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Abstract 

Genome architecture describes how genes and other features are arranged in 

genomes. These arrangements reflect the evolutionary pressures on genomes and 

underlie biological processes such as chromosomal segregation and the regulation 

of gene expression. We present a new tool called Genome Decomposition Analysis 

(GDA) that characterises genome architectures and acts as an accessible approach 

for discovering hidden features of a genome assembly. With the imminent deluge of 

high quality genome assemblies from projects such as the Darwin Tree of Life and 

the Earth BioGenome Project, GDA has been designed to facilitate their exploration 
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and the discovery of novel genome biology. We highlight the effectiveness of our 

approach in characterising the genome architectures of single-celled eukaryotic 

parasites from the phylum Apicomplexa and show that it scales well to large 

genomes. 
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Significance 

Genome sequencing has revealed that there are functionally important 

arrangements of genes, repetitive elements and regulatory sequences within 

chromosomes. Identifying these arrangements requires extensive computation and 

analysis. Furthermore, improvements in genome sequencing technology and the 

establishment of consortia aiming to sequence all species of eukaryotes mean that 

there is a need for high throughput methods for discovering new genome biology. 

Here we present a software pipeline, named GDA, which determines the patterns of 

genomic features across chromosomes and uses these to characterise genome 

architecture. We show that it recapitulates the known genome architecture of several 

Apicomplexan parasites and use it to identify features in a recently sequenced, less 

well-characterised genome. GDA scales well to large genomes and is freely 

available.  
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Introduction 

Genome architecture is the arrangement of functional elements within the genome 

(Koonin 2009) and can be thought of in a linear fashion, or in the three-dimensional 

arrangement found in nuclei (Rowley & Corces 2018). The architecture of genomes 

differs greatly across the tree of life. For example, bacteria tend to have small 

genomes, consisting mainly of single-exon protein coding genes, often arranged in 

coexpressed operons, with well-defined regulatory regions (Koonin 2009). Eukaryotic 

genomes are diverse, ranging from those that are relatively compact, with genes 

lacking introns (e.g. Leishmania spp.), to large, repeat-rich genomes, sparsely 

populated by multi-exon genes with large introns which employ long range regulatory 

interactions (Lynch & Conery 2003). Although we have an excellent understanding of 

the evolution of protein-coding genes and how they are shaped by natural selection, 

we know very little of the forces that shape many aspects of genome architecture, 

and random drift may be the dominant force in many eukaryotic genomes (Lynch et 

al. 2011). Despite this, there are many features of genome architecture that are 

functional and which provide clues to understanding more about the biology of an 

organism and its evolutionary history. For instance, in the parasitic protozoan 

Plasmodium falciparum, genes involved in evading host immunity are located in the 

subtelomeric regions of chromosomes where the heterochromatic environment 

enables clonal variability in gene expression (Lopez-Rubio et al. 2009; Flueck et al. 

2009). In mammals, the immunoglobulin and T-cell receptor loci comprise ordered 

arrays of duplicated genes, allowing the generation of variant antibody and T-cell 

receptor proteins (Tonegawa 1983). Operons of co-expressed genes are found in 

some eukaryotes such as kinetoplastids (Johnson et al. 1987) and nematodes 

(Spieth et al. 1993). Some fungi have genomes in which different regions have 
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distinct evolutionary rates 

(https://www.sciencedirect.com/science/article/pii/S1749461320300257?via%3Dihub 

). There are also chromosomes that have distinct architectural patterns within a 

genome. These include sex chromosomes (C. elegans Sequencing Consortium 

1998) and accessory B chromosomes, such as those found in plants and fungi 

(Ahmad & Martins 2019). In the nematode worm C. elegans, repetitive sequences 

have accumulated mostly at the ends of chromosomes (C. elegans Sequencing 

Consortium 1998). However, some repeat families have their own distinctive patterns 

that are repeated across each chromosome, suggesting a variety of forces at work 

(Surzycki & Belknap 2000).  

 

A key problem hampering our understanding of genome architecture has been a lack 

of chromosome-scale genome assemblies. However, steady advancements in the 

quality of long-read genome sequencing (Wenger et al. 2019) and scaffolding 

technologies (Burton et al. 2013; Kaplan & Dekker 2013) are beginning to solve this. 

Furthermore, projects such as the Darwin Tree of Life 

(https://www.darwintreeoflife.org/) and the Earth BioGenome Project 

(https://www.earthbiogenome.org/) are planning to deliver chromosome-scale 

assemblies for all species across the eukaryotic kingdom. A second problem is that 

there is no recognised approach for characterising chromosome architectures, 

something that would greatly facilitate studies on their evolution. 

 

We present a new approach to characterise the linear architecture of genomes 

called Genome Decomposition Analysis (GDA). A genome sequence is divided into 

windows of arbitrary length and features are calculated for each window. Features 
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can be derived solely from the sequence itself, including GC content, protein-coding 

potential, and repeat content, or include properties derived from other sources, such 

as sequence homology, gene expression, chromatin modifications, and 

recombination frequencies. The dimensionality of the resulting data matrix of 

windows and features is reduced and the results clustered. Parameters are explored 

to produce distinct clusters with a minimum of unclassified windows. Features are 

then identified that characterise these clusters.  The pattern of clusters across 

chromosomes is inspected to reveal, for example, that the middles of chromosomes 

are distinct from the ends and that they are enriched in repeats. GDA includes an 

easy-to-use web application for data exploration and visualisation. 

