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ABSTRACT 

Traumatic brain injury (TBI) is highly prevalent in adults. TBI-related functional brain 

alterations have been linked with common post-TBI neurobehavioral sequelae, with unknown 

neural sub-strates. This study examined the systems-level functional brain alterations in white 

matter (WM) and gray matter (GM) for visual sustained attention processing, their interactions, 

and contribution to post-TBI attention deficits. Task-based functional MRI data were collected 

from 42 adults with TBI and 43 group-matched normal controls (NCs), and analyzed using the 

graph theoretic tech-nique. Global and nodal topological properties were calculated and 

compared between the two groups. Correlation analyses were conducted between the 

neuroimaging measures that showed significant between-group differences and the behavioral 

symptom measures in attention domain in the groups of TBI and NCs, respectively. Significantly 

altered nodal efficiency and/or degree in several WM and GM nodes were reported in the TBI 

group, including the posterior corona radiata (PCR), posterior thalamic radiation (PTR), 

postcentral gyrus (PoG), and superior temporal sulcus (STS). Subjects with TBI also 

demonstrated abnormal systems-level functional synchronization between the PTR and STS in 

the right hemisphere, hypo-interaction between PCR and PoG in the left hemisphere; as well as 

the involvement of systems-level functional aberrances in PCR in TBI-related behavioral 

impairments in the attention domain. Findings of the current study suggest that TBI-related 

systems-level functional alterations associated with these two major association WM tracts and 

their anatomically connected GM regions may play critical role in TBI-related behavioral deficits 

in attention domain. 

 

Keywords: traumatic brain injury (TBI); post-TBI attention deficits; visual sustained attention 

task (VSAT); graph theoretic technique (GTT); white matter tracts 
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1. Introduction 

Traumatic brain injury (TBI) is one of the major public health concerns that occurs primarily in 

young adults [1]. TBI-related functional brain alterations, such as disruptive functional 

connectivity (FC) among distributed neural networks that support cognitive processes and 

behavioral control, have been frequently reported and suggested to likely link with severe post-

TBI neurobehavioral sequelae [2-5]. Among the severe post-TBI neurobehavioral consequences, 

attention deficits have been found to be most commonly reported and can persist and create 

lifelong challenges to the affected individuals [6-8]. However, brain mechanisms associated with 

post-TBI attention deficits have not yet been sufficiently investigated.  

Although TBI-induced tissue damages in both Gray Matter (GM) and White matter (WM) 

have been widely reported, WM tracts are suggested to be particularly vulnerable to mechanical 

shearing and stretch forces of TBI [9, 10]. Diffusion-MRI (dMRI) studies in adults with 

chronical TBI have reported microstructural anomalies in various WM regions and their 

association with post-TBI attention deficits. In specific, Raj et al reported increased mean 

diffusivity (MD) and radial diffusivity (RD) values in the genu of corpus callosum (CC) in adult 

patients with chronic TBI, and their associations with altered behavioral performance in an 

attention task [11]. Similarly, Jun et al, demonstrated that TBI subjects with chronic 

postconcussive syndrome had significantly reduced fractional anisotropy (FA) in the genu of CC, 

relative to healthy controls; and the poorer CC alignment was significantly correlated with longer 

reaction time in response to the Attention Network Test (ANT) [12]. Relative to matched 

controls, adult patients with TBI have also been found to have significantly decreased FA in the 

posterior corona radiata (PCR), which strongly contribute to lower neuropsychological test 

scores in the attention domain [13] and poorer attentional control performance quantified using 
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the ANT [14]. In addition, adult patients with TBI have also shown significantly lower MD in 

superior longitudinal fasciculus, anterior midbody of CC and cerebral isthmus, which were all 

suggested to link to post-TBI attention problems [15].  

