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Abstract— Mathematical models have become increas-
ingly more accurate in terms of the description of can-
cer growth in both space and time. However, the limited
amount of data typically available has resulted in a larger
number of qualitative rather than quantitative studies. In
the present study, we provide an integrated experimental-
computational framework for the quantification of the
morphological characteristics and the mechanistic mod-
elling of cancer progression in 3D environments. The pro-
posed framework allows for the calibration of multiscale-
spatiotemporal models of cancer growth using state-of-the-
art 3D cell culture data, and their validation based on the
resulting experimental morphological patterns. The imple-
mentation of it enables us to pursue two goals; first, the
quantitative description of the morphology of cancer pro-
gression in 3D cultures, and second, the relation of tumour
morphology with underlying biophysical mechanisms that
govern cancer growth. We apply this framework to the study
of the spatiotemporal progression of Triple Negative Breast
Cancer cells cultured in Matrigel scaffolds, and validate
the hypothesis of chemotactic migration using a multi-
scale Keller-Segel model. The results reveal transient, non-
random spatial distributions of cancer cells that consist of
clustered, and dispersion patterns. The proposed model
was able to describe the general characteristics of the
experimental observations and suggests that cancer cells
exhibited chemotactic migration and accumulation, as well
as random motion throughout the period of development.
To our knowledge, this is the first time that a multiscale
model is used to quantify the relationship between the
spatial patterns and the underlying mechanisms of cancer
growth in 3D environments.

Index Terms— 3D cell cultures, confocal microscopy,
multiscale models, spatiotemporal model validation
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CANCER progression is frequently accompanied by mi-
gration of cancer cells into the surrounding tissues, that

eventually leads to metastasis. Both in-vivo and in-vitro studies
of cancer cell migration have shown that cancers can exhibit
several types of patterns including single cell migration, multi-
cellular streaming, collective cell migration, as well as passive
patterns, such as tissue folding, and expansive growth [1].
Studies of breast cancer have shown that the tumour border
is dominated by collective cell migration [1] forming small
acinar structures with a central lumenal space, with cancer
cells that maintain their epithelial morphology [2]. Evidence
of multicellular streaming also exist from orthotopic breast
cancer in xenograft mouse models [3]. Other clinical studies of
the surface morphology of infiltrating ductal adenocarcinoma
have shown that the fractal dimension of cancerous tissue is
larger compared to normal breast tissue [4]. Similar observa-
tions of different fractality characteristics in different tumour
stages have also been made in ovarian cancer [5]. Though
there is significant knowledge on the qualitative aspects of
tumour morphology, the quantitative characterization of this
morphology and the biophysical mechanisms that govern
cancer growth and migration remain still elusive.

Significant insights into both morphological and mecha-
nistic characteristics of cancer growth can be gained from
the use of mathematical models. Spatiotemporal models of
cancer growth can be distinguished in three general categories;
discrete (e.g. agent based models), continuum (Partial Dif-
ferential Equations, PDEs), and hybrid models [6]. Each of
these categories provides different information on the aspects
of tumour growth. Specifically, discrete models can provide
information on individual cell processes or tissue microarchi-
tecture [7]. Continuum models have been widely used, initially
to describe qualitative aspects of tumour growth, albeit lacking
experimental validation [8], and more recently, for a more
detailed quantitative description of the macroscopic charac-
teristics of spatiotemporal cancer growth and its response to
therapy under both in-vitro [9]–[12] and in-vivo conditions
[13]–[19]. Hybrid models attempt a multiscale description of
cancer growth, by incorporating both continuous and discrete
variables [20], [21]. Studies from Tweedy et al. [22], [23]
utilized experiments and hybrid discrete-continuum (HDC)
models of chemotactic migration to investigate the role of
self-generated chemotactic gradients in cancer migration. Even
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though there is a growing literature on spatiotemporal models
of cancer, their validation using experimental data is important
for quantitatively describing cancer [24], [25].

The validation of a model can be interpreted as the process
of quantifying how the predictions accurately describe the
experimental measurements [24]. Validation usually follows
calibration of the model, which is usually defined as the pro-
cess of inferring the model parameters that provide the best fit
between model predictions and experimental data. Typically,
model calibration is performed using a training dataset, and
validation is used to assess the prediction of the calibrated
model on a different dataset. In the work of Hawkins-Daarud
et al. [26] a Bayesian framework was used for the validation
of diffuse-interface models of tumour growth using synthetic
data. Achilleos et al. [27], [28] utilized stochastic processes for
the validation of a mixture-model using tumour measurements
obtained from experiments in mice. Lima et al. [25] employed
the Occam Plausibility Algorithm (OPAL) [29] to validate var-
ious classes of PDE models using images of glioma tumours
in mice. Recently, they [30] performed calibration of hybrid
models with in-vitro 2D culture data. Although these studies
have yielded significant advances in model validation, several
studies exclude model validation from their analyses.

A common reason for the absence of validation in tumour
modelling studies is the lack of data availability. In-vitro
studies usually include the use of 2D cultures [11], [12],
resulting in a less realistic representation of cancer growth. In-
vivo studies, both clinical and experimental, are more realistic;
however, they also present limitations. On the one hand, caliper
and microCT scan measurements of in-vivo tumours in mice
do not typically provide information on tumour shape and
invasiveness [31], [32]. Intravital imaging is another common
way of data collection for in-vivo models; however, this
technique suffers from technical challenges, such as passive
drift of cells or tissues, low penetration depth, tissue heating,
and limitations on imaging intervals [1]. On the other hand,
clinical data can be limited in terms of time-points [15],
resulting in model over-fit.

To this end, 3D cell culture models have become a promis-
ing experimental tool. The main reasons are their increased
control of the experimental conditions and flexibility of data
collection compared to in-vivo experiments, as well as their
more realistic representation of tumour progression compared
to 2D cultures. Differences between 3D and 2D cultures have
been observed in cancer growth and its related biochemi-
cal processes, such as the secretion of extracellular matrix
(ECM) components, and cell-cell interaction components [33],
while the histological and molecular features of in-vitro 3D
spheroids exhibit more similarities to xenografts compared
to 2D monolayers [33]. Significant differences between 2D
and 3D cultures have also been found in drug testing studies
exhibiting alterations in the sensitivity of cytotoxic drugs [33].
Another advantage of 3D cell culture models is their flexibility
with regards to incorporating more than one cell populations,
such as stromal cells, as well as on changing the stiffness of
the ECM. The heterotypic intercellular interactions between
cancer cells and stromal cells results in altered cancer cell
proliferation and migration, as well as the formation of more

compact spheroids compared to equivalent 3D cell mono-
culture systems [33]. The mechanical properties of the ECM
also contribute to the spheroid formation, viability, invasive-
ness, and drug sensitivity of cancer cells [33]. Additionally,
the collection of imaging data for in-vitro 3D cell cultures
is generally easier and more accurate than in-vivo models,
and high resolution images can be obtained using confocal
microscopy. Although 3D cell cultures cannot yet capture the
full complexity of tumour growth in a living tissue, overall
they yield significant potential for quantitatively describing
cancer growth, as they even provide the opportunity to track
even single cells.

The purpose of the present work is to introduce an inte-
grated framework for the quantitative characterization of spa-
tiotemporal progression of cancer, and its use for multiscale-
spatiotemporal model validation for the study of cancer growth
mechanisms. The framework presented in Fig. 1 proposes a
novel combination of experimental data from state-of-the-art
3D cell cultures, spatial statistical analysis techniques for the
quantification of cancer morphology, and a multiscale HDC
mathematical model for the quantitative description of the
mechanisms underlying cancer progression. Given the spatial
scales (μm up to mm) of the 3D cultures, the choice of
HDC models instead of purely continuum or discrete models
allows us to perform faster calibration on the continuum
model component, albeit with a lower fidelity compared to
the full model, and validation on the discrete component.
In this work, we present a novel approach for model cali-
bration and validation. Instead of splitting the datasets, we
perform calibration and validation on the two different levels;
calibration on the continuum, and validation on the discrete
level. The introduction of the spatial pattern analysis not only
enables us to validate the hybrid model, but also to interpret the
observed patterns based on the underlying mechanisms. The
rest of the article is organized in a Methods section, where we
describe the experiments, data processing, the mathematical
model, the calibration and validation techniques, followed by
the Results where we present the calibrated model, the validity
tests of the full model, as well as a description of the relation
between morphology and the underlying mechanisms. Finally,
we conclude with the Discussion and Conclusions, where
we discuss our results compared to relevant literature, the
advantages and limitations of our study, as well as possible
extensions and improvements. The code and data of this work
are available at https://nmdimitriou.github.io/
HyMetaGrowth/.

II. METHODS

A. Experiments

Cell preparation: Triple Negative Breast Cancer (TNBC)
cells from the MDA-MB-231 cell line with nuclear GFP
(histone transfection), were thawed and cultured at 5% CO2,
37 °C in DMEM (Gibco) at pH 7.2 supplemented with 10%
fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin,
100 μg/mL streptomycin, and 0.25 μg/mL, and amphotericin B
(Sigma) in T-75 flasks (Corning). The cells were passaged be-
fore reaching 85% confluence. Three passages were performed
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Fig. 1: Proposed pipeline for the modelling, validation and
analysis of cancer progression using in-vitro 3D experimental
data.

before the 3D cultures; cells were rinsed twice with DPBS and
trypsin-EDTA (0.25%-1X, Gibco) was used to harvest them.