  

Apicomplexan parasites are well-studied due to their importance in disease and have 

well-understood genome architectures, making them ideal candidates for developing 

and testing GDA. We use GDA to: (i) refine our earlier definition of the genome 

architecture of the malaria parasite P. falciparum and characterise variation in its 

relatives; (ii) show that bands of repeat-rich sequence cover all chromosomes of the 

chicken parasite Eimeria tenella and compare its architecture to that of the canonical 

coccidian Toxoplasma gondii, revealing they both have distinctive but gene-poor 

subtelomeres; and (iii) demonstrate the potential of GDA for understanding the 

genome architecture of much larger genomes. 

 

GDA is under the MIT licence and is available from GitHub: 

https://github.com/eeaunin/gda 
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Results 

  

Design of the GDA pipeline 

 

We developed GDA to identify features of genome architecture from highly 

contiguous genome assemblies as a basis for further study of genome evolution. 

The tool consists of three main parts: a genomic feature extraction pipeline that 

calculates feature values in windows across the genome; dimension reduction and 

clustering of these windows; and visualisation and data exploration using a web-

browser application (Figure 1). The minimal required input for the pipeline is a 

genome assembly FASTA file. The features that are extracted from the FASTA file 

are: GC content, GC skew, AT skew, CpG dinucleotide frequency, k-mer 

frequencies, stop codon frequency, matches to a telomeric sequence motif, low 

complexity sequence content, tandem repeat content, coverage of simulated reads, 

retrotransposons, inverted repeats and repeat families (Supplementary Table 1). A 

more exhaustive repeat analysis can be included by running RepeatModeler which 

produces features describing the distribution of individual complex and simple 

repeats as well as features describing the sums of complex and simple repeats. 

Gene annotations can be used to produce bedgraph tracks of mRNA, tRNA and 

rRNA gene densities, average exon count, exon length and intron length. Where 

gene annotation files are unavailable, the pipeline can annotate genes. Likewise, if 

proteome FASTA files are provided for related species, the pipeline can produce 

bedgraph tracks based on the counts of predicted paralogs, orthologs, conserved 

proteins and species-specific proteins. It is also possible to add any user-generated 
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tracks, using coordinates of the genome being analysed, to be included as input to 

the clustering step. 

 

Each feature is examined in sliding windows across the genome, the output of which 

is stored in bedgraph files. These bedgraph files can be visualised in a genome 

browser such as IGV (Robinson et al. 2011). The data in the bedgraph files are 

merged into a tab separated (TSV) file and are scaled to fit the range between 0 and 

1. The resulting table is then analysed using UMAP, a dimensionality reduction 

approach (McInnes et al. 2018). HDBSCAN (McInnes et al. 2017) is then run to 

detect clusters of genomic windows in the UMAP embedding. Next, the user can 

explore different values of key parameters for UMAP and HDBSCAN and compare 

the clusterings obtained. When suitable parameter values have been chosen, the 

clustering and analysis script is run, producing a set of output files. One of the output 

files is a BED file that marks which cluster each genomic window belongs to. We 

identify characteristic features for each cluster using the Kolmogorov-Smirnov test. 

The clustering and analysis results can be explored using the GDA web app that 

includes a scatter plot of clustered windows, how these clusters are arranged over 

the genome, heatmaps of features enriched in each cluster, and the cluster 

composition of scaffolds.  
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Figure 1. Overview of the GDA pipeline. (A) Feature sets are derived from the 

genome reference sequence (seq), repeat finding (rep), gene annotations (gene) 

and evolutionary relationships between genes (orth). The genome is divided into 

user-defined, non-overlapping windows (e.g. 5kb in length) from which the value of 

each feature is determined. (B) The resulting matrix of feature values per window is 

embedded in two dimensions and clustered to identify groups of windows with similar 

properties. (C) The data can be explored in a number of ways using a web-browser 

based app. The clustering labels are mapped back to the chromosomes to highlight 

architectural features and a heatmap displays the features which define the clusters.    
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Redefining Plasmodium falciparum genome architecture 

  

A complete chromosomal genome assembly of the human malaria parasite 

Plasmodium falciparum has been available for almost 20 years (Gardner et al. 2002; 

Böhme et al. 2019). Given the importance of the P. falciparum genome as a 

reference for studying one of the most persistent and deadly human infectious 

diseases, it is not surprising that there is a good understanding of its architecture. 

More surprising is that it has been difficult to formally define what is known intuitively 

from having studied it.   

 

We first tested the ability of GDA to identify the known architectural features of the P. 

falciparum genome using only features derived from the genome sequence itself 

(seq feature set). We chose a window size of 5kb to capture a small number of 

genes per window and to reflect the resolution of the genome architecture we expect 

to see. For genomes where the architecture is unknown we recommend choosing 

several window sizes and comparing results. We explored a range of UMAP nearest 

neighbour (n) and HDBSCAN minimum cluster size (c) parameters but picked n = 5 

and c = 50 as these resulted in a relatively high silhouette score of 0.28, with 100% 

of windows being classified (Sup Fig 1; Figure 2A). The three resulting clusters 

defined the core (cluster 2), the multigene family arrays (cluster 1) and the GC-rich 

Telomere Associated Repeat Element (TARE) region adjacent to the telomeres 

(cluster 0; Figure 2B). The core was characterised by uniqueness of sequence 

(simulated mapping coverage of 9.94x, p= 1.23e-96), tandem repeats (p= 1.09e-36) 

and low GC percentage (18.6% vs. 22.2%, p= 8.43e-43) (Figure 2C). The multigene 

family-rich regions were defined by high CpG percentage (0.96 vs. 0.66, p= 9.00e-
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32) and low uniqueness as measured by mapping coverage of simulated reads (3.9x 

compared to expected 10x, p= 4.44e-131). This was caused by highly similar regions 

in tandemly duplicated gene clusters. The TARE region was defined by high GC 

percentage (32.4%, KS test p-value = 4.90e-146), high stop codon frequency (0.24, 

KS test p-value 1.43e-87), and k-mer deviation (3-mer, p=1.30e-69 and 4-mer, p= 

6.69e-48) (Figure 2C). This definition of P. falciparum genome architecture required 

only the genome sequence and simple parameters derived from it, yet characterised 

both the relatively GC-rich telomere-adjacent regions, gene-family rich subtelomeres 

and the conserved core.  
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Figure 2. GDA analysis of the Plasmodium falciparum genome. (A) 

UMAPembedding (n = 5) and HDBSCAN2 clustering (c = 50) of 5kb windows using 

simple features derived from the genome sequence (seq feature set). (B) Projection 

of clusters onto the chromosomes highlights the localisation of cluster 0 windows at 

the very ends of chromosomes, with cluster 1 windows adjacent to these and within 

the cores of some chromosomes. (C) Heatmap showing features enriched in each 

cluster with seq feature set. Colours indicate the relative value of the feature in each 

cluster (red = highest, blue lowest), icons indicate significance (‘∧’ = KS test greater 

p-value <= 1e-20, ‘∨’ = KS test lesser p-value <= 1e-20, ‘-’ = great and lesser p-

values <= 1e-20) (D) UMAP embedding (n = 20) and HDBSCAN2 clustering (c = 50) 

of 5kb windows with seq+gene+rep+orth feature set. (E) Projection of clusters onto 

chromosomes shows that the additional features break the subtelomeric regions into 
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four distinct regions and that two types of island (clusters 3 and 4) interrupt the core 

(cluster 2) on some chromosomes. (F) Heatmap showing features enriched in each 

cluster with all features. 
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To improve on this definition of the genome architecture we generated features from 

three additional sources, adding gene annotations (seq+genes), then repeat 

classification (seq+genes+reps) and finally protein-coding gene conservation 

(seq+genes+reps+orths). For each of these feature sets we re-ran the feature 

extraction pipeline and chose clustering parameters that minimised the number of 

unclustered windows, while providing a number of large well-separated clusters, with 

a good silhouette score. Adding gene annotations altered the definition of the 

multigene family-rich subtelomeres, including the smaller, more well-conserved 

families, because both these regions and those containing high copy number 

multigene families are less gene-dense than the core (Figure 3). Adding repeat 

classification (seq+genes+reps) differentiated the TARE2-5/SB-2 region (named 

complex_repeats_rnd-3_family-6 by GDA) closest to the telomeres (Gardner et al. 

2002) from the TARE6/SB-3/rep20 repeat (named complex_repeats_rnd-3_family-4 

by GDA). Repeat identification altered the definition of the multigene family regions 

to be more like that found when only sequence-based information was used. This 

was because the larger multigene families were identified as repeats and this 

excluded the smaller multigene families. Including all this information, plus analysis 

of gene conservation (seq+genes+reps+orths) allowed improved definition of the 

large multigene family-containing subtelomeric cluster - all 65 var genes, 155/157 

rifin genes and 31/32 stevor genes overlapped cluster 3. It also highlighted the more 

conserved, distal subtelomeric regions containing smaller gene families, where there 

is conservation of synteny within P. falciparum, but not between species (cluster 4; 

Figure 2E; Figure 3B).  
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Figure 3. Detailed view of Plasmodium falciparum chromosome 4. (A) A 

selection of the features used as input to GDA displayed across the 1.2Mb 

chromosome 4. These features were identified as significant in one or more clusters 

of one or more GDA runs. (B) Definition of chromosome architectures based on Otto 

et al. (Otto et al. 2018). GDA was run with basic sequence features, with the addition 

of gene annotation, with gene annotations and complex repeat finding, with gene 

annotations, complex repeat finding and orthology analysis.  
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Defining the unique arrangement of the P. knowlesi genome 

 

Most Plasmodium species have similar genome architectures to P. falciparum. The 

clear exception is P. knowlesi, a related species that also causes malaria in humans 

and other primates. In this species, the largest, most rapidly evolving multigene 

families (in this case sicavar and pir) are found in islands throughout chromosomes 

associated with telomere-like repeats (Pain et al. 2008). We used this example to 

examine the utility of GDA for comparative genomics - identifying differences in 

architecture between related species. P. vivax is a closer relative to P. knowlesi than 

P. falciparum but has a genome split into gene-family rich subtelomeric regions and 

a well conserved core like P. falciparum. We ran GDA on the P. vivax genome with a 

seq+gene+rep+orth feature set, identifying two clusters characterising the whole 

genome. This confirmed that like P. falciparum, most of P. vivax chromosomes are 

made up of cores with well-conserved genes (cluster 0; Figure 4A-C). Conversely, 

the subtelomeres contain species-specific genes with high numbers of paralogues 

(cluster 1).  

 

GDA analysis of P. knowlesi resulted in four clusters with 82.96% of the windows 

assigned falling into cluster 3, representing well-conserved genes. Cluster 1 

(12.41%) represented the multi-gene family-rich regions which are interspersed 

throughout the chromosomes, rather than concentrated towards the telomeres as 

observed in other Plasmodium spp. This cluster was also enriched for complex 

repeat families (sum of complex repeats p=0). Several of these repeat families 

contained telomere-like repeats (e.g. TT[T/C]AGGG) as expected from previous 

analysis (Pain et al. 2008). Cluster 2 made up 1.8% of the genome and was enriched 
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only for simple_repeats_C (p= 1.47e-176). This relates to a previously unidentified 

feature of the genome: 63 polyC repeats of ~20 nucleotides. Twenty-eight of these 

repeats were found in introns, while others tended to lie close to genes. Here, GDA 

makes clear the alteration in genome architecture between closely related species, 

while also identifying previously hidden features. 
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Figure 4. GDA analysis of the Plasmodium vivax P01 and P. knowlesi H 

genomes. (A) The P. vivax genome neatly separates into two clusters with 

seq+rep+gene+orth feature sets. (B) These represent core (magenta) and 

subtelomeric (cyan) regions, which are typified, amongst other things, by having one-

to-one orthologous genes versus highly paralogous species-specific genes, 

respectively (C). (D) P. knowlesi separated into four clusters, with no clear 

subtelomeric localisation (E). (F) The cluster with large species-specific gene 

families equivalent to the subtelomeric cluster of P. vivax (cluster 1; green) is 

dispersed throughout each chromosome.  
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Identification of repeat-rich bands and large gene-poor subtelomeres in 

Eimeria tenella 

  

Eimeria spp. parasites have been found in a wide range of vertebrates and 

commonly cause coccidiosis in domesticated chickens. We have previously shown 

that their ~50 Mb genomes contain a banded pattern of regions rich in CAG and 

telomere-like (TTTAGGG) repeats (Reid et al. 2014). Coding regions are enriched 

for the CAG repeat, which tends to encode Homopolymeric Amino Acid Repeats 

(HAARs) of alanine, serine or glutamine and litter even very well-conserved genes. 

We recently sequenced the genome of Eimeria tenella using long reads and Hi-C 

scaffolding, producing a nearly chromosomal assembly (Aunin et al. 2021). 

  

We investigated whether GDA was able to identify the repeat rich bands and other 

distinctive features in this genome using the new chromosome-scale assembly. 

Using the seq feature set resulted in three clusters. Figure 5 shows that this simple 

input was sufficient to define the repeat-rich bands across the genome. 95.2% 

(3,927) of genes containing HAARs fell into cluster 1. This highlights that when using 

only simple features, GDA is able to accurately capture this aspect of genome 

architecture, and furthermore, that E. tenella genome architecture is dominated by 

this feature. 

 

To better understand the repeats present in the different regions, we ran GDA again, 

adding in the rep feature set (silhouette score = 0.32; Figure 6A). We saw that 

cluster 8 (41.69% of the genome) was enriched for simple_repeats_CTAAACC (p = 

0; i.e. the telomere-like repeat) and simple_repeats_GCT (p = 0; i.e. CAG repeat) as 
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well as inverted repeats and several complex repeat families (Figure 6C). This 

cluster overlapped 93.8% of HAARs (26,728/28,483). With this feature set, cluster 9 

represented the gene-rich parts of the genome lacking repeats (23.61%), while 

cluster 10 (9.04%) —intermediate between clusters 8 and 9 in the UMAP plot — was 

enriched in inverted repeats and sum of complex repeats. Cluster 5 captured the 

LTR retrotransposons, which are not a common feature in apicomplexan genomes 

and were first identified in E. tenella and then subsequently in avian malaria 

parasites (Ling et al. 2007; Böhme et al. 2018). Cluster 4 was enriched for TGTTGC 

repeats, which were the only enriched simple repeats to not colocalise in the repeat-

rich cluster 8 regions, instead being more evenly dispersed throughout the 

chromosomes. On chromosome 6 it is repeated between tRNA genes in a tRNA 

cluster, but otherwise does not have an obvious pattern.  
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Figure 5. Repeat-rich bands and gene-poor subtelomeres of Eimeria tenella are 

captured more or less well by different feature sets. (A) A number of features are 

shown in 5kb windows across chromosome 6 of E. tenella. The repeat-rich bands, 

defined here by GCT (CAG) repeats are highlighted in yellow. The gene-poor 

subtelomeres are highlighted in blue and a sag multigene family array in pink. (B) 

Four different architectures, based on different feature sets are shown below. The 

seq, seq+rep and seq+rep+genes feature sets capture the repeat-rich regions very 

well, with the last of these also capturing the gene-poor subtelomeres. The 

seq+rep+gene+orth feature set does not capture the repeat-rich regions in a single 

cluster but instead focuses more on whether a window contains more well-conserved 

genes or not. It retains the cluster identifying the gene-poor subtelomeres and 

highlights arrays of sag genes.  
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Figure 6. GDA analysis of Eimeria tenella with the seq+rep feature set. (A) 

Analysis of E. tenella with the seq+rep feature set identified 11 clusters. The majority 

of the genome was separated into three or four clusters found in bands across each 
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chromosome (B). (C) These include the repeat rich region (cluster 8; dark blue), a 

cluster which is similar but lacks repeats (9; purple) and an intermediate cluster (10; 

magenta) which is enriched for sum of complex repeats and inverted repeats, but not 

the GCT/CAG and telomere-like (CTAAACC) repeats found in cluster 8.   
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Adding in gene features (seqs+reps+genes) distinguished gene-poor regions at the 

subtelomeres and internally within chromosomes (Figure 5). Clusterings with high 

silhouette scores and relatively few unclassified windows failed to distinguish the 

repeat-rich regions. We picked parameters which resulted in a separate cluster for 

windows intermediate between repeat-rich and repeat-poor clusters, with a relatively 

moderate 13.68% unclassified windows and silhouette score = 0.18 (n=10, c=50; 

Sup Fig 2). This allowed the identification of gene-poor subtelomeric (and sometimes 

internal) regions with repeat-rich regions still well-characterised (26,566/28,483 

HAARs in cluster 9; Figure 5). Gene-poor subtelomeric regions have not previously 

been described as a feature of Eimeria chromosomes. These subtelomeric gene 

deserts (clusters 4 and 5) have high CpG content and cluster 5 has high stop codon 

frequency, while cluster 4 has low uniqueness, despite not being enriched for any 

particular repeat families. 

 

We wanted to determine whether gene poor subtelomeres were also present in other 

Coccidia and so we ran GDA on the related species Toxoplasma gondii with 

seq+gene+rep+orth feature sets. The genome resolved into 5 distinct clusters, with 

no unclassified windows (Figure 7). Chromosomes often ended in gene-poor regions 

falling into cluster 1 (mRNA_annotations lower than other regions; p=5.6e-310). 

These had high stop codon frequency (p=5.35e-74), high GC skew (p=8.05e-30) and 

were enriched for complex repeats (p = 1.03e-26), although no individual repeats in 

particular, much like E. tenella.  
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Figure 7. GDA analysis of Toxoplasma gondii highlights gene-poor 

subtelomeres and gene family-rich islands. (A) Using the seq+rep+gene+orth 

feature set, the T. gondii genome separated into 5 distinct clusters. (B) Cluster 1 

(gold) was often found at the ends of chromosomes and was typified by low numbers 
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of mRNA annotations, high GC skew, complex repeats and stop codon frequency 

(C). This is similar to what we see in E. tenella subtelomeres.  
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Next we ran GDA on E. tenella including the orth feature set 

(seqs+reps+genes+orths) to see if we could identify patterns of gene conservation 

amongst the complexity of the repeat regions (6 clusters, n=10, c=100, 1.9% 

windows unclassified). The gene-poor subtelomeres remained well classified (Figure 

5), but the sag gene arrays on chromosomes 6, 9 and 11 were now also well-

captured by cluster 0. Of 78 sag genes, 51 overlapped cluster 0 windows. In this 

clustering the repeat-rich cluster was lost. Instead, much of each chromosome was 

split into windows with well-conserved genes (cluster 4 – 46.61% windows) or more 

species-specific genes (cluster 5 – 15.61%). Both these clusters were enriched for 

“simple_repeat_GCT” (i.e. CAG repeats; KS-test one-sided p-value 1.03e-234 for 

cluster 4, 1.43e-82 for cluster 5). 

  

The E. tenella genome highlights how some important properties of genome 

architecture are not well captured with a single parameter set. Using different feature 

sets, and parameters such as window size, enabled different aspects of genome 

architecture to be represented. 

 

  

GDA can be run on large genomes and with high resolution 

 

We measured the time taken to run the genomic feature extraction pipeline of GDA 

with the genome assemblies of four different species representing a range of 

genome sizes: Plasmodium falciparum (~23Mb), Caenorhabditis elegans (~100Mb), 

Schistosoma mansoni (~410Mb) and Homo sapiens (~3300Mb) (Table 1). In each 

case 5kb windows were used, meaning that for H. sapiens, features were calculated 
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over 654,762 windows. Memory requirements were roughly correlated with genome 

size and were not greatly affected by repeat finding. Run time was roughly correlated 

with genome size, however C. elegans took longer to process than S. mansoni. The 

major factor contributing to long run times was using RepeatModeler to identify 

repeats de novo (rep feature set). Without this step, analysis of the P. falciparum 

genome was completed in 16 minutes and the human genome in less than 11 hours.  

When de novo repeat finding was included these analyses took ~16 hours and 92 

hours respectively. However, it is clear that GDA can be run effectively on large 

genomes with resources commonly available on bioinformatics compute clusters, 

even including time-intensive repeat finding.  
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Table 1. Resource requirements for running the GDA feature extraction pipeline on a 

range of genomes. The GDA feature extraction pipeline was run with four genomes of 

different sizes. De novo repeat detection had a large effect on run time while genome size 

caused increases in both run time and memory usage. 

 

Feature set  P. falciparum C. elegans S. mansoni H. sapiens 

 Assembly 

size (Mb) 

23.33 100.29 409.57 3,272.09 

Seq+gene+orth 

(without 

RepeatModeler) 

Run time 16 min 2 h 56 min 1 h 57 min 10 h 30 min 

 CPU time 

(s) 

2,345 35,288 17,410 122,967 

 Max 

memory 

use (Mb) 

4,454 11,798 12,042 129,378 

Seq+gene+rep+o

rth (with 

RepeatModeler) 

Run time 15 h 51 min 19 h 2 min 44 h 56 min 92 h 12 min 

 CPU time 

(s) 

573,551 479,531 1,265,211 1,916,769 

 Max 

memory 

use (Mb) 

4,379 11,218 12,622 135,828 
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Discussion 

We have presented a new tool, GDA, which decomposes a genome sequence into 

windows, identifying those with similar properties and enabling the characterisation 

of genomic architectural features. This is achieved most simply using properties 

derived from the genome sequence alone, but a wide range of additional properties 

can be used as input. We have shown that GDA recapitulates the well-described 

architecture of the malaria parasite Plasmodium falciparum and in doing so defines 

regions of interest that can be further explored. The description of the P. falciparum 

genome was robust to different feature sets, suggesting that each part of the 

genome has multiple features distinguishing it from other regions which are 

correlated with each other. In the Eimeria tenella genome, GDA analysis highlighted 

the banded pattern of repeats observed previously (Reid et al. 2014; Ling et al. 

2007) and shows for the first time that it is present across all chromosomes. A 

previous attempt to define these regions involved arbitrary cutoffs, but GDA provides 

a straightforward and data-driven approach to define the repeat-rich regions. This 

will facilitate the comparison of different Eimeria spp. genomes in studying the 

evolution of these repeat-rich regions across species. 

 

The power of GDA lies in the way it allows visualisation of genome architecture to 

suggest hypotheses about genome function and evolution. Applied to closely related 

species, substantial changes in organisation of genomic features can be quickly 

recognised (as in the example of P. vivax and P. knowlesi). The drivers of these 

features can be readily determined and investigated (as in the CAG repeats in 

protein-coding genes of E. tenella). This makes GDA a powerful tool for any de novo 

genome sequencing or comparative genomics project involving well-assembled 
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genomes. We foresee a range of applications such as sex and accessory 

chromosome identification, genome assembly curation and interpretation of 

epigenemic datasets (e.g. ChIP-seq/ATAC-seq). In fact, similar approaches to ours 

have been used to analyse patterns of chromatin modifications in isolated genomic 

regions (Nielsen et al. 2012) and patterns of relatedness across genomes (Li & 

Ralph 2019). However, we are not aware that similar approaches have been applied 

to characterise genome-wide architecture and we have not found any tool which has 

this aim. 

 

When considering application of GDA for different purposes and on different sizes of 

genome, window size is an important parameter. The choice of window size should 

reflect the resolution of features that the user is interested in. A window size of 1kb in 

a 100Mb genome may reflect individual parts of genes such as separate exons, 

introns and promoters which would be appropriate for understanding patterns in 

many types of ChIP-seq data. On the other hand, windows of 5-10kb may reflect one 

or a handful of genes or complex repeats per window, while 1Mb windows will reflect 

more broad aspects of genome architecture. 

  

All Apicomplexan genomes appear to be relatively small and compact, however their 

architectures are diverse. Unlike some larger genomes, in which there is little linear 

architectural coherence based on sequence properties, repeats and homology, these 

genomes display quite definite ordering. Current work on mammalian genomes 

suggests that important aspects of architecture relating to the control of gene 

expression are manifest in the third dimension, i.e. the arrangement of the linear 

chromosomes in space (Yu & Ren 2017). These arrangements can be assayed by 
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techniques such as Chromatin Conformation Capture (e.g. Hi-C). Although not linear 

in nature, the data from these assays could be reframed as linear features (for 

instance regions of high connectivity between chromosomes) and used as input to 

GDA. Despite the large amount of computation involved, GDA can be run on large 

genomes with large feature sets in ~1 week. The most time-consuming step is repeat 

finding and we are exploring alternatives that would bring the overall run time down 

substantially. 

 

 

  

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470736doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470736
http://creativecommons.org/licenses/by-nc/4.0/


32 

Methods 

 

Genome Decomposition Analysis pipeline 

Version 1.0 of GDA was used throughout, with default parameters unless otherwise 

specified. A window size of 5kb was used throughout as this represents roughly the 

size of a gene in apicomplexans (e.g. Plasmodium spp.). The GDA v1.0 code was 

cloned from a private git repository to a Linux server and a Conda environment that 

includes all software dependencies established using the create_gda_conda_env.py 

script provided. This installation was used for running the feature extraction, 

clustering and analysis parts of the pipeline. A separate GDA installation and conda 

environment was set up on a MacBook for running the Shiny application. 

 

The pipeline extracts the values of various sequence features (e.g. GC content) with 

a sliding window (default size 5kb) along all sequences in the assembly. The values 

are stored as separate bedgraph files (one per feature). The pipeline consists of a 

master script that is written in Nextflow (Di Tommaso et al. 2017). The rest of the 

code of the pipeline has been written mostly in Python. The Nextflow script triggers 

multiple third party software tools that are used to detect genomic features. As an 

alternative to using the Conda environment, the pipeline and its dependencies are 

packaged as a Singularity (Kurtzer et al. 2017) image, thus simplifying its installation 

in a shared environment. 

 

Using a genome assembly FASTA file as the input, the genomic feature extraction 

pipeline determines low complexity sequence content using Dustmasker 1.0.0 (NCBI 

Resource Coordinators 2018), tandem repeat content using Tandem Repeats Finder 
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4.09.1 (Benson 1999), coverage of simulated reads using WGSIM 1.0 

(https://github.com/lh3/wgsim), retrotransposons using LTRharvest and LTRdigest 

from GenomeTools 1.6.1 (Gremme et al. 2013), inverted repeats using einverted 

from EMBOSS 6.6.0 (Rice et al. 2000) and repeat families using either 

RepeatMasker + RepeatModeler 2.0.1 (Flynn et al. 2020) or Red (05/22/2015) + 

MeShClust2 2.3.0 (Girgis 2015; James et al. 2018). GC%, AT skew, GC skew, and 

the frequency of CpG, stop codons and telomeric motifs in each window are 

determined using Python code. If the user does not provide the pipeline with a gene 

annotation file, the pipeline can annotate genes itself using Augustus 3.3.3 (Stanke & 

Waack 2003), tRNAscan-SE 2.0.6 (Lowe & Eddy 1997), and Barrnap 0.9 

[https://github.com/tseemann/barrnap]. It is possible to provide hints for Augustus 

using annotation transfer from a GFF3 file of a related genome with Liftoff 1.6.1 

(Shumate & Salzberg 2020). With additional input data, the pipeline can detect 

ectopic mitochondrial and apicoplast sequences using BLAST 2.10.1 (NCBI 

Resource Coordinators 2018), and RNA-Seq read coverage using HISAT2 2.2.1 

(Kim et al. 2015). If the user provides proteome FASTA files of species that are 

related to the target species, the pipeline can run OrthoMCL 1.4 (Li et al. 2003). A 

more detailed description of the variables can be found in Supplementary Table 1. 

Note that telomeric motifs, stop codons and kmers are not counted if they are broken 

up by a border between two windows. However, in the OrthoMCL results analysis 

part (when calculating the values of variables per gene in the window) a gene that is 

split between two windows is counted as a part of both windows. 

 

The code for the dimensionality reduction and clustering of the data from genomic 

windows uses the Python UMAP (McInnes et al. 2018) and HDBSCAN (McInnes et 
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al. 2017) libraries. The scaling of variables before running UMAP is done using 

MinMaxScaler from the scikit-learn package (Pedregosa et al. 2011). 

In the script for optimising the clustering parameters (gda_parameters.py), Silhouette 

score, Davies-Bouldin index and Calinski-Harabasz score are calculated for each 

clustering result using scikit-learn. These scores help to find the clustering settings 

that work the best for separating the genomic windows into distinct clusters. 

After determining the optimal settings for n_neighbors and minimal cluster size, the 

pipeline runs the final clustering. Kolmogorov-Smirnov test is used to determine 

whether the distribution of values of a variable in a GDA cluster is significantly 

different from the distribution of the values of the same variable in the rest of the 

genomic windows. The test is performed using the ks_2samp function from the scipy 

package (Virtanen et al. 2020).  The Fisher test with Benjamini-Hochberg multiple 

hypothesis testing correction (using scipy.stats (Virtanen et al. 2020) and 

statsmodels.stats.multitest libraries (Seabold & Perktold) are used to determine if 

some types of cluster junctions occur with a different frequency than what is 

expected by chance. For example, this test yields a statistically significant result 

when windows belonging to a given cluster are located next to windows belonging to 

the same other cluster significantly more often than expected by chance. 

 

While the clustering and visualisation parts of the GDA pipeline rely on bedgraph 

files, none of the third party software tools used by GDA produce output files in 

bedgraph format. We therefore use Python code written for the GDA pipeline to 

derive bedgraph files from the diverse set of output files produced by the third party 

tools. In some cases, the output of a software tool is first converted to GFF format 

and then the GFF file is converted to a bedgraph file. All bedgraph files 
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corresponding to one assembly are merged into a tab-separated table. The code for 

merging bedgraph files into a table and for downsampling the table has been written 

in C++ instead of Python, in order to gain execution speed. 

 

In this work, we distinguish four different feature sets: seq requires only the genome 

sequence as input, gene features are derived from a set of gene annotations, rep 

features derived from running the RepeatModeler repeat classification and analysis 

tool, orth derived from running the OrthoMCL tool for determining orthologous and 

paralogous relationships between protein-coding genes. These feature sets are 

frequently combined, as stated. In this work “full feature set” refers to the 

combination of these four feature sets. GDA is capable of generating additional 

feature sets and any arbitrary genome data tracks can be added to incorporate novel 

features. 

 

Datasets 

Genome sequences and annotation for the following species were downloaded from 

VEuPathDB release 51 (https://toxodb.org/toxo/app/downloads/release-51/) - 

Plasmodium falciparum 3D7, P. knowlesi H, P. chabaudi AS, P. vivax P01, 

Toxoplasma gondii ME49, Babesia bovis T2Bo, B. microti RI, Theileria annulata 

Ankara, T. parva Muguga and Cryptosporidium parvum IowaII. Features in the GFF 

files labelled protein_coding_gene were changed to gene. Eimeria tenella Houghton 

data was downloaded from ENA 

(https://www.ebi.ac.uk/ena/browser/view/GCA_905310635.1). For OrthoMCL runs 

(excluding large genome analysis), all the above species were included. 
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Analysis of Plasmodium falciparum 

The feature extraction module of GDA was initially run using just the sequence as 

input, producing the following features: at_skew, cag_freq, cpg_percentage, 

dustmasker_low_complexity_percentage, einverted_inverted_repeat, N_percentage, 

gc_percentage, gc_skew, kmer_deviation_kmer_size_3, 

kmer_deviation_kmer_size_4, LTRdigest_protein_match, 

LTRdigest_LTR_retrotransposon, stop_codon_freq, tandem_repeats_fraction, 

telomere_freq, wgsim_depth_minimap2. A description of these features is available 

in Supp. Table 1. 

 

The clustering_params function of GDA was used to determine suitable clustering 

parameters, with all combinations of n neighbours (n) = {5, 10, 15, 20} and minimum 

cluster size (c) = {50, 100, 200 500} explored. Parameter values were chosen to 

minimise the percentage of unclassified windows and maximise the silhouette score. 

This was achieved with n = 5 and c = 50. Feature extraction was also performed with 

the addition of gene annotations (seq+gene), resulting in the following additional 

features: exon_count, gene_average_exon_length, gene_average_intron_length, 

gene_length, mRNA_annotations, pseudogene_annotations, rRNA_annotations and 

tRNA_annotations. Clustering parameters were n = 10 and c = 40. To this feature 

set, repeat identification with RepeatModeler was added (seq+gene+rep), 

incorporating sum_of_simple_repeats, sum_of_complex_repeats, as well as 

numerous, specific simple and complex repeat family features. Clustering 

parameters for this feature set were n = 15, c = 50. The final feature set added 

features derived from an analysis of orthologues across the Apicomplexan phylum: 

apicomplexa_ortholog_count, apicomplexa_paralog_count, 
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apicomplexa_protein_conservation_ratio and 

apicomplexa_species_specific_proteins_ratio (seq+gene+rep+orth). Here, the 

clustering parameters were chosen as n=20, c=50. 

 

We wanted to determine whether cluster 3 (var/rif genes) and 4 (smaller multigene 

families) regions in the seq+gene+rep+orth run of P. falciparum contained genes that 

were more or less well conserved and more or less well covered by HP1 chromatin 

modifications in internal regions versus subtelomeres. To examine conservation, we 

looked at protein conservation ratio values for genes in cluster 3 or 4 in internal vs. 

subtelomeric locations. Instead of using protein conservation ratios from across 

apicomplexa as we had done in running GDA, we reran GDA using only predicted 

proteomes from Plasmodium species in the Laverania group. These were chosen 

specifically as they are phylogenetically close to P. falciparum and the var, rif and 

stevor multigene families are present, whereas they are not present outside of the 

group. P. adleri G01, P. billcollinsi G01, P. blacklocki G01, P. reichenowi G01 and P. 

praefalciparum G01 protein sequences were downloaded from PlasmoDB v51. We 

defined subtelomeric windows as those within 200kb of chromosome ends. To test 

whether there was a difference in HP1 occupancy between subtelomeric and internal 

multigene family regions, bedgraph files of log2 ratios of HP1 in trophozoites were 

downloaded from PlasmoDB, originally derived from (Fraschka et al. 2018). We used 

bedtools intersect to identify genes overlapping windows of each cluster. Boxplots 

were drawn using the graphics v4.0.2 package in R. Kolmogorov-Smirnov tests, 

using the stats v4.0.2 package in R, were used to determine statistical significance.  

 

Analysis of P. vivax and P. knowlesi 
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Full feature sets (seq+gene+rep+orth) were used for P. vivax and P. knowlesi. For P. 

vivax we chose parameters n=20, c=50, for P. knowlesi n=10, c=50. 

 

Analysis of Eimeria tenella 

We used parameters n = 10 and c = 100 with the seq feature set, resulting in 

exclusion of 2.74% of windows and a silhouette score of 0.53. The default CAG 

repeat feature was excluded because this feature was originally added specifically to 

help identify repeats in Eimeria spp. Here, we wanted to demonstrate that these 

repetitive regions could be identified without prior knowledge. We added rep features 

(n = 5, c = 50, silhouette score = 0.32), then gene features (13.68% unclassified 

windows and silhouette score = 0.18, n=10, c=50), then orth features (6 clusters, 

n=10, c=100, 1.9% windows unclassified). 

 

Homopolymeric Amino Acid Repeats (HAARs) were identified using Python regular 

expressions, looking for runs of A, S, Q, L and N of at least 7 in predicted protein 

sequences. There were 13,389 A, 9,404 Q, 5,350 S, 334 L and 6 N repeats. 

 

Analysis of Toxoplasma gondii 

Non-chromosomal contigs were removed from the assembly. The 

seq+gene+rep+orth feature set was used with parameters n = 20, c = 50, resulting in 

5 clusters, with no unannotated windows. 

 

Analysis of large genomes 

The GDA feature extraction pipeline was run with four genomes of increasing size, 

with and without RepeatModeler (rep feature set) to show how resource 
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requirements scale. Each was run with orthologue analysis (orth), genome 

annotation (gene) feature sets as well as NUclear Mitochondrial DNA (NUMT)  

identification. All jobs were executed on the Wellcome Sanger Institute compute farm 

and were given 30 Gb memory and 16 threads. Genomic windows size was 5 kb in 

all runs - which represents 654,762 windows for H. sapiens. Gene annotations were 

read from existing GFF files from the same origin as the assembly FASTA files 

(PlasmoDB, NCBI or WormBase ParaSite).  

 

Plasmodium falciparum 3D7 (PlasmoDB release 43) was used with the Pf_M76611 

(PlasmoDB) mitochondrial genome reference and reference proteomes P. chabaudi 

chabaudi AS, P. ovale curtisi GH01, P. gallinaceum 8A, P. malariae UG01, P. 

berghei ANKA, P. vivax P01 (from PlasmoDB release 52). Caenorhabditis elegans 

(RefSeq GCF_000002985.6) was used with mitochondrial sequence NC_001328.1 

(NCBI) and predicted proteomes GCF_000001215.4 Release 6 (Drosophila 

melanogaster), GCF_000146045.2 R64 (Saccharomyces cerevisiae) and 

GCF_000001405.39 GRCh38.p13 (Homo sapiens) from NCBI, GCA_900184235.1 

(Oscheius tipulae) and GCA_000469685.2 (Haemonchus contortus) from GenBank 

and PRJEA36577.WBPS14 (Schistosoma mansoni) from WormBase ParaSite. 

Schistosoma mansoni (WormBase ParaSite release 14, assembly Smansoni_v7) 

was used with mitochondrial sequence NC_002545.1 (NCBI) and predicted 

proteomes PRJDA72781.WBPS14 (Clonorchis sinensis), PRJEB527.WBPS14 

(Schistocephalus solidus), PRJEB122.WBPS14 (Echinococcus multilocularis), 

PRJEA34885.WBPS14 (Schistosoma japonicum), PRJNA179522.WBPS14 

(Fasciola hepatica), PRJEB124.WBP from WormBase ParaSite (Howe et al. 2017). 

Homo sapiens (NC_012920.1; NCBI) was run with mitochondrial sequence 
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NC_012920.1 (NCBI) and predicted proteomes GCF_000002035.6_GRCz11 (Danio 

rerio), GCF_001663975.1 (Xenopus laevis v2), GCF_000001635.27_GRCm39 (Mus 

musculus) from NCBI. 

 

Data Availability 

The GDA pipeline, instructions on how to install and run the pipeline and detailed 

results of individual analyses presented here are provided through our GitHub page: 

https://github.com/eeaunin/gda.  
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