The vast majority of functional MRI (fMRI) studies in TBI have focused on the GM 

regions. And only a handful of these existing GM-based functional brain studies have attempted 

to address the neural substrates of TBI-related attention deficits. In specific, an early task-based 

fMRI study reported decreased brain activation in anterior cingulate cortex in a small sample of 

adult patients with moderate-to-severe TBI patients as compared to healthy controls, during a 

block-designed modified stroop task [16]. Another early study reported significantly reduced 

neural activations in posterior parietal cortex, frontal eye fields and ventrolateral prefrontal 

cortex during attentional disengagement in adults with mild TBI, relative to group-matched 

controls [17]. In addition, increased activation in bilateral middle frontal and supplementary 

motor cortices during visual sustained attention processing was reported in adults with moderate 

to severe TBI [18]. By utilizing the functional near-infrared spectroscopy (fNIRS) technique, 

Hibino et al reported significantly increased medial frontal activation and decreased lateral 

frontal activation in a small sample of young adult patients with severe TBI as compared to 

healthy controls, during performance of an attention task [19]. By utilizing the FC technique, 

Bonnelle et al reported significant associations between altered within-default mode network FC 

(specifically interactions between precuneus and other brain regions including ventromedial 

prefrontal cortices, inferior parietal cortices, middle temporal and frontal gyri, thalami, and 

parahippocampal gyri in bilateral hemispheres) and behavioral impairments when performing a 

choice reaction time task in adult subjects with TBI [20]. Significantly increased resting-state FC 

within the sensorimotor network and its association with impairments in the attention domain 
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have also been reported in a relatively larger sample of adults with moderate and severe TBI, 

relative to controls [21]. Our recent fNIRS study found that young adults with mild and moderate 

TBI showed significantly higher inferior frontal-occipital FC for sustained attention processing, 

and the abnormally increased FC were significantly correlated with more hyperactive/impulsive 

symptoms in the TBI group [22]. 

Recently, accumulating evidence has highlighted the existence and reliability of blood 

oxygen level-dependent (BOLD) signal fluctuations in WM [23-28], enabling the identification 

of functional communications across large distances among distributed WM networks. The 

development of graph theoretic technique has enabled us to assess the complex and interactive 

patterns of multiple remote brain regions that are affected by the diffuse axonal injury nature of 

TBI, which has the potential to provide informative findings in uncovering network 

abnormalities in TBI [29-32]. To our best knowledge, only one recent study has explored 

alterations of WM network topology in a cohort of patients with TBI, which reported enhanced 

FCs among large-scale WM networks involving inferior fronto-occipital fasciculus, primary 

sensorimotor, occipital and pre/postcentral WM networks [33]. Nevertheless, systems-level TBI-

related functional brain alterations in both GM and WM, their interactions and contribution to 

post-TBI attention deficits, have not yet been fully addressed.  

The present study has enrolled 42 young adults with TBI and 43 group-matched controls 

to examine the systems-level TBI-related functional brain characteristics in both GM and WM 

and their interactions during visual sustained attention processing, and their contribution to post-

TBI behavioral impairments in attention domain. On the bases of findings from our and other 

research teams [34-36], we hypothesize that a) relative to the matched controls, adults with TBI 

would show significant and interactive topological alterations in the WM and GM functional 
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organizations involving attention processing, particularly in the major WM tracts that play 

critical role in attentional deployment (including parts of the corona radiata [14, 37], 

thalamocortical radiation [38], and superior longitudinal fasciculus [39, 40]) as well as the 

frontal and parietal GM regions that are subserved by these proposed WM tracts for the bottom-

up and top-down attentional and cognitive control processes; and b) the regional topological 

aberrances, especially those in the WM network that also significantly interact with regional GM 

topological anomalies, significantly contribute to elevated inattentive and/or 

hyperactive/impulsive behaviors in adults with TBI.  

 

2. Materials and Methods 

2.1. Participants  

A total of 85 young adults (18 to 27 years of age) were involved in this study. Forty-two 

(including 21 males and 21 females) had a history of TBI, and 43 (including 23 males and 20 

females) were group-matched normal controls (NCs). Specific inclusion criteria for the TBI 

group were: having a history of one or multiple sports- or recreation-related (i.e., 

tobogganing/sledding, amusement attractions) TBIs clinically confirmed at least 6 months prior 

to the study appointment, having non-penetrating head injury which caused diffuse brain damage 

