
Detection of allele-specific expression in spatial
transcriptomics with spASE
Luli S. Zou1,2,3, Tongtong Zhao2, Dylan M. Cable2,3,4, Evan Murray2, Martin J.
Aryee1,2,5, Fei Chen2,†, Rafael A. Irizarry1,3,†

1 Department of Biostatistics, Harvard University, Boston, MA, 02115
2 Broad Institute of Harvard and MIT, Cambridge, MA, 02142
3 Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215
4 Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139
5 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston,
MA 02114
† These authors contributed equally

Abstract1

Allele-specific expression (ASE), or the preferential expression of one allele, can be2

observed in transcriptomics data from early development throughout the lifespan.3

However, the prevalence of spatial and cell type-specific ASE variation remains un-4

clear. Spatial transcriptomics technologies permit the study of spatial ASE patterns5

genome-wide at near-single-cell resolution. However, the data are highly sparse,6

and confounding between cell type and spatial location present further statistical7

challenges. Here, we introduce spASE (https://github.com/lulizou/spase), a8

computational framework for detecting spatial patterns in ASE within and across9

cell types from spatial transcriptomics data. To tackle the challenge presented by10

the low signal to noise ratio due to the sparsity of the data, we implement a spatial11

smoothing approach that greatly improves statistical power. We generated Slide-12

seqV2 data from the mouse hippocampus and detected ASE in X-chromosome13

genes, both within and across cell type, validating our ability to recover known ASE14

patterns. We demonstrate that our method can also identify cell type-specific ef-15

fects, which we find can explain the majority of the spatial signal for autosomal16

genes. The findings facilitated by our method provide new insight into the uncharac-17

terized landscape of spatial and cell type-specific ASE in the mouse hippocampus.18

Introduction19

In diploid organisms, allele-specific expression (ASE) refers to the imbalanced ex-20

pression of the two parental alleles for a given gene. ASE has been well-studied in21

the context of epigenetic phenomena such as genomic imprinting and X-chromosome22

inactivation (XCI) [1, 2, 3], where expression from one allele is silenced. Spatial pat-23

terns of ASE have long been observed as a consequence of XCI in female organ-24

isms, where the random silencing of either the maternal or paternal X-chromosome25

in early development is passed to daughter cells, resulting in visible clusters of ASE26

[4, 5, 6]. By contrast, although studies in bulk and single-cell RNA-sequencing data27

have revealed widespread variability in ASE throughout the autosome across tis-28

sues and cell types [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], relatively little29

is known about the prevalence of spatial ASE therein.30

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470861doi: bioRxiv preprint 

https://github.com/lulizou/spase
https://doi.org/10.1101/2021.12.01.470861
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spatial transcriptomics technologies now provide the opportunity to study spatial31

ASE patterns genome-wide. For example, Slide-seqV2 [21, 22] has high resolution32

which enables near-single-cell quantification of ASE with 2D spatial information.33

However, these data are limited by highly sparse read counts in comparison to34

bulk or single-cell sequencing technologies, which is further exacerbated by the35

requirement that reads align uniquely to one allele. In addition, cell type, which36

drives the majority of variability observed in single-cell data, is highly correlated37

with spatial location, especially in solid tissue [23]. Therefore, it is important to38

distinguish between spatial and cell type-specific ASE, which could arise from and39

contribute to distinct underlying biological mechanisms.40

Several statistical and computational methods have been developed for studying41

ASE in bulk and single-cell RNA-seq data [24, 25, 26, 27, 28, 29, 30, 31]. Some fo-42

cus on estimating allele-specific transcriptional bursting kinetics for individual genes43

in homogeneous populations of cells [15, 30, 31]. Here, we instead focus on the44

problem of estimation and inference for the maternal allele probability p for a given45

gene across 2D space, and we consider how p may vary with cell type. To model46

p in bulk and single-cell RNA-seq, multiple methods have used a beta-binomial47

framework, which can flexibly account for overdispersion from unknown technical48

and biological variability [26, 27, 28]. An additional advantage of this model is that49

it can be parameterized as a generalized linear model (GLM) [32, 33], allowing for50

maximum likelihood estimation of p while incorporating covariates of interest such51

as cell type.52

The issue of estimating smooth functions from sparsely sampled data has been53

well-studied [34, 35, 36, 37, 38], and multiple solutions have been developed and54

implemented as computational methods [39, 40]. In the case of allele-specific spa-55

tial transcriptomics data, although the read count measured at individual spatial56

coordinates may be low, smoothing spline methods can increase power by lever-57

aging information from local neighborhoods of pixels. Generalized additive models58

are GLMs that incorporate smoothing splines into a regression framework, enabling59

estimation of the smooth spatial function as well as hypothesis testing for spatial60

functions deviating from a constant [38, 40].61

Here, we present spASE, a computational framework for detecting genes with62

significant ASE patterns in spatial transcriptomics data. We employ a hierarchical63

beta-binomial smoothing approach based on thin plate regression splines [36, 41] to64

estimate 2D allele probability functions and detect spatially significant genes. Given65

the high correlation between cell type and spatial location in solid tissue, our method66

permits control for cell type effects as well as any other potential covariates of in-67

terest. Through simulations, we confirm the power and false positive rate control of68

our method even in highly sparse settings such as those observed in allele-resolved69

spatial transcriptomics. Additionally, we generate allele-specific Slide-seqV2 data70

from the hippocampus of an F1 hybrid mouse and find that we are able to recover71

known patterns of ASE due to XCI in highly-expressed X-chromosome genes, both72

within and across cell types. We further show that our method can detect cell type-73

specific ASE, which we find can explain most of the spatial signal observed in au-74

tosomal genes such as Ptgds. Overall, we report new insights into the uncharac-75

terized landscape of spatial and cell type-specific ASE in the mouse hippocampus,76

thus demonstrating the utility of spASE for detecting known and novel patterns of77