3D cell cultures: A cell-Matrigel (Corning) suspension was
created using 0.25 mL of Matrigel (4 °C) and 5× 104 MDA-
MB-231/GFP cells. Droplets of 5 μL cell-Matrigel mixture
were manually deposited onto a high performance #1.5 glass
bottom 6-well plate (0.170±0.005 mm) (Fisher Scientific)
(Fig. 2a). In total, 12 datasets were produced with 7 samples
on days 0, 2, 5, 7, 9, 12, 14 each. (Fig. 2b-2f).

Imaging and Data preparation: Data acquisition was per-
formed every 2-3 days for a total of 15 days using a con-
focal microscope (Nikon A1R HD25) coupled with a cell-
culture chamber. The dimensions of the 3D cultures were
approximately 2.5×2.5×0.9 mm3. Cell localization was made
possible by the GFP fluorophore that was present in cell
nuclei. The fluorescent nuclei were segmented using an image
processing and segmentation pipeline [34]. The preprocessing
of the image stacks included: (i) image denoising using
the Poisson Unbiased Risk Estimation-Linear Expansion of
Thresholds (PURE-LET) technique [35], (ii) intensity attenu-
ation correction across the z-dimension [36], (iii) background
subtraction using the rolling ball algorithm [37] and manual
thresholding of low intensity values using High-Low Look
Up Tables (HiLo LUTS), and (iv) cubic spline interpolation
of the xy-planes of the image stacks. The segmentation of
the nuclei was performed using Marker Controlled Watershed
segmentation and a classic Distance Based Watershed seg-
mentation to split fused nuclei (Fig. 2g-2k). The segmented
nuclei were then mapped to a 3D Cartesian space by detecting
their centroid locations using a 26-connected neighbourhood
tracing algorithm implemented in MATLAB [38]. The final
step was the calculation of spatial density profiles of the
cells represented by their centroids, using the Kernel Density
estimation via the Diffusion method [39]. Density calculation
was performed using a grid of size 167× 167× 61 such that
each cell approximately occupied one grid point. The density
matrices were interpolated, using linear interpolation, to match
the spatial grid size of the simulations (480× 480× 176).

B. Multiscale HDC Model

Chemotactic hypothesis: Previous studies [40] have shown
that cells in 3D cultures using hydrogel matrices such as

Collagen I or Matrigel tend to move towards the bottom of
the space. We hypothesized that this behaviour occurs due to
three main reasons; first, the MDA-MB-231 cells are naturally
adherent cells, hence the cells tend to remain attached to
each other to function properly; second, at the beginning and
throughout the course of the experiment, the cells secrete
chemotactic signals that enable cell migration and tend to bring
the cells closer to each other; third, the cells that are closer
to the glass bottom secrete signals at the beginning of the
experiment creating a chemotactic gradient decreasing from
the bottom towards the top of the space. The rationale behind
the third hypothesis is that the glass is a surface that favours
cell attachment, hence the cells that are closer to this surface
secrete these signals to indicate it as a site of preference. This
hypothesis is supported by recent findings on self-generated
chemotactic gradients [22], [23], [41], [42] with the difference
that we assumed that the chemoattractants stem from the cells
and they do not pre-exist in the 3D space.

Continuum model: To examine this hypothesis, we used a
system of two Keller-Segel (KS) type equations for cancer
cell density and chemotactic agent density respectively, which
additionally takes into account random motion of cancer cells
and chemotactic agents, logistic growth of cancer cells, as
well as the increase of chemotactic agents depending on their
current concentration in space and the presence of cancer
cells. The spatiotemporal evolution of cancer cell, u, and
chemotactic agent, f , densities are obtained by the following
PDEs:
∂u

∂t
= Du∇2u+ su(1− u)− χ∇ · [u(1− u)∇f ] , in Ω

(1)

∂f

∂t
= Df∇2f + ρfu(1− u), in Ω

(2)

∇u · n⃗ = ∇f · n⃗ = 0, in ∂Ω
(3)

where Du, Df are the diffusion constants, and s, ρ are the
growth constants of the cell and signal densities, respectively,
and χ is the advection constant of the cells. The right hand
side of (1) consists of three terms; the diffusion term Du∇2u
that represents the random motion and expansive growth of
the cancer cells, the growth term su(1− u) that increases the
density of the tumour in a logistic manner, and the nonlinear
advection term −χ∇· [u(1− u)∇f ] that represents the biased
movement of the cells towards the direction where the gradient
of the chemotactic signal density increases. The (1−u) factor
in the advection term was added to avoid unwanted overcrowd-
ing of the cells that may lead to spikes of cell density [43]. In
(2), the evolution of the signal density depends on the diffusion
of the signal in 3D space, represented by Df∇2f and the
production of signals depending on the current signal density
and cell density in space, ρfu(1−u). Similarly, (1−u) limits
the signal when overcrowding takes place. The spatial domain
Ω had the same size as the experimental data, 2.5×2.5×0.917
mm3, and it was represented by 480×480×176 grid points.
We considered no-flux Neumann boundary conditions (B.C.)
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Fig. 2: 3D cell cultures and nucleic segmentation. (a) Schematic representation of the cell/Matrigel geometry at day 0 of the
experiment. Slices at Z ≈ 100 µm from the bottom of the plate on days (b) 5, (c) 7, (d) 9, (e) 12, (f) 14. Scale bar: 500
μm. (g) Zoomed image of two cells on day 9. (h) Interpolation result resulting from (h). (i) Marker Controlled Watershed
segmentation. (j) Nuclei splitting with Distance Based Watershed segmentation. (k) Rescaling back to original image size.

Fig. 3: Initial conditions of the continuum model from one of
the 12 datasets. The blue colour map represents the cell density
profile, u, and it is directly obtained from the experimental
data. The green colour map represents the chemotactic agents
density profile, f and it is calculated using (4).

in (3), where n⃗ is the outward unit normal to ∂Ω.
The initial conditions (I.C.) for this problem were chosen

based on the experimental data and the chemotactic hypoth-
esis. Specifically, the initial cell density profiles of the simu-
lations were chosen to be the spatial cell density profiles of
day 0 of the experiment (Fig. 3). The I.C. for the chemotactic
signals were based on the fact that the cells were, initially,
uniformly distributed in the 3D space, and separated from
each other. Cells attached to the bottom glass were assumed
to chemotactic secrete agents first, which in turn promoted
the secretion of these agents by the above floating cells as
described in (4).

f(x, y, z, t = 0) = e(−
z

0.26 (mm) )I(u), I(u) =

{
1, if u > 0

0, if u = 0

(4)

Numerical methods: We used the operator-splitting tech-
nique to approximate the diffusion, advection, and reaction
operators. The diffusion terms were approximated by the
Alternating Direction Implicit (ADI) Douglas-Gunn (DG)
method [44]. The advection term was approximated by the
explicit Lax-Wendroff (LxW) method [45], coupled with the

Monotonic Upstream-Centered Scheme for Conservation Laws
(MUSCL) flux limiter [46]. The integration in time was
performed using the Strang splitting scheme [47]. At every
time-step, the Strang splitting scheme evolves the advection
and reaction terms by 0.5dt, then the diffusion operator by
dt, and again the advection and reaction operators by 0.5dt.
The accuracy of this scheme is second-order for both space
and time. The proposed numerical scheme was implemented
on GPUs using the CUDA/C programming language. Each
simulation required approximately 1-5 minutes to complete in
a V100-16GB Nvidia GPU (Supplementary S1).

Hybrid model: We hybridized the KS model based on the
technique presented in [48], [49]. Specifically, we discretized
(1) using the forward time central differences scheme (FTCS)
using the approximations found in [50]:

un+1
i,j,k = un

i,j,kP0 + un
i+1,j,kP1 + un

i−1,j,kP2 + un
i,j+1,kP3

+ un
i,j−1,kP4 + un

i,j,k+1P5 + un
i,j,k−1P6 (5)

where the grouped terms Pi, i = 0, ..., 6 denote probabilities
of the cells of remaining stationary (P0) or moving back (P1),
front (P2), left (P3), right (P4), down (P5), up (P6), defined
as

P0 = 1− 6Dudt

dx2

P1,2 =
Dudt

dx2
∓ χdt

4dx2
(fi+1,j,k − fi−1,j,k)

P3,4 =
Dudt

dx2
∓ χdt

4dx2
(fi,j+1,k − fi,j−1,k)

P5,6 =
Dudt

dx2
∓ χdt

4dx2
(fi,j,k+1 − fi,j,k−1)

(6)

Since the cells were approximately 15 μm in size and the
spatial grid points had a distance of 5.2 μm between each
other, we assumed that each cell occupied 3 grid points in
each direction. To account for this, we modified (5) and (6)
by changing the indices that point to a direction to two grid
points instead of one, i.e. i±2 instead of i±1 etc. The moving
probabilities were then passed to a cellular automaton that
updated the position and state of each cell.