(according to medical records), and having no history of diagnosis with any sub-presentation of 

attention-deficit/hyperactivity disorder (ADHD) prior to the first onset TBI. Specific inclusion 

criteria for NCs were: having no history of TBI, having no history of diagnosed ADHD (any sub-

presentation), and having T-scores < 60 for inattentive, hyperactive/impulsive, and combined 

symptoms in Conner’s Adult ADHD Self-Reporting Rating Scales (CAARS) [41], which were 

administered during study assessments. General inclusion criteria for both subject groups were: 
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native or fluent speakers of English, strongly right-handed measured using the Edinburgh 

Handedness Inventory [42]. None of the involved participants reported a history or current 

diagnosis of any neurological disorder (such as Epilepsy), severe psychiatric disorder (including 

Schizophrenia, Autism Spectrum Disorders, Major Depression, Anxiety, Conduct Disorder, etc.), 

received treatment with any stimulant or non-stimulant psychotropic medication within the 

month prior to testing, or having MRI constraints such as metal implants, claustrophobia, etc.  

Participants in both groups were recruited from the New Jersey Institute of Technology 

(NJIT) through on-campus study flyers. Demographic and clinical characteristics of the involved 

participants were summarized in Table 1. The study received Institutional Reviewed Board 

Approvals at NJIT. Written informed consents were provided by all participants.  

Table 1: Demographic, clinical/behavioral, and task performance measures of the study sample. 
 NC 

(N=43) 
TBI 
(N=42) 

 

 Mean (SD)  Mean (SD)  p Value 
Age 22.36 (2.74) 21.63 (2.00) .167 
Education year 14.98 (1.95) 14.26 (1.56) .066 
Mother’s education year 15.35 (2.20) 15.55 (2.70) .710 
Father’s education years 15.77 (2.81) 15.50 (2.78) .660 
CAARS scores     
Inattentive raw scores 4.67 (2.81) 9.31 (6.28) < .001 
Inattentive T-scores 45.88 (6.48) 57.02 (15.18) < .001 
Hyperactive/impulsive raw scores 5.07 (2.76) 9.19 (5.80) < .001 
Hyperactive/impulsive T-scores 42.58 (5.93) 52.52 (14.66) < .001 
 N (%) N (%) p Value 
Male 23 (53.49) 21 (50.00) .917 
Right-handed 43 (100) 42 (100) 1.000 
Race/Ethnicity   .094 
Caucasian 12 (27.91) 21 (50.00)  
Black or African American 4 (9.30) 7 (2.38)  
Asian 20 (46.51) 9 (21.43)  
Hispanic/Latino 2 (4.65) 2 (4.76)  
More than one race 5 (11.63) 3 (7.14)  
fMRI Task performance measures          Mean (SD) Mean (SD)  
Accuracy rate 0.99 (0.04) 0.99 (0.01) 0.344 
Omission error rate 0.009 (0.03) 0.001 (0.005) 0.131 
Commission error rate 0.003 (0.01) 0.005 (0.01) 0.464 
Overall response reaction time (ms) 607.09 (134.73) 604.45 (132.83) 0.928 
Correct response reaction time(ms) 606.72 (135.02) 603.83 (132.47) 0.921 
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NC: normal control; TBI: traumatic brain injury; N: number of subjects; SD: standard deviation; p: level 
of significance; CAARS: Conner’s adult ADHD self-reporting rating scales; ms: milliseconds. 
 

2.2. Experimental Task for fMRI Acquisition 

During fMRI acquisition, each subject performed a block-designed visual sustained attention 

task (VSAT). The VSAT has been validated for its feasibility of measuring behavioral and 

functional capacity of sustained attention in both children and adults [22, 43-47]. Detailed design 

of the task was described in our previous studies [22, 46, 47]. Briefly, it consists of five task 

blocks interleaved by five rest blocks (Supplementary Figure S1). Each block lasts for 30 

seconds. During the rest blocks, the participant was instructed to keep their eyes open and to 

remain as relaxed and motionless as possible. In each of the five task blocks, a red cross 

appeared in the center of the computer screen and lasts for 800 milliseconds. Then a target 

sequence of three-digit sets (1-3-5, 2-5-8, 3-7-9, 5-2-7 and 6-1-8, respectively) were shown in 

red at the rate of one digit per 400 milliseconds. After a 1.0-second break, nine sequences of 

three digits, ranging from 1 to 9, appeared in black in a pseudo-random order at the rate of 400 

milliseconds per digit. A 1.8 second response period ensued after each sequence. In this response 

period, the subject was asked to press the left button of a response box with the forefinger of 

their right hand when the stimulus sequence (black ones) matched the target sequence (red ones), 

and to press the right button with the middle finger otherwise. The total duration of the entire 

task was 5 minutes.  