ASE in spatial transcriptomics.78
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Results79

A beta-binomial framework for modeling allele-specific spatial80

transcriptomics81

A statistical challenge for allele-specific spatial transcriptomics is that spatial and82

cell type effects can be confounded (Figure 1a,b). We therefore developed a com-83

putational framework that can account for both these sources of variability. Specif-84

ically, we developed a beta-binomial GLM that provides a flexible approach to esti-85

mation, inference, and visualization of ASE in spatial transcriptomics. We denoted86

the counts from the maternal allele for gene g and pixel i with Ygi and assumed it87

followed the distribution:88

Ygi | λgi ∼ Binomial(ngi, λgi),

with ngi the observed total UMI count for gene g and pixel i, summing both alleles,89

and λgi the probability that a transcript from gene g is from the maternal allele. We90

assumed that λgi follows a beta distribution with mean pgi and variance φgpgi(1−pgi).91

Here, pgi is the mean maternal allele probability and φg is a gene-specific overdis-92

persion parameter ranging from 0 to 1 that accounts for biological and technical93

variability not explained by binomial sampling.94

To account for spatial and cell type effects, we created a logit-linear GLM,95

logit(pgi) = βg0 + f(xi, yi) +
K∑
k=1

βgkXik, (1)

with xi and yi the spatial location of pixel i, f(xi, yi) a smooth function of location,96

the Xik’s indicator functions equal to 1 if pixel i is from cell type k, and the βgk97

parameters representing gene-specific cell type effects. Note that the βgk can be98

interpreted as the change in log-odds, compared to the reference cell type, of a99

maternal allele transcript in gene g and cell type k.100

The spatial effect function was modeled as a thin plate spline [36] defined by101

f(xi, yi) =
J∑
j

θgkBj(xi, yi),

with Bj(x, y) the smooth basis function for the spline and θgk the gene-specific pa-102

rameters that define gene-specific spatial effects. With this definition of f , all the103

terms in (1) are linear and define a GLM. We can therefore obtain maximum likeli-104

hood estimates (MLEs), standard errors, and confidence intervals for all parameters105

using GLM theory and software. Furthermore, we can test for spatial effects by per-106

forming a likelihood ratio test comparing the model with f to a model without space107

(see Methods for details).108

In addition to fitting spatial ASE across all cell types, we can also fit a cell type-109

specific version of model (1) as110

logit(pgik) = γg0k + fk(xi, yi),
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Figure 1: Schematic of detecting allele-specific expression in spatial transcriptomics using spASE. (a) Input is allele-
and cell type-resolved spatial transcriptomics with UMIs. Each shape represents a different cell type, and the color indicates
the fraction of observed UMIs that were from the maternal allele. (b) Point estimates and confidence intervals for the estimated
maternal allele probability (estimated p maternal) for each cell type. (c) Visualization of the estimated maternal probability
function, not controlling for cell type. (d) Visualization of confidence intervals (gray shaded region) around the MLE in a 1D
cross-section. The solid line indicates the estimated maternal probability along the black dashed line from c. Light gray
dashed line indicates the null of p = 0.5. (e) 2D z-score plot visualizing region-level significance of the estimated function
from c. (f) Estimated cell type-specific function for the circle cell type from a.
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for all pixels i belonging to cell type k, where p and f have been modified to depend111

on cell type. Note that only certain genes within certain cell types provide enough112

counts and therefore power to fit our cell type-specific spatial model.113

After estimating parameters by maximum likelihood for each gene, we can visu-114

alize the smooth maternal probability function across 2D coordinates (Figure 1c),115

and for any given spatial cross-section, we can additionally visualize confidence116

intervals (Figure 1d). Region-specific significance can also be assessed using 2D117

z-score maps (Figure 1e). Running spASE on individual cell types generates spatial118

ASE maps for cell type-specific estimation (Figure 1f). spASE uses the likelihood119

ratio to rank genes according to spatial effects variability.120

To evaluate the performance of our method, we generated simulated spatial121

transcriptomics data under a wide variety of sparsity and overdispersion conditions122

(Supplementary Figure S1, Methods). We calculated the power and false positive123

rate, and we computed p-values to detect significant spatial ASE. We observed that124

power decreased as overdispersion increased (Supplementary Figure S1a); how-125

ever, we found that power is at least 70% even for genes with high overdispersion126

(φ = 0.8) and as few as 50 pixels with low UMI coverage (e.g. less than 10 UMIs127

per pixel). With at least 100 pixels for a given gene, the power across all scenarios128

was at least 85%, even with as low as 1 UMI per pixel. Using a p-value threshold129

of p ≤ 0.01, we found that the false positive rate approached the nominal rate of130