The cellular automaton (CA) is presented in Fig. 4a. The
CA takes into account three cellular states; alive, quiescent
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Fig. 4: (a) Flowchart of the cellular automaton. (b) Migration, adhesion, and cell death probability parameters of the cellular
automaton were changed over time. (c) Cells settled at the bottom (z=20 μm), and (d) cells floating at z=580 μm on day 2.
Cells settled on the bottom had stellar shapes, while cells floating in the Matrigel had rounder shapes. (e) Cells floating at
z=260 μm on day 7. Some floating cells changed to stellar shapes resembling those attached on the bottom, as shown in panel
(c).

and dead. At every time step it checks if a cell can undergo
spontaneous death based on the probabilities shown in Fig. 4b,
and updates the age of the alive cells. The spontaneous
death probability was increased after day 10. This hypothesis
was based on increased cell crowding, which resulted in a
potential shortage of nutrients or accumulation of metabolic
waste products. The CA checks if any cell has reached the
proliferation age that is determined based on the estimated
parameter s (days)−1 of the continuum model. We estimated
the doubling time from the exponential phase of growth, est,
and the resulting formula tdouble = ln 2/s. If a cell is ready
to divide, the algorithm separates into two processes based on
cell position in space. If the cell is attached on the glass and
there is sufficient space, then the division will be performed
on the glass; otherwise, the cell will divide in any direction of
the 3D space if there is sufficient space. On the other hand,
if there is not sufficient space, the cell becomes quiescent. If
the cell is not ready to divide, the CA turns to a migration
program.

The first condition for migration considers an adhesion
parameter, defined as the number of neighbours that surround
a cell, and the second is the state of the cell. We hypothesized
that the number of neighbours required for cell migration
increases over time (Fig. 4b), due to the fact that the initial
distribution of cells in the 3D space is sparse; hence they
migrate, freely, to search for other cells to attach. However,
as cell clustering occurs due to cell division or cell contact,
migration becomes less frequent since the cells become more
attached to each other. If a cell satisfies these conditions, the
algorithm checks the position of the cell. If a cell is settled on
the bottom of the space or is connected with a cell located on
the bottom, it cannot migrate; otherwise, the cell can migrate in
3D space given the moving probabilities P0, ..., P6. These two,
constrained and unconstrained, migration phenotypes resemble
epithelial and mesenchymal phenotypes, respectively, and the

transition between them can be found in the literature as
mesenchymal to epithelial transition (MET) [51]. Indeed,
changes in cellular morphology were observed between cells
settled on the bottom and cells floating in the Matrigel. In
Fig. 4c, 4d we observe floating cells during the early days
of the experiment with round shapes. However, at later time-
points (Fig. 4e), we observed stellar shapes for the floating
cells probably, due to increased adhesion between them.

C. Bayesian Inference for calibration of the continuum
model

The Keller-Segel model, M , (Eq (1)-(3)) includes a set
of parameters θ = {Du, s, χ,Df , r} that are considered
unknown. We used their Probability Distribution Functions
(PDF) and the calculated densities from the 3D cell culture
data, D , to assess the most probable parameter values accord-
ing to Bayes’ rule

P(θ|D ,M) ∝ P(D |θ,M)P(θ) (7)

where P(θ|D ,M) is the posterior PDF of the model parame-
ters θ given the observed data D and the model M , P(D |θ,M)
is the likelihood of the observed data D given the model M
and the parameters θ, and P(θ) is the prior PDF. We assume
uninformative, uniform distributions for the model parameter
prior PDFs. The experimental data consisted of 12 datasets
and each of them had samples collected at 7 time-points.
The datasets were assumed to be independent and the model
was evaluated for each dataset separately. The likelihood was
defined as

L(θ;d) =
n∏

i=1

1

σd

√
2π

exp

(
− (di − qi(θ))

2

2σ2
d

)
(8)

where n is the number of spatial grid points, d the density
profile of the corresponding sample in a dataset, di, qi the
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density values of the experimental sample and simulation
result, respectively, at the grid point i, and σd the variance
of the distribution of the likelihood.

We used a Transitional Markov Chain Monte Carlo (TM-
CMC) algorithm implemented in the Π4U package [52]. The
TMCMC algorithm iteratively constructs series of intermediate
posterior PDFs

Pj(θ|D ,M) ∝ P(D |θ,M)ρjP(θ) (9)

where j = 0, ...,m is the index of the Monte Carlo time series
(generation index), and ρj controls the transition between the
generations, and 0 < ρ0 < ρ1 < · · · < ρm = 1. The TMCMC
method can utilize a large number of parallel chains that are
evaluated in each Monte Carlo step to reach a result close to
the true posterior PDF.

Since the ratio of model parameters to time-points is small
(5:7) for the continuum model, we used all the time-points
for the calibration of the continuum model. Validation was
performed using the hybrid (discrete-continuum) model using
the spatial statistical measures described below.

D. Spatial Analysis - HDC Model Validation

Complete Spatial Randomness Test of Spatial Cell Distribu-
tions: The Complete Spatial Randomness (CSR) test examines
whether the observed spatial point patterns, in our case the
centroids of the nuclei, can be described by a uniform random
distribution [53]. The CSR test was performed using Ripley’s
K-function and the spatstat [54] package of R [55]. The K-
function [56] is defined as the ratio between the number of
the events, i.e. locations of points, j within a distance t from
the event i, over the total number of events N , in the studied
volume V

K(t) =
1

λ̂

∑
i

∑
j ̸=i

I(dij < t), I(x) =

{
1, if x = true
0, otherwise

(10)

where λ̂ = N/V denotes the average density of events, N , in
the studied volume V , dij is the distance between events i and
j, and t is the search radius. The K-function was calculated for
all datasets and compared against complete spatial randomness
following a Poisson process K(t) = 4πt3/3 [56] for three
spatial dimensions. Isotropic edge correction was applied in
the calculation of the K-function. The volume used for the
calculation was the same with that used in the simulations, i.e.
2.5×2.5×0.917 mm3. To assess the uncertainty of the random
variable K, we produced a CSR envelope by generating 100
random distributions and calculating the K-function for each
of them. The envelope was created by keeping the minimum
and maximum values of the resulting K values. A substantial
upward separation of the observed K-function from the the-
oretical random K-function denotes clustered patterns, while
a downward separation denotes dispersed patterns [53]. Both
separation types suggest non-randomness of the examined
spatial distribution.

Characterization of the Spatial Cell Distributions: The Inter-
Nucleic (IN) Distance Distribution for a given sample was
calculated by the pairwise Euclidean distances between
all nuclei. Given two nuclei i and j with centroid po-
sitions pi = (xi, yi, zi) and pj = (xj , yj , zj) respec-
tively, their pairwise Euclidean distance is given by Dij =√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i, j = 1...N , i ̸= j

where N the total number of nuclei.
The Nearest-Neighbour (NN) Distance Distribution for a

given sample was calculated using the distances between
the nearest neighbours of the nuclei. The nearest neighbour
distance for a given nucleus i is given by the minimum IN
Distance between the nucleus i and all the other nuclei of the
sample, i.e. Di

NN = mini,j{Dij}, j ∈ [1, N ], j ̸= i.
The comparisons between the in-vitro and in-silico IN and

NN distance distributions were performed using the cosine
similarity test [57], in MATLAB [38] (Supplementary S.4).

III. RESULTS

A. Estimation of the macroscopic model parameters

The continuum Keller-Segel model was used to generate
simulation data. The resulting cell density profiles for a given
parameter set were compared against the in-vitro estimated
cell density profiles of a dataset. This process was applied
to each of the 12 datasets separately. Approximately 14300
different sets of model parameters were assessed using the
TMCMC method for each of the 12 datasets. The obtained
manifold of the inferred PDFs for one dataset is presented
in Supplementary Fig. S.1a. The marginal distributions and
the average values along with their corresponding standard
deviations from the posterior PDFs of the model parameters of
these datasets are presented in Fig. 5a, and in Supplementary
Table S.1. Most of the estimated model parameters exhibited
low uncertainty compared to range of their respective prior
PDFs. The growth rate s corresponded to a cell doubling
time equal to 3.461 ± 0.013 days, (mean ± SEM). The
diffusion constants for the cells, Du, and chemotactic agents,
Df , suggest that diffusion was more dominant compared to
advection, especially closer to the end of the experiment (last
3 time-points). This occurs due to the fact that the chemotactic
signals diffuse in space, hence their gradient towards the
bottom becomes less steep (Supplementary Fig. S.1b).

The parameter r was found to have the largest variation
and uncertainty across and within the datasets, respectively,
which implied that its contribution was relatively smaller. To
test this, we performed global sensitivity analysis of the model
parameters with response to the tumour volume in 3D space,
and the tumour area at the bottom with density values greater
than 10−3. The resulting rank correlation matrix between the
model parameters and the outputs confirmed that r contributed
less than the rest of the parameters (Supplementary S.2).

A visual representation of the in-silico cell density profiles,
presented in Fig. 5b, using the calibrated parameters, shows
that the model predictions reproduced the overall behaviour
observed in the experiments, i.e. the biased movement of the
cells towards the bottom. The Normalized Root Mean Squared
Error (NRMSE) of the cell density evaluated at each spatial
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(a) (b)

Fig. 5: Inferred model parameters and simulation results (a) Violin plots of the marginalized posterior PDFs of the model
parameters across the 12 datasets. The black dots represent the median values. (b) Isosurface plot of the experimental and
simulated density profiles using the inferred parameters of the initial conditions of a representative dataset. The blue colour-map
corresponds to the in-vitro cell density profiles and the green colour-map corresponds to the in-silico cell density profiles.

Fig. 6: Average and standard deviation of Normalized Root
Mean Squared error across all datasets across 6 time-points.

grid point per time point is presented in Fig. 6, excluding day
0, when simulation and experimental data were identical.

B. Spatial Analysis & HDC Model Validation
The estimated model parameters were subsequently used

in the hybrid model (Fig. 4), separately for each dataset.
The resulting in-silico cellular coordinates were analysed and
compared to the corresponding in-vitro coordinates of the
centroids from the segmented fluorescent nuclei of the cells.
The quantitative characterization of the spatial distributions of
the cells was performed using the IN, and NN Euclidean dis-
tance distributions. The IN distance distributions quantify the
positioning of the cells relative to one another, while the NN
distance distributions measure the distances between each cell
and their nearest neighbouring cell. The resulting IN distance
distributions, depicted in Fig. 7a, show that the distributions
remained relatively stable across all samples and time, for both
experiments and simulations, with a characteristic peak dis-
tance at ∼1 mm. The cosine similarity test yielded an average
similarity value equal to 0.9896 ± 0.0109, suggesting high
similarity between IN distance distributions from experiments
and simulations. Their similarity remained high across all
time-points, as shown in Fig. 7g. On the other hand, the NN
distance distributions, presented in Fig. 7b, initially formed
wide distributions that gradually tended to become narrower
around lower neighbourhood radii values with respect to time,

across all samples, with a characteristic peak at ∼15 μm for
the experiments, and ∼10 μm for the simulations. These peaks
can be interpreted based on the hybrid model hypotheses,
specifically regarding the cell division where the daughter cells
are placed next to each other, and the adhesion that prevents
migration. The average cosine similarity between NN distance
distributions from experiments and simulations was equal to
0.6184 ± 0.2226. The similarity between experimental and
simulation NN distance distributions decreased as a function
of time, as shown in Fig. 7g. The different characteristic
peaks in the NN Distance Distributions contributed to the
decreasing similarity values. We attribute these differences to
grid size effects, from which lattice cellular automata typically
suffer [20]. An increase of the grid size would correct this
error. According to the definition of NN distance, it can be
viewed as a special case of the IN distance. In turn, we would
expect that the narrowing of the NN distance distributions
would destabilize the IN distance distributions. However, the
maintenance of their shape can be interpreted as a result of the
organization of the cells into smaller clusters that maintained
a relatively constant distance, the synchronized division of the
cells, as well as their overall accumulation towards the glass
bottom of the wells with respect to time.

To investigate the spatial organization of the cells, we
performed the CSR test, using Ripley’s K-function [56].
Specifically, we examined whether the cells, represented by
their nuclei centroids, were randomly distributed in space.
The results depicted in Fig. 7c indicate substantial differences
from a uniform random distribution for both experiments and
simulations. For the experimental data, we observed clustering
for a wide range of neighbourhood radii, as well as an
increasing dispersion for longer distances across all samples,
with respect to time. The results from the simulation data did
not exhibit significant differences compared to the results from
the experiments until day 2. Starting on day 9, we observed
that the K-function of the experimental data indicates more
pronounced clustering for smaller values of neighbourhood
radii, and more pronounced dispersion patterns for longer
distances, compared to the K-function of the simulation data.
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(a) (b) (c)

(d) (e)

(f)

(g)

Fig. 7: Spatial analysis and comparisons between experiments and simulations (a) Inter-Nucleic Euclidean distance distributions.
The title (D#) denotes the time-point in days. (b) Nearest-Neighbour Euclidean distance distributions. (c) Complete Spatial
Randomness test; average values of K-function across all samples and the corresponding standard error of mean (SEM). (d)
Spatial distributions of cells from the cellular automaton (blue) and its corresponding experimental dataset (red) with respect
to time. (e) Heatmaps of the normalized number of cells across the z-dimension, and across time. The normalization was
performed across the z-dimension. (f) Average number of cells across all datasets with respect to time for simulations and
experiments. (g) Cosine similarity test for IN and NN distance distributions between experimental and simulation results.

The spatial distributions of the in-silico cells, and the
corresponding experimental dataset are presented in Fig. 7d.
We observe that both in-silico and in-vitro cells performed a
biased movement towards the bottom, with the in-silico cells
characterized also by a more pronounced random motion. Sim-
ilarly, the numbers of cells across the z-dimension in Fig. 7e
exhibit similarities between experiment and simulations, even
though a relatively small number of cells appears to maintain
elevated positions. The in-vitro and in-silico number of cells
with respect to time, shown in Fig. 7f, are in coherence,
exhibiting a logistic growth.