Prior to fMRI acquisition, a short training version of the task was provided to each 

participant to ensure that they understood the requirements of the task. Task performances 

including response accuracy rate, omission error rate, commission error rate and overall/correct 

response reaction time were examined in each subject (as shown in Table 1). 

2.3. Experimental Setup and MRI Data Acquisition 
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Before the MRI scan, a pre-metal check was completed for ensuring the safety of the experiment. 

Each participant was then positioned on a moveable examination table. Earplugs were offered to 

attenuate scanner noise. Head motion was restrained with positioning pads. A bolster was set 

under the participants’ knees to help stay still and maintain the correct position during imaging. 

A head coil capable of sending and receiving radio waves was placed above the participant’s 

head. A mirror was positioned on the head coil, allowing the participant to see the visual stimuli 

that were performed by screen of a computer-guided projector. A two-button response box was 

provided for responding to the task stimuli. In addition, a squeeze ball was provided, in case the 

participant wanted to alert the technologist or terminate the scan.  

MRI data were collected using a 3-Tesla 32 channel Siemens TRIO (Siemens Medical 

System) scanner at the Rutgers University Brain Imaging Center. fMRI data were obtained using 

a gradient echo-planar sequence with the following parameters: repetition time (TR)=1000 ms; 

echo time (TE)=28.8 ms; flip angle=30°; field of view=208 mm; voxel size=1.5×1.5×2.0 mm3 

with no gap; slice number=55. High-resolution 3D T1-weighted structural images were collected 

using a magnetization-prepared rapid gradient echo sequence with the following parameters: 

TR=1900 ms; TE=2.52 ms; flip angle=9°; field of view=250 mm; voxel size=1.0×1.0×1.0 mm3; 

slice number=176. 

2.4. Individual-level fMRI Data Preprocessing 

The fMRI data were preprocessed using the FMRIB Software Library v6.0 FEAT Toolbox 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). An initial visual check was first applied to each set of 

fMRI data for any missing volumes or severe head motions. Motion artifacts were then corrected 

by applying the rigid-body transformations [48], with the motion parameters, including the 

displacement (translation along the x, y and z-axes) and rotation around these axes, were 
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estimated using the first volume as reference. No participant was excluded for excessive head 

motion, with a strict cutoff threshold of displacement = 1.0 mm. Next, the acquisition time 

between slices was corrected, non-brain structures were extracted. To improve the signal-to-

noise ratio, images were further smoothed with a 4-mm full-width-at-half-maximum Gaussian 

kernel. A high-pass temporal filter of 1/75 Hz was implemented for low-frequency noise removal. 

Then, each fMRI data was co-registered to the structural MRI data of the same subject and 

normalized into the ICBM152_T1_2mm Montreal Neurological Institute (MNI) template [48, 

49]. The task-based whole brain activation map was then generated by using the FMRIB's 

Improved Linear Model tool [50]. Motion parameters were regressed out from each fMRI data 

for residual effects removal. Finally, each Z-statistic map was cluster-thresholded with the value 

of Z > 2.3 and at the significance level of p < 0.05 [51]. 