0.01 as the number of pixels increased, in concordance with the expected asymp-131

totic guarantees of our model (Supplementary Figure S1b,c). We also evaluated132

confidence interval coverage as a function of sample size and number of UMIs per133

pixel (Supplementary Figures S2, S3), and we found that the beta-binomial model134

maintained near-95% coverage across all scenarios.135

spASE identifies spatially-significant ASE genes and smooths136

over sparse allele-specific spatial transcriptomics signal137

To test spASE on allele-specific spatial transcriptomics data, we generated Slide-138

seqV2 data of an F1 hybrid CAST/EiJ x 129S1/SvImJ (CAST x 129) mouse hip-139

pocampus and surrounding region (see Methods). We aligned 150bp reads to a140

pooled CASTx129 transcriptome and only considered reads that uniquely aligned to141

one allele. We used RCTD [23] to call cell types using a single-cell RNA-sequencing142

reference of the mouse hippocampus [42], and we filtered to pixels with a high like-143

lihood of sourcing UMIs from a single cell type (Figure 2a). Based on results from144

our simulations (Supplementary Figure S1), we filtered genes with non-zero UMI145

counts on at least 100 pixels. Using these filtering criteria resulted in 4,140 genes146

for downstream analysis, which were expressed on a median of 210 pixels (IQR:147

140-384 pixels) with a median number of UMIs per pixel of 1.06 (IQR: 1.04-1.1148

UMIs/pixel) (Supplementary Figure S4).149

We then fit our model with and without the cell type covariates Xik in the model150

(see Methods). We found that, compared to autosomal genes, a higher propor-151

tion of X-chromosome genes had likelihood-ratio-test significance (Figure 2b), in152

concordance with the expected patterns of XCI in the X-chromosome. The p-value153

distribution for autosomal genes was closer to uniform distribution, indicative of less-154

frequent spatial ASE effects. After controlling for cell type, the autosomal distribution155

remained similar, while the distribution for the X-chromosome had a lesser skew,156
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Figure 2: spASE identifies spatially significant ASE genes and smooths over sparse ASE spatial transcriptomics
signal. (a) Map of cell types identified by RCTD in the Slide-seqV2 data generated in this study. Each point represents
a pixel classified as a singlet of that cell type. (b) Distributions of p-values calculated by spASE for autosomal (A) and X-
chromosome (X) genes in the real Slide-seqV2 data, not controlling for cell type (”no cell type”) and controlling for cell type
(”cell type”). (c) Raw data for Hpca, showing higher coverage in the hippocampal formation and sparse coverage in the
adjacent regions. (d) Estimated 2D maternal probability function for Hpca, with crosshairs indicating the x = 3 and y = 3
lines, along which point estimates and confidence intervals are plotted in (e) and (f), respectively.

consistent with some the genes appearing to have spatial effects due to confound-157

ing with cell type effects.158

Using a false discovery rate (FDR) threshold of q ≤ 0.01, we found ten genes159

with a spatially significant pattern, of which six were from the X-chromosome (Sup-160

plementary Table S1). However, after controlling for cell type, only three genes, two161

(Tspan7 and Plp1) on the X chromosome and one (Sst) autosome, were signficant.162

Other genes, including Nrip3 and Ptgds, were no longer significant after controlling163

for cell type, indicating that cell type differences were the main driver of spatial ASE164

for these genes.165

spASE accounts for biological and technical noise to avoid detecting false posi-166

tive ASE. For example, the gene Hpca was determined by spASE to not have signif-167

cant spatial ASE (Figure 2c,d, p-value = 0.53). Although Hpca is highly expressed168

in the hippocampal formation, sparse expression in the adjacent regions resulted in169

noisier estimates and wide confidence intervals outside the hippocampus (Figure170

2e,f). In general, such visualizations enabled by spASE allow for the assessment of171

both overall significance as well as position-specific significance across space.172

spASE detects spatial patterns of XCI across and within cell type173

in the mouse hippocampus174

Next, we used spASE to estimate the maternal allele probability function for X-175

chromosome genes and found that the patterns for almost all significant X-chromosome176

genes were similar and anti-correlated with Xist expression (Figure 3a-c, Supple-177
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Figure 3: spASE detects spatial ASE in X-chromosome genes across and within cell type in the mouse hippocampus
from Slide-seqV2 data. (a) Smoothed maternal allele probability functions for X-chromosome genes highly expressed in the
mouse hippocampus and detected as significant (q-value ≤ 0.01): Tspan7 and (b) Plp1. Red color indicates bias towards
maternal, blue towards paternal, and white indicates both maternal and paternal alleles are present. The outline of the CA1,
CA3, and dentate cell type regions is depicted in the dotted gray areas for reference. (c) Same as a-b for Xist. (d) Same as
a-c but only using astrocyte pixels for Tspan7. (e) Same as a-c but only using oligodendrocyte pixels for Plp1. (f) Same as
a-c for Tceal3. (g) 2D z-score plot computed from combining all non-Xist X-chromosome genes. (g) 2D z-score plot for Xist.

mentary Figure S5), reflecting the expected mosaicism due to XCI by Xist. We also178

found that patterns of XCI were preserved within individual cell types. For exam-179

ple, Tspan7, which is relatively highly expressed in astrocytes (Figure 3d, S6), and180

Plp1, which is highly expressed in oligodendrocytes (Figure 3e, Supplementary Fig-181

ure S7), were both estimated to have maternal probability functions anti-correlated182

with Xist.183

One X-chromosome gene, Tceal3, exhibited a strong paternal skew unlike the184

rest of the X-chromosome (Figure 3f, Supplementary Figure S8). However, the es-185

timated Tceal3 maternal probability still had a similar trend to the observed XCI186

pattern, with a high paternal bias around the hippocampus and a near-biallelic pat-187

tern in the periphery. We investigated the Tceal3 locus and found that another188

nearby gene less than 100kb away, Morf4l2, also exhibited a strong paternal bias.189

Tceal6, a paralog of Tceal3, also showed a paternal bias in a similar pattern to that190

of Tceal3; however, other genes in the Tceal family, such as Tceal5, did not show191

the same bias (Supplementary Figure S8).192

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470861doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470861
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then constructed a consensus XCI map by combining the UMI counts of193

all of the X-chromosome genes excluding Xist and fitting the model on the merged194

spatial profile. We visualized the significance at a region-specific level by computing195

and plotting z-scores in 2D (Figure 3g, Supplementary Figure S5). We found that196

the region significant for paternal X-chromosome expression was located precisely197

around the CA1, CA3, and dentate cell-type layers of the hippocampus as well as198

around a cluster of interneurons, and was anti-correlated with Xist (Figure 3h). Xist199

had fewer spatial regions reaching significance, reflecting its lower UMI coverage200

and thus wider confidence intervals in most areas (Supplementary Figure S9).201

spASE identifies cell type-driven spatial ASE in the autosome of202

the mouse hippocampus203

We next investigated autosomal spatially significant genes with spatial ASE that204

was explained by cell type-driven ASE. Recall that several genes, including Nrip3205

and Ptgds, no longer possessed significant spatial ASE after controlling for cell206

type, indicating cell type-driven ASE. To quantify such cell type-driven ASE, we207

used spASE to estimate the overall maternal allele probability for each cell type,208

revealing several genes previously unknown to exhibit cell type-specific ASE (Figure209

4a). For these genes, spASE’s estimated spatial ASE patterns were primarily driven210

by cell type localization distributions (Figure 4b-d). For example, Nrip3, one of the211

most statistically significant autosomal genes, had a high maternal bias in CA1,212

CA3, and dentate cell types, driving a strong maternal signal observed in the z-213

score plot (Figure 4b). Ptgds, which was highly expressed in both oligodendrocytes214

and endothelial tip cells, had a strong paternal bias in oligodendrocytes but not215

endothelial cells (Figure 4c,e). Sst exhibited a maternal bias which was enhanced216

in an interneuron subtype localizing primarily outside of the hippocampus (Figure217

4d; Supplementary Figure S10).218

We examined whether this high cell type-specificity of ASE for these genes could219

be explained by genetic differences between the CAST (maternal) and 129 (pater-220

nal) mouse strains. Specifically, we investigated if a SNP could alter the binding221

affinity of a cell type-specific transcription factor at either the promoter or a putative222

enhancer. We analyzed single-cell ATAC-seq (scATAC) data from the mouse hip-223

pocampus [44] and searched for instances of SNPs overlapping known transcription224

factor binding site (TFBS) motifs in peaks within 50kb upstream and downstream of225

each gene (Methods). We found a peak in the promoter of Gm35287 approximately226

8kb upstream of Ptgds (Supplementary Figure S11), which is predicted to have a227

TSS-distal with enhancer-like signature for Ptgds [45]. Furthermore, we found that228

this peak has a high co-accessibility (r2 = 0.74) with the Ptgds promoter peak for229

cell types in common between the scATAC data and our spatial data (Figure 4f).230

In particular, both peaks are preferentially open in oligodendrocytes. We found a231

SNP, rs8255993, overlapping a known transcription factor motif, PB0044.1, which232

corresponds to the gene Mtf1 (Supplementary Figure S11), which is also highly ex-233

pressed in oligodendrocytes (Figure 4g) [43]. The SNP is A in the paternal strain234

and C in the maternal, and this position has a strong A signal in the TFBS position235

weight matrix for Mtf1 (Figure 4h). Thus, the preferential binding of Mtf1 to the pa-236

ternal allele at this distal enhancer is a likely mechanism driving the paternal bias237

of Ptgds observed in oligodendrocytes.238
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Figure 4: spASE identifies cell type-driven spatial ASE in the autosome. (a) MLEs and associated confidence intervals
for the maternal probability p for three of the top autosomal gene hits (q-value≤ 0.01), Nrip3, Ptgds, and Sst. x-axis: total UMI
counts summed across all pixels. (b) 2D z-score plot for Nrip3. The hippocampal formation is outlined with dotted black lines.
(c-d) Same as b for Ptgds and Sst, respectively. (e) Raw data for Ptgds for endothelial tip (triangles) and oligodendrocyte
(circles) pixels. Size of the point indicates the total number of UMI present at that pixel, and color indications the fraction of
the total UMI that were from the CAST (maternal) allele. (f) Average sci-ATAC-seq peak accessibility of the Ptgds promoter
peak and the nearby (∼8kb away) peak in Gm35287 for the cell types overlapping between the sci-ATAC-seq data set and the
Slide-seq data. (g) Single-cell RNA-seq expression for Mtf1 from the Mouse Brain Atlas [43]. Each point represents a cluster
that was classified as one cell type. (h) Position weight matrix for PB0044.1 (Mtf1) with 129 (paternal) and CAST (maternal)
reference sequences shown on the top and bottom, respectively. Black arrow points to the SNP position of interest.
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Discussion239

Allele-resolved spatial transcriptomics suffers from high sparsity in comparison to240

bulk and single-cell sequencing, and confounding between cell type and spatial241

location present further statistical challenges. Here, we describe a statistical ap-242

proach and software (spASE) which allows for estimating and visualizing 2D allele243

probabilities for sparsely expressed genes, as well as for testing spatial significance244

while controlling for user-specified covariates such as cell type. Through simula-245

tions, we demonstrate that our method maintains high power to detect ASE even246

with as few as 100 pixels and as low as 1 UMI per pixel for a given gene. We gen-247

erated Slide-seqV2 data from an F1 female CASTx129 mouse hippocampus and248

show that our method recovers known patterns of XCI both within and across cell249

type (Figure 3). We further show that our method can identify cell type-specific ASE,250

which if not accounted for can be confused with spatial signal (Figure 4).251

The primary in situ validation of our method was in the X-chromosome, where we252

found the same pattern of XCI both within and across cell types for multiple genes.253

XCI is thought to occur early in embryonic development in female organisms, be-254

fore cell type differentiation [4], and the maternal and paternal chromosomes are255

thought to be equally likely to be inactivated. Thus, the pattern we observed in our256

data likely reflects randomly determined XCI in the early mouse embryo that propa-257

gated through to the adult hippocampus. This phenomenon can potentially explain258

why the X-chromosome p-value distribution was slightly but not fully affected by259

controlling for cell type (Figure 2b), as some nearby cell types may be derived from260

the same X-inactivated progenitor cell. Notably, Tceal3 exhibited a strong paternal261

bias, but still had a spatial pattern that was similar to the general XCI pattern we262

observed in other X-chromosome genes (Supplementary Figures S5,S8). Another263

nearby gene, Morf4l2, also exhibited a paternal bias. Thus, the pattern we ob-264

served in Tceal3 may be the combined result of XCI and another form of epigenetic265

imprinting.266

One limitation of our spatial ASE analysis is that low UMI coverage limits the267

spatial resolution of ASE estimates. For example, within the XCI analysis, Xist was268

lowly expressed (Figure 3h); however, for genes with higher coverage, such as Plp1,269

it was possible to resolve the spatial ASE function further by increasing the degrees270

of freedom used to construct the 2D basis functions. Due to our limited spatial271

resolution, although we detected spatial patterns of XCI between the hippocampal272

formation (paternal bias) and surrounding areas (maternal bias), it is likely that in-273

creased statistical power would be achieved and higher-resolution spatial patterns274

would be uncovered given a higher-coverage dataset.275

Similarly, although we found multiple instances of differential ASE across cell276

types as previously observed [20, 46], our analysis did not detect any spatial ASE277

in autosomal genes not explainable by cell type. We note that the statistical power278

was lower for the detection of spatial effects compared to the detection of cell-type279

differences. It is possible that autosomal spatial ASE effects might be detected280

given increased coverage and sample size.281

We found that Sst exhibited a strong maternal bias for interneurons, particularly282

for a subtype located outside of the hippocampal formation with high Sst expression283

(Supplementary Figure S10). Sst is a well-known neuropeptide expressed through-284

out the brain which has been studied in the context of various neurological diseases285
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[47]. However, we were not able to detect a likely cell type-specific transcription286

factor with a nearby binding site that was affected by strain-specific genetic varia-287

tion as we did for Ptgds, although it is possible that the bias may only affect this288

subtype which is not represented in the scATAC-seq data set we used. Also, note289

that Sst exihbited low levels of expression in other cell types, which limited statistical290

power. Overall, these findings demonstrate that our method is broadly applicable for291

ASE discovery in spatial transcriptomics. Our rigorous computational approach will292

inform future analyses on the variability and biological mechanisms driving spatial293

and cell type-specific ASE.294

Methods295

Slide-seqV2 of CAST/EiJ x 129S1/SvImJ F1 mice296

We obtained a female CAST/EiJ x 129S1/SvImJ (CASTx129) mouse from Jackson297

laboratories. The CASTx129 cross contains ∼23 million SNPs, or approximately 1298

SNP for every ∼110 bp [48, 49]. This SNP density is approximately tenfold the SNP299

density in human cells and thus provides high resolution to interrogate ASE. Slide-300

seqV2 was performed as described previously [21, 22] on two adjacent, 10um-thick301

coronal slices of the hippocampus.302

Alignment of Slide-seqV2 data303

We generated a pooled CASTx129 transcriptome using the command create-hybrid304

from the EMASE [50] software on the CAST and 129 transcript fasta files down-305

loaded from ftp://churchill-lab.jax.org/software/g2gtools/mouse/R84-REL1505/.306

We then aligned 150bp reads to this pooled transcriptome with bowtie2 [51] using307

the parameters -k 4 -p 16 --very-sensitive. We used a custom script (https:308

//github.com/lulizou/spASE/blob/master/scripts/processBowtie2.py) for pro-309

cessing the aligned BAM file [52] to create a gene UMI count matrix only from reads310

that uniquely aligned to one gene and one allele. We restricted attention to align-311

ments with 3 or fewer mismatches and only considered alignments that had the312

fewest number of mismatches for that read. We overlaid data from the two slices by313

rotating and shifting the slices to overlap according to the location of the hippocam-314

pal formation.315

Beta-binomial model for allele-specific expression in spatial transcriptomics316

Let ngi denote the observed total counts of gene g at cell or pixel i and Ygi denote317

the observed maternal allele UMI counts for gene g at cell or pixel i. Let λgi denote318

the unknown mean probability of observing a maternal allele for each transcript of319

gene g at pixel i. We assume Ygi|λgi ∼ Binomial(ngi, λgi), where ngi is observed320

and λgi is a random variable, independently distributed (conditional on φg and pgi,321

defined below) for each gene g and pixel i. We further assume that λgi follows a322

beta distribution with mean pgi and variance φgpgi(1 − pgi). The likelihood of this323

model for a single gene g can be written as324
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L(pgi, φg;ng·, yg·) =
∏
i

(
ngi
ygi

)
B(pgi(1− φg)/φg + ygi, (1− pgi)(1− φg)/φg) + ngi − ygi)

B(pgi(1− φg)/φg, (1− pgi)(1− φg)/φg)
(2)

where B denotes the beta function. We used maximum likelihood estimation to325

obtain the estimates p̂gi and φ̂g for each gene and the associated standard errors,326

determined from the Fisher information. When using this model for single-cell data327

to estimate ASE for a single gene, pgi is assumed to be the same for all cells i;328

when estimating pgi for spatial transcriptomics, pgi is assumed to be dependent on329

pixel i as described below. Assuming asymptotic normality, we used these point330

estimates and standard errors to construct 95% confidence intervals for p̂gi. Finally,331

we used the Benjamini-Hochberg [53] procedure to produce q-values to control the332

false discovery rate.333

In the spatial setting, for each gene g, we model pgi as a smooth spatially-varying334

function. Specifically, we used thin plate regression splines [36, 40, 41] to estimate335

smooth maternal allele probability surfaces for each gene. Thin plate regression336

splines allow estimation of a smooth function of 2D coordinates. The number of337

basis functions d determines the smoothness, with lower values of d corresponding338

to smoother functions. Choice of d depends on the sparsity of the data, since lower339

values of d reduce the variance, but at the risk of introducing bias. In the analy-340

sis presented here, we kept d constant across genes to ensure comparability. For341

our sparse Slide-seqV2 data, we found that d = 10 provided enough complexity to342

model allelic patterns in the hippocampus sample examined here while also main-343

taining power to detect significant differences, and we used d = 15 when plotting344

estimated maternal allele probability functions using all pixels. We also demonstrate345

reproducibility of results (i.e. genes detected as having a significant spatial pattern)346

across a range of values for d (Supplementary Tables S1-S4). In practice, we rec-347

ommend visualization of the estimated probability function and confidence intervals348

(e.g. Figure 2c-f) to guide selection of d.349

In the model for cell type-specific spatial ASE detection, the term θgk corre-350

sponds to the effect size for cell type k for gene g. If no cell type annotations are351

available, or if a cell type effect does not exist (see likelihood ratio test below), then352

θgk can be assumed to be the same for all k.353

To test whether there was a significant spatial pattern beyond cell type, we as-354

sumed a baseline model with only cell types as covariates and performed a likeli-355

hood ratio test comparing model (1) to the baseline model, i.e. for each gene g, we356

compute357

Λg = −2(`(pg, φg;ng,Yg,X)− `(pg, φg;ng,Yg,X,x,y)) (3)

where ` is the log-likelihood computed from (1), pg is the vector of maternal proba-358

bilities at each pixel i for gene g, ng is the total number of UMIs at each pixel i for359

gene g, Yg is the total number of maternal-derived UMIs at each pixel i for gene360

g, X is the i × k matrix of indicators of each cell type k at each pixel i, and x,y361

are the vectors of 2D spatial coordinates for each pixel i. This test statistic has an362

asymptotic χ2
1 distribution, which we use to compute p-values for each gene.363

For visualization, we plotted both the estimated smooth function for the MLE p̂gi364

(Figure 3a-c) as well as 2D z-score plots (Figure 3d-e, Figure 4e). Z-score plots365

were calculated on an evenly spaced grid of points over the sample by taking the366
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point estimate logit(p̂gi) at each location and its associated standard error sgi and367

computing zgi = logit(p̂gi)/sgi.368

Computational implementation369

spASE is implemented as an R package (https://github.com/lulizou/spase).370

We generated thin plate regression splines using the R package mgcv [40]. Specifi-371

cally, we used the smoothCon function to construct spline basis functions. As basis372

functions can depend on the scale of the spatial covariates, we used normalized373

coordinates and also normalized the basis functions after construction by subtract-374

ing the mean and dividing by the standard deviation. We used the implementation375

of the beta-binomial likelihood from the R package aod [54].376

We ran spASE in multiple modes: 1) not controlling for cell type, 2) controlling for377

cell type by allowing each cell type to have a different intercept term, and 3) allowing378

for each cell type to have a different spatial pattern. For 1), we experimented with379

using all pixels or only pixels confidently called as single cells (singlets). We found380

that using all pixels allowed us to increase our power and resolution for estimation381

of pgi and φi, and for evaluating significance of spatial fits; thus, for visualization in382

our figures, we use all pixels, unless the figure is specifically denoted to be a single383

cell type. For results directly comparing to cell type models from 2) and 3), e.g.384

significant genes detected when controlling and not controlling for cell type, we use385

only pixels confidently classified in both cases to ensure comparable sample sizes386

of pixels.387

Simulation details388

We simulated beta-binomial count data to evaluate the power, false positive rate,389

and p-values calculated using spASE. For each simulated gene, to construct ran-390

dom spatial ASE patterns, we used a random linear combination of basis functions391

calculated from the pixel locations of the Slide-seqV2 hippocampus data set us-392

ing degrees of freedom d = 15. We first sampled a random number of total pixels393

N ∈ {50, 100, 250, 500} and used a fixed number of UMIs per pixel. The range of394

average UMIs per pixel for a single gene reached up to 14 in the real Slide-seqV2395

hippocampus data set; for testing purposes, we used values ranging from 1 to 50.396

We drew the coefficients θg of a random linear combination of basis functions from397

a standard normal distribution. Then, we chose a fixed overdispersion parameter398

φ ∈ {0.1, 0.3, 0.5, 0.8}, sampled the true binomial probabilities λgi for each pixel lo-399

cation i from the beta distribution, and simulated counts from the binomial model.400

To evaluate the asymptotic confidence interval coverage properties, we simu-401

lated ground truth data generated under the beta-binomial model without spatial402

covariates under a range of values for overdispersion, total coverage, and number403

of cells or pixels (Supplementary Figure S2). Specifically, we tested total UMI con-404

ditions based on three dataset-specific distributions for total UMI for a single gene405

across cells or pixels: Smart-seq3, which had generally high total UMI for each406

cell [31]; Slide-seq high, which had low counts with a high right skew; and Slide-407

seq low, which had mostly low counts (less than 5 per pixel, Supplementary Figure408

S3). We evaluated a range of values for the total number of cells or pixels the409

gene was captured on. We also tested a range of overdispersion values, namely410
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φ ∈ {0, 0.1, . . . , 1}, and noticed the trend was the same as φ increased, thus we only411

show results here for φ = 0, 0.1, 0.8. We set the maternal probability at p = 0.5 and412

simulated 5, 000 iterations for each condition.413

Prediction of cell types in spatial transcriptomics414

We ran RCTD [23] to predict cell types in our Slide-seq data using a previously415

published single-cell RNA-seq reference for mouse hippocampus [42]. RCTD is a416

supervised approach that learns cell type profiles from a single cell reference and417

predicts cell type labels for spatial transcriptomics pixels using a Poisson log-normal418

model that accounts for platform effects between single-cell RNA-seq and Slide-seq419

data. We used a threshold of a likelihood difference of 100 between the minimum420

score and singlet score to classify singlets. After running RCTD, we filtered to pixels421

that were predicted to contain a single cell-type and added these cell type labels as422

the covariates in model (1) to perform all cell type-specific analyses.423

Mouse hippocampus scATAC-seq, cis-regulatory elements, and TFBS motifs424

We analyzed previously published mouse hippocampus sci-ATAC-seq count ma-425

trices (GSE118987) [44]. The mice used in the study were the wild-type C57/B6426

strain, and the data were aligned to the mm10 genome. We extracted the called427

peak annotations and counts using the command scitools split. To quantify ac-428

cessibility of peaks, we computed the average count within cell types. We searched429

for known TFBS motifs within peaks with the command matchMotifs from the R430

package motifmatchr [55] using all motifs for Mus musculus in the JASPAR 2020431

database [56]. We overlaid annotations of ENCODE cis-regulatory elements (cCREs)432

[45] for mm10 downloaded from the UCSC Table Browser [57] at the Ptgds locus433

and visualized the annotations using IGV [58].434

Mouse strain SNP data435

We obtained gene-specific SNP annotations for 129S1/SvImJ and CAST/EiJ with436

respect to the mm10 reference using REL1505 of the Mouse Genomes Project437

(https://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505) [59, 60]. For each438

gene of interest, we searched for SNPs overlapping the gene, within 50kb upstream439

of the gene start, and 50kb downstream of the gene end.440

Data availability441

Slide-seqV2 data generated in this study will be made available upon publication.442
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Supplementary information591

Number of pixelsa

b

c

Figure S1: Spatial transcriptomic simulation results. (a) Power as function of number of pixels and number of UMI per
pixel. x-axis is number of UMIs per pixel. Numbers in the gray panels indicate the number of total pixels. Curves are colored
by the amount of overdispersion (φ) in the true model. (b) False positive rate as a function of number of pixels and number of
UMI per pixel. (c) Expected p-values generated under a Uniform(0,1) distribution vs. observed p-values computed by spASE
for the null case of no spatial ASE.
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Figure S2: Simulation results for beta-binomial coverage probabilities as compared to the binomial and quasibino-
mial models. Data was generated from a beta-binomial model where each cell or bead had a total UMI count drawn from
the total UMI count distribution from one of three settings, Smart-seq3 (a,d,g), Slide-seq lowly expressed gene (b,e,h), or
Slide-seq highly expressed gene (c,f,i). We also tested a range of values for overdispersion (phi): 0 (a,b,c), 0.1 (d,e,f) and
0.8 (g,h,i).
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Figure S3: Total coverage distribution scenarios used for confidence interval coverage simulations shown in Figure
S1. These were taken from genes to represent different sampling distributions for ngi, the total number of UMI per gene per
cell (or pixel).
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Figure S4: Histogram of total pixels that each gene had non-zero UMI counts for. The filtering threshold of 100 pixels
per gene is shown with the dashed black line.
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z-score bin