IV. DISCUSSION

Our results suggest an overall agreement between the
calibrated model, and the experimental observations. In this
section, we discuss the relation between the observed spatial

patterns, and the underlying mechanisms, particularly as re-
lated to the biased movement of the cells towards the bottom.

A. Relation between Morphological patterns and
Mechanisms

The continuum KS model consists of diffusion, growth, and
advection terms that represent the random motion, prolifera-
tion, and biased movement of the cells towards the bottom,
respectively. The estimated diffusion constants (Fig. 5a) sug-
gest that random motion played a significant role in the overall
cell movement. Together with the unconstrained migration
phase, these parameters affected the morphology of the cancer
cells, which was reflected by the increased NN distance values
on day 2 (Fig. 7b). The effect of advection, together with
the constrained migration were more apparent after day 2
(Fig. 7d). These two parameters reflect the tendency of the
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cells to form clusters and their tendency to move towards the
bottom. This effect was also observed in the NN distances
between days 5 and 14 (Fig. 7b), as well as in the heatmaps
of the number of cells across different z-values (Fig. 7e),
which shows a comparable number of in-silico and in-vitro
cells near the bottom. The visualization of the cells (Fig. 7d)
shows that not all the in-silico cells tended to move towards the
bottom. This is a result of the fast diffusion of the chemotactic
signals, which led to a more uniform distribution across the z-
dimension compared to day 0 (Supplementary Fig. S.1b). The
resulting differences in cell attachment to the bottom is also
apparent in the K-function of the experiments and simulations.
The in-vitro cell accumulation resulted in more pronounced
clustering patterns for smaller neighbourhood radii with re-
spect to time. The increase in the adhesion parameter with
respect to time restricts migration to the cells that have not
reached the bottom, contributing to the resulting NN distances.
This parameter contributes also to the increased clustering of
the in-silico cells shown in Fig. 7c, even though the changes
in K-function were very small.

B. Biased movement and cell sedimentation
Despite the fact that chemotactic migration has been studied

in both biological and mathematical levels [58], [59], there is
very limited discussion on the observed behaviour of the cells
to move towards the bottom of the culture [40]. In this study,
we hypothesized that cell sedimentation is a result of active,
chemotactic cell migration due to the fact that gravity is not
sufficient to describe this behaviour. A characteristic example
in [40] shows that if cells are cultured on the interface of two
hydrogel structures, then they tend to move across the interface
and do not settle on the bottom. Thus, cell sedimentation due
to chemotactic migration remains a probable hypothesis.

The selected mathematical model was able to reproduce
this biased movement, and the overall framework allowed us
to quantify the movement in terms of both spatial patterns
and underlying mechanisms. The proposed computational part
of the framework allowed us to investigate the mesoscopic
scale (μm to mm) taking into account between 1000 and
18000 cells in 3D, exhibiting good performance in terms
of processing times. The analysis showed that not all of
the in-silico cells followed the chemotactic gradient. This
phenomenon was also observed by Tweedy et al. [41], but
for a different reason. Their study showed that self-generated
gradients may favour the leading wave of cells, because they
break down chemoattractants; thus, the cells behind the front
do not sense a gradient and move randomly. This phenomenon
was not visible in our experiments, due to additional factors
that contributed to the biased movement of the cells towards
the bottom. These include the compression and degradation
of Matrigel, as well as vibrations during the transfer of the
samples to the microscope. These factors were not considered
in the model; however, the proposed framework provides a
promising tool for the study of models of higher complexity.

V. CONCLUSIONS

We presented a novel framework that combines 3D cell
culture experiments, multiscale models, parameter estimation,

and spatial validation techniques to examine and quantify
the morphology and mechanisms of cancer progression. We
applied the proposed framework to 3D cultures of TNBC cells
in Matrigel ECM, and we modeled this behaviour using a mul-
tiscale HDC model. The parameters of the continuum model
were estimated using Bayesian inference and a TMCMC
algorithm. The estimated parameters were used in the HDC
model for a detailed simulation of the spatial distributions
of the cells. The results of both experiments and simulations
were analysed using spatial statistical analysis techniques to
quantify the morphology of both in-vitro and in-silico cancer
progression. The proposed framework enabled us to relate
the underlying mechanisms of cancer progression with the
observed morphological patterns. Future improvements may
include incorporating a model term for the quantification of
the effect of ECM degradation that may be responsible for the
introduction of possible biases. The proposed framework can
also be used to study the growth patterns of heterogeneous
cell populations such as cancer cells and fibroblasts, as well
as, study cancer progression in the presence of therapy. Im-
portantly, potential differences in the morphological patterns
in the presence and absence of therapy can be used to design
therapeutic strategies that control not only the tumour size,
but also their morphological patterns to minimize invasion.
Overall, the presented framework yields great promise for a
more complete quantitative understanding of the organization
and progression of cancer.
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