2.5. WM Functional Network Node Selection 

In order to select the nodes for WM functional network construction, a combined power 

spectrum map was first generated (Figure 1A). Power spectrum, which measures the signal’s 

power contained in a time signal at specific oscillatory frequencies [52, 53], has been identified 

as a unique and repeatable feature for quantifying synchronous BOLD signals in WM [54]. To 

generate the study cohort-specific power spectrum map, a weighted-WM mask was first created 

(in the MNI space) in each subject, using the segmentation tool in FreeSurfer v.6.0 

(https://surfer.nmr.mgh.harvard.edu/). Then each weighted-WM mask was binarized using a 

threshold of 0.5 (meaning that the current voxel had a >50% possibility for being classified into 

WM). Next, a weighted group-WM mask was generated by combining the binarized WM masks 

from all the individuals. It was then binarized using a threshold of 0.8, i.e. the current voxel had 

a >80% possibility for being included in the individual WM masks. Furthermore, this binarized 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.11.30.470633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470633


11 

 

group-WM mask was parcellated into 48 WM tracts in the MNI space, using the Johns Hopkins 

University (JHU) ICBM-DTI-81 WM labels atlas [55].  

 

Figure 1. White matter and gray matter functional networks construction. (A) White matter network construction 
flowchart, including power spectrum map generation, node selection, functional connectivity matrices generation, 
and brain network small-world properties validation; (B) Gray matter network construction flowchart, including 
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brain activation map generation, node selection, functional connectivity matrices generation, and brain network 
small-world properties validation. (L: left hemisphere; R: right hemisphere; NC: normal control; TBI: traumatic 
brain injury) 

For each individual, time series of the preprocessed fMRI data were extracted using the 

48 parcellated WM masks, and then normalized by converting a individual’s raw score into the 

standard z scores to avoid outlier issues. Power spectrum value of each voxel was estimated 

using the fast Fourier transform under the frequency of 0.017 Hz, which has been validated by 

previous fMRI studies in WM [24, 56]. A total of 41 WM nodes (spheres with radius = 2 mm) 

were then placed at the identified activation peaks (local power spectrum maximum). 

Considering that the myelinated axon caliber varied in different WM tracts [57], we additionally 

validated these WM nodes by overlapping each of the spherical node with its associated JHU 

WM tract mask. Detailed information of the 41 nodes were listed in the Supplementary Table 

S1. 

2.6. WM Functional Network Construction and Topological Property Estimations  

In each subject, the BOLD time series of the voxels in each of the 41 WM nodes were extracted 

from the preprocessed fMRI data. Then, a wavelet-based approach was applied to the signals of 

the 41 nodes for denoising [58]. This technique provides multi-frequency information about 

signals, and is known to be effective for identifying non-stationary events caused by motion and 

for detecting transient phenomena, such as spikes [58]. In specific, the time series of each voxel 

were decomposed in the wavelet domain, using the Maximal Overlap Discrete Wavelet 

Transform. Wavelet scales 3, 4 and 5 which provided information on the frequency band in 

0.015-0.125 Hz range, being denoted to contain the majority of the task-related hemodynamic 

information [59-62]), were then reconstructed to the time series signal in each voxel and 

averaged within each node.  
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Next, a 41 × 41 FC matrix was generated for each fMRI data using the absolute values of 

the Pearson’s correlation coefficients. Furthermore, an averaged FC matrix was generated among 

participants belonging to the groups of NC and TBI, respectively (Figure 1A), and further 

converted into a binary graph, by using the network cost, � as threshold value. The network cost 

was defined as: 

C � K/�N�N� 1
/2
, (Eq.1)

 where K is the total number of possible edges and N the total number of nodes in the network 

[63]. In order to identify the small-world regime [64] in both groups, we calculated two global 

metrics, including global-efficiency and local-efficiency for the two groups and their node- and 

degree-matched regular and random networks over a wide range of the cost values from 0.1 to 

0.5 using increments of 0.01. The selected cost value range was commonly suggested in previous 

studies, allowing proper estimation of the small-world properties [47, 65, 66]. The network 

global-efficiency, ���������	
�����, was defined as the inverse of the average characteristic path 

length between all nodes in the network, using the following equation [63]: 

���������	
���

 �
�

�
����
∑ �

���
�,���,��� , (Eq.2)

where n is the number of network nodes, and ��
 the inverse of the shortest path length between 

nodes � and �. The network local efficiency, ���������
��, quantifies the inverse of the shortest 

average path length of all neighbors of a given node among themselves, which can be calculated 

using the following formula [63, 65, 67]: 

���������
���

 �
�

�
∑ ���������	
���
�
��� , (Eq.3)

where, �� represents the subnetwork that contains all neighbor nodes of node �, and 