Figure S5: 2D z-score plots for a sample of 16 highly expressed X-chromosome genes. Red color indicates bias
towards the maternal (CAST) allele; blue indicates bias towards the paternal (129) allele.
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Figure S6: Within-astrocyte ASE for Tspan7 . (a) Raw data for astrocyte singlets plotted using 2D coordinates for each
pixel. The size of the point indicates the total UMI count for the gene Tspan7 at that pixel. The color indicates the fraction
of total UMIs that were from the maternal (CAST) allele. (b) Smoothed 2D maternal allele probability function (fitted p),
estimated from the raw data shown in a using 5 degrees of freedom. (c) Overlay of data from a on the smoothed surface in
b. (d) 2D z-score plot generated for the smoothed surface shown in b.
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Figure S7: Within-oligodendrocyte ASE for Plp1. (a) Raw data plotted using 2D coordinates for each pixel. The size of
the point indicates the total UMI count at that pixel. The color indicates the fraction of total UMIs that were from the maternal
(CAST) allele. (b) Smoothed 2D maternal allele probability function (fitted p), estimated from the raw data shown in a. (c)
Overlay of data from a on the smoothed surface in b. (d) 2D z-score plot generated for the smoothed surface shown in b.
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Figure S8: X-chromosome genes detected with a paternal bias. (a) IGV view of the Tceal3 locus (coordinates are mm10).
(b) Raw data for Tceal3, which was detected as having a significant spatial pattern (q ≤ 0.01). (c-d) Same as b for Morf4l2
and Tceal6, which did not have a significant spatial pattern, but had paternal bias. (e-g) Smoothed maternal probability
functions for Tceal3, Morf4l2, and Tceal6, respectively.
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Figure S9: Confidence interval visualization for genes displayed in Figure 3. (a-d) Estimated maternal probability
functions for Tspan7, Plp1, Xist, and Tceal3 as shown in Figure 3. (e-h) Confidence interval visualizations in cross-sections
along the x = 3 and y = 3 lines for each gene shown in a-d.
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Figure S10: Interneuron ASE for Sst . (a) Raw data for each non-zero measurement pixel; color indicates fraction of total
UMI that were maternal for each pixel, size of point indicates total UMI for that pixel. (b) Smoothed maternal allele probability
surface. (c) Raw data for only interneuron singlets. Average expression for each boxed region is shown. (d) Confidence
intervals from cross-hair slices in b.
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Figure S11: Ptgds locus with annotations. (a) IGV view (mm10) of the Ptgds locus showing the upstream Gm35287
locus. Dark blue indicates Refseq gene annotation, cyan indicates peaks called from sci-ATAC-seq data from the mouse
hippocampus, yellow denotes cis-regulatory elements (cCREs) from the ENCODE database (lighter yellow indicates distal-
TSS enhancer-like signatures, darker yellow indicates proximal-TSS enhancer like signatures), magenta indicates predicted
transcription factor binding site motifs within sci-ATAC-seq peaks, black indicates SNP locations for the CAST/EiJ and
129S1/SvmJ strains relative to mm10. (b) Zoomed-in genome browser view of the PB0044.1 motif (Mtf1 gene) located
in the peak overlapping Gm35287.
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Table S1: Genes detected as spatially significant (q-value ≤ 0.01) in Slide-seqV2 of
the mouse hippocampus, not controlling for cell type, degrees of freedom d = 10,
restricting to pixels with a confident singlet classification by RCTD.

Gene Total UMI χ2 p-value q-value X-chr
1 Ptgds 1584 0.00e+00 0.00e+00 FALSE
2 Tspan7 4744 0.00e+00 0.00e+00 TRUE
3 Plp1 12850 3.33e-16 4.53e-13 TRUE
4 Nrip3 1963 8.39e-11 8.56e-08 FALSE
5 Sst 837 2.45e-07 2.00e-04 FALSE
6 Pcsk1n 1523 3.83e-07 2.60e-04 TRUE
7 Rgs4 679 4.02e-06 2.34e-03 FALSE
8 Atrx 1096 5.37e-06 2.74e-03 TRUE
9 Mageh1 362 9.04e-06 4.10e-03 TRUE

10 Gpm6b 1601 2.07e-05 8.44e-03 TRUE

30

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.12.01.470861doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470861
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S2: Genes detected as spatially significant (q-value ≤ 0.01) in Slide-seqV2 of
the mouse hippocampus, not controlling for cell type, d = 5, restricting to pixels with
a confident singlet classification by RCTD.

Gene Total UMI χ2 p-value q-value X-chr
1 Tspan7 4744 8.30e-14 3.41e-10 TRUE
2 Nrip3 1963 4.82e-11 6.60e-08 FALSE
3 Ptgds 1584 4.18e-11 6.60e-08 FALSE
4 Sst 837 4.19e-09 4.31e-06 FALSE
5 Rgs4 679 6.43e-07 5.29e-04 FALSE
6 Lypd1 241 1.40e-05 9.61e-03 FALSE
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Table S3: Genes detected as spatially significant (q-value ≤ 0.01) in Slide-seqV2 of
the mouse hippocampus, not controlling for cell type, d = 15.

Gene Total UMI χ2 p-value q-value X-chr
1 Plp1 12850 0.00e+00 0.00e+00 TRUE
2 Ptgds 1584 0.00e+00 0.00e+00 FALSE
3 Tspan7 4744 0.00e+00 0.00e+00 TRUE
4 Nrip3 1963 4.89e-11 4.92e-08 FALSE
5 Gstm7 326 1.51e-06 1.14e-03 FALSE
6 Pcsk1n 1523 1.70e-06 1.14e-03 TRUE
7 Sst 837 3.05e-06 1.76e-03 FALSE
8 Gpm6b 1601 4.94e-06 2.49e-03 TRUE
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Table S4: Genes detected as spatially significant (q-value ≤ 0.01) in Slide-seqV2 of
the mouse hippocampus, not controlling for cell type, d = 20.

Gene Total UMI χ2 p-value q-value X-chr
1 Ptgds 1584 0.00e+00 0.00e+00 FALSE
2 Tspan7 4744 0.00e+00 0.00e+00 TRUE
3 Nrip3 1963 1.38e-10 1.80e-07 FALSE
4 Gpm6b 1601 1.08e-07 9.42e-05 TRUE
5 Pcsk1n 1523 1.21e-07 9.42e-05 TRUE
6 Gstm7 326 4.06e-06 2.63e-03 FALSE
7 Magt1 127 8.99e-06 5.00e-03 TRUE
8 H1f2 105 1.66e-05 8.10e-03 FALSE
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