for a given 297 

pore area (FranksandFarquhar, 2006); the mathematical relationships of e to stomatal size is 298 

presented in Supplementary Note 1. 299 

 300 

Stomatal trait moments of plant communities 301 

To scale up traits to the community scale, and given that stomatal traits were normalized by 302 

leaf area, we used the total leaf area of each species in the plot to weight species trait values, 303 

and then calculated the distributions of stomatal traits. The total leaf biomass of each 304 

individual tree and shrub was calculated using species-specific allometric regressions based 305 

on measured values of height, diameter at breast height (DBH) or basal stem diameter, and 306 

then the leaf biomass of each species within plots was calculated. Species-specific allometric 307 

regressions were obtained from the Chinese Ecosystem Research Network (Wang et al., 2015). 308 

The leaf biomass of herbs was measured using the harvest method. The total leaf area of each 309 

species was calculated as the product of total leaf biomass and specific leaf area. 310 

Community-weighted mean, variance, skewness, and kurtosis were calculated as follows 311 

(Gross et al., 2017; Wieczynski et al., 2019): 312 

Mean � & '	



�

Trait	 

Variance � & '	"Trait	 + Mean#�



�

 

Skewness � & '	"Trait	 + Mean#�
Variance��




�
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Kurtosis � & '	"Trait	 + Mean#
Variance�




�

 

where n is the species richness, pi is the proportion of leaf area of ith plant species in a specific 

313 

community, and Traiti represents stomatal traits (g, f, or e) of the ith plant species. 

314 

The community trait variance, skewness, and kurtosis provide information beyond the 

315 

community weighted mean, which can over-emphasize the role of dominant species (Enquist 

316 

et al., 2015). Specifically, the community variance in a given traits represents the functional 

317 

divergence, skewness the extent of asymmetric distribution of traits, and kurtosis the 

318 

functional evenness, with a high kurtosis indicating strong trait optimization (Umaña et al., 

319 

2021). Skewness and kurtosis are mathematically related, according to

 

skewness-kurtosis 

320 

relationships (SKR): 

321 

Kurtosis � Skewness� � 1
 

Thus, for a given skewness, there is a minimum kurtosis. Here, we calculated the distance 

322 

between the observed kurtosis and minimum kurtosis (D): 

323 

D � Kurtosis + "Skewness� � 1#
 

D signifies the extent to which functional diversity is maximized, with a D = 0 representing 

324 

the strongest possible maximization of functional diversity (Gross et al., 2017). 

325 

 326 

Climate data and ecosystem productivity 327 

Mean annual temperature and precipitation (MAT and MAP, respectively) were derived from 

328 

the Resource and Environment Data Cloud Platform (http://www.resdc.cn/). Then, the de 

329 

Martonne aridity index (de Martonne, 1926) was calculated the ratio of MAP and MAT+10. 

330 
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To facilitate the interpretation of results, we calculated the climatic aridity index for each site 

331 

as:  

 332 

CI � 100 + MAP
MAT � 10

 
so all the CI values were positive, and higher values of this aridity level indicate drier 

333 

conditions. 

334 

    In these forests, gross primary productivity and net primary productivity were strongly 

335 

correlated with each other across sites (Li et al., 2020); here, we focused on gross primary 

336 

productivity (GPP). The average GPP data

 

from 2000 to 2015 (Li et al., 2020) were

 

obtained 

337 

from the Numerical Terradynamic Simulation Group 

338 

(http://www.ntsg.umt.edu/project/modis/mod17.php). This dataset was derived from a widely 

339 

used Moderate Resolution Imaging Spectroradiometer product, and was calculated using the 

340 

C5 MOD17 algorithm with data validation from flux towers (Li et al., 2020; ZhaoandRunning, 

341 

2010; Zhao et al., 2005).  

342 

 343 

Data analysis 344 

We calculated statistical moments for stomatal traits, including mean, variance, skewness, and 

345 

kurtosis, for each of the 32 plant community plots. We tested whether to consider plots 

346 

independently, rather than as nested within sites, for calculating community scale moments by 

347 

comparing fixed effects models (lm function in R) and mixed effects models (lmer function 

348 

from R package lme4). The fixed model considered plots as independent, and the mixed 

349 

effects models, considered plots as a random factor nested within each site. Akaike 

350 

information criterion (AIC) represented the support of the model by data, with the model 

351 
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having a lower AIC value more likely to underlie the data (BurnhamandAnderson, 2004). The 

352 

AIC values of fixed and mixed effects models were compared, with differences greater than 2 

353 

considered decisive in selecting one model over another, representing a >100 times higher 

354 

likelihood that the data were generated by that model. For 12 of the 13 relationships of traits 

355 

with climate or ecosystem productivity tested in this study, the fixed effects model was 

356 

selected (Table S1-S5). Thus, in our analyses, we considered each plot as a sample plant 

357 

community.  

358 

Spearman rank correlation was used to test relationships between stomatal trait moments 

359 

and climate variables. Ordinary least square regression was used to quantify relationships 

360 

between statistical moments of stomatal traits, including the relationship between skewness2 

361 

and kurtosis, and relationship between variance and kurtosis. To explore whether climatic 

362 

aridity mediated the relationships between variance and kurtosis, plant communities were 

363 

classified into wet and dry communities (threshold CI=40), and scatter diagrams of variance 

364 

and kurtosis were plotted. 

365 

Focusing on the distance to the minimal kurtosis (D) enables resolution of variation 366 

across communities in trait evenness (Gross et al., 2021), and a test of the hypothesis that 367 

functional niche differentiation of g would be greater in drier communities, by determining 368 

the correlation between the distance to the minimal kurtosis (D) and climatic aridity. To 369 

clarify whether trait assembly of stomata would maximize stomatal trait diversity, we tested 370 

whether observed skewness-kurtosis relationships (SKRs) differed from random expectations, 371 

which can reveal the signature of niche differentiation in shaping ecological communities 372 

(Gross et al., 2021). We constructed two null models, and predictions from each null model 373 
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were derived from 2000 randomizations. In the first null model, we randomized the stomatal 374 

traits across all species, using the function “richness” in the R package PICANTE (Kembel et 375 

al., 2010). In the second null model, we shuffled stomatal traits across species occurring in 376 

each community, using the function “independentswap” in the R package PICANTE. These 377 

two null models have been the most common for analyzing community assembly, with the 378 

second null model more specific in its implication. The first null model allows tests for 379 

maximizing trait diversity locally, relative to a scenario of random selection of species from 380 

the regional pool. The second null model allows tests for maximizing trait diversity locally 381 

relative to a scenario of random selection of species from local pools. Stomatal trait moments 382 

were then calculated for each of the 2000 randomizations, for each of the null models used. 383 

Then, we assessed whether the observed SKR significantly differed from SKRrandom.Monte 384 

Carlo analysis was used to test whether the observed SKRs differed from random expectations. 385 

We compared the observed slope β and intercept α (βobs and αobs, respectively) of the SKR 386 

with those generated by null models (βrandom and αrandom, respectively). Three Pseudo P values 387 

were calculated: P (β|α), the frequency of βobs > βrandom within subset αobs < αrandom; P (α|β), the 388 

frequency of αobs > αrandom within subset βobs < βrandom; and P (β∩α), the frequency of αobs < 389 

αrandom within subset βobs < βrandom. Further, we compared the observed distance to the minimal 390 

kurtosis (Dobs) with that generated by null models (Drandom). P(D) is the frequency of Dobs < 391 

Drandom. 392 

A multiple regression model was used to assess the potential influence of stomatal trait 393 

moments on ecosystem productivity, and quadratic terms of stomatal trait moments were also 394 

considered as potential drivers of non-linear effects of these variables on ecosystem 395 
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productivity. All variables, including ecosystem productivity and stomatal trait moments, were 396 

standardized (Z-scores) before analysis. We first used the “stepAIC” function (MASS package 397 

in R) to exclude less important predictors, then the “dredge” function (MuMIn package in R) 398 

was used to select the best models. Finally, the relative effect of each stomatal trait moment 399 

on ecosystem productivity was calculated as its absolute parameter compared with the sum of 400 

all the absolute parameters in the model. 401 

Standardized effect sizes (SES) were used to assess the non-random influence of 402 

stomatal traits on ecosystem productivity. SES was calculated as (Bruelheide et al., 2018)  403 

SES � 1dj. r���� + 45�6"1dj. r
���� #
7. 8. "1dj. r


���

� #  

where 1dj. r����  is the observed influence of stomatal traits on ecosystem productivity, 404 

1dj. r
����  is the influence of stomatal traits on ecosystem productivity of random 405 

communities generated from a null model, 45�6 represents the average value, and 7. 8. is 406 

the standard deviation. 407 

Data analyses and visualization were performed using R (http://www.R-project.org/). 408 

Statistical significance was set at the 0.05 level.  409 
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 572 

 573 

Fig. 1 Stomatal trait moments are broadly related to climatic aridity.  574 

CWM, community-weighted mean; CWV, community-weighted variance; CWS, 575 

community-weighted skewness; CWK, community-weighted kurtosis 576 

MAT, mean annual temperature; MAP, mean annual precipitation; CI, climatic aridity index; 577 

Spearman rank correlation coefficients are shown in the panels.  578 

Fan-shaped areas are proportional to the absolute Spearman rank correlation coefficients; 579 

negative correlations are drawn with a counterclockwise fan and positive correlations with a 580 

clockwise fan. The strength of negative correlation increases from white to red, and the 581 

strength of positive correlation increases from white to blue. 582 

 583 

ns, no significance at the 0.05 level; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 584 

 585 
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 587 

  588 

 589 

Fig. 2 Relationships between the community-weighted variance of stomatal traits and 590 

climatic aridity 591 

Variance, community-weighted variance. 592 

g, maximum stomatal conductance; f, stomata area fraction; e, stomatal space-use efficiency. 593 

The blue lines are fitted using linear regression, and shaded areas indicate the 95% confidence 594 

interval. 595 

 596 
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 598 

Fig. 3 Observed skewness-kurtosis relationships (SKR) and deviation from null 599 

expectations. 600 

Skewness, community-weighted skewness; Kurtosis, community-weighted kurtosis. 601 

g, maximum stomatal conductance; f, stomatal area fraction; e, stomatal space-use efficiency. 602 

The red dots in the left panels represent the observed skewness and kurtosis values; blue dots 603 

in the left panels represent the skewness and kurtosis values of simulated random 604 

communities. The orange line represents y = x +1. 605 

Red/blue dots in the right panels represent the observed/random slope (α) and intercept 606 

(β) of the SKRs. We indicate the conditional pseudo P values from null model ‘richness’ for 607 

the slope β, P(β│α), the y-intercept α, P(α│β), the whole model, P(β∩α) and the distance to 608 

the lower boundary, P(D) (see Table S6 for details).  609 
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 610 

Fig. 4 Relationships between the distance to the lower boundary (D) and climatic aridity. 611 

g, maximum stomatal conductance; f, stomatal area fraction; e, stomatal space-use efficiency. 612 

The blue lines were fitted using linear regression and the shaded areas indicate the 95% 613 

confidence interval.614 
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 616 

 617 

 618 

Fig. 5 Community-weighted skewness and kurtosis of g and f showed opposite effects on 619 

ecosystem productivity. 620 

Mean, community-weighted mean; Variance, community-weighted variance; Skewness, 621 

community-weighted skewness; Kurtosis, community-weighted kurtosis. 622 

g, maximum stomatal conductance; f, stomatal area fraction; e, stomatal space-use efficiency. 623 

Average parameter estimates (standardized regression coefficients) of model predictors, 624 

associated 95% confidence intervals, and relative importance of each factor, expressed as the 625 

percentage of explained variance. 626 

The adjusted r2 of the averaged model and the p value of each predictor are given as: *, p < 627 

0.05; **, p < 0.01. Colored labels in the right highlighted the different effects of g and f on 628 

ecosystem productivity. 629 

 630 
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 631 

Fig. 6 Conceptual diagrams of how stomatal trait distributions adapt drought stress and 632 

regulate ecosystem productivity. 633 

g, maximum stomatal conductance, shown by orange; f, stomatal area fraction, shown by blue; 634 

e, stomatal space-use efficiency, shown by green. 635 

 636 
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