���������	
������ the subnetwork global-efficiency calculated using equation (2). A network is 

considered as “small-world” if it meets the criteria: 
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���������	
���
��	�
��� � ���������	
���

 � ���������	
���
������
 and 

���������
���
������
 � ���������
���

 � ���������
���
��	�
���, where 

���������	
���
��	�
���, ���������	
���
������
, ���������
���
��	�
���, and 

���������
���
������
 represent the network global-efficiency and network local-efficiency of 

the node- and degree-matched regular and random networks, respectively [64]. As shown in 

Figure 1A, we observed that the locations of the global- and local-efficiency curves of both 

groups were between the corresponding curves of the random and regular graphs within the 

range of 0.1 to 0.4.  

Finally, network topological properties in each subject, including 4 global-level 

properties (network global-efficiency, network local-efficiency, network CC and network 

degree), and 5 nodal-level properties, including nodal global- and nodal local-efficiency, nodal 

CC, nodal degree, and betweenness centrality (BC), were estimated and averaged over the range 

of the cost values from 0.1 to 0.4. Definition regarding the network properties have been detailed 

in previous studies [63, 65, 67, 68]. Briefly, the nodal-efficiency, �����
��, 
�, was a local 

measurement which evaluated the communication efficiency between a node 
 and all other nodes 

in the network 
, by using the following equation [63]: 

�����
�
, �
 �
�

���
∑ �

���
���,��� , (Eq.4)

where ���  was the shortest path length between nodes � and �. The nodal CC, ���

, estimates 

the likelihood of whether the neighboring nodes of a node � were interconnected with each other, 

which was defines as [68]: 

���

 � �

�
∑ �

��
�����
�∑ ����������
�/��,������� , (Eq.5)
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where ��
 was the connection between nodes � and �, with the value 1 for connected and 0 for not 

connected, and ��  the number of neighbors of node �. The nodal degree was defined as the 

number of edges connected to a node � , and the BC of a node � estimated the proportion of all 

the shortest paths between pairs of other nodes in the network that include that node [67]. 

2.7. GM Functional Network Node Selection 

In order to select the nodes for GM functional network construction, a combined activation map 

was first generated based on the combination (union) of the brain clusters in the average 

activation maps of the groups of NC and TBI (Figure 1B). This combined activation map was 

then parcellated according to the FC-based Brainnetome atlas [69], which divides the whole 

brain GM into 210 cortical and 36 subcortical subregions. Among the 246 parcellated cortical 

and subcortical GM regions in the combined activation map, a total of 114 regions contained 

more than 100 contiguous voxels that were significantly activated during the task performance. 

Therefore, 114 GM nodes were placed as spheres (radius = 4 mm) at the identified activation 

peaks (local activation maximum). The size of the node was determined based on the estimation 

of average cortical thickness of adult human brain [70, 71]. Detailed information of the 114 

nodes were listed in the Supplementary Table S2. 

2.8. GM Functional Network Construction and Topological Properties Calculation 

Time series of the 114 GM nodes were first extracted from each fMRI data. The wavelet-based 

approach, which has been described in Section 2.6, was applied to denoise the signals in the 114 

GM nodes. Then a 114 × 114 FC matrix for each fMRI data was generated through averaged 

time series within each pair of the GM node, and the group-averaged FC matrices were 

constructed in the groups of NC and TBI, respectively (Figure 1B). The average FC matrix in 

each group was converted into a binary graph, by using the network cost as threshold value 
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(defined in Eq. 1). The small-world regime [64] was also identified in GM functional network 

analysis. As shown in Figure 1B, locations of the global- and local-efficiency curves of both 

groups were between the corresponding curves of the random and regular graphs within the 

range of 0.1 to 0.4. Thus, GM network properties including the 4 global-level topological 

properties (network global-efficiency, network local-efficiency, network CC and network 

degree), and 5 nodal-level topological properties (nodal global- and nodal local-efficiency, nodal 

CC, nodal degree, and BC) were then estimated and averaged over the range of the cost values 

from 0.1 to 0.4. 

2.9. Group-Level Analyses 

2.9.1. Demographic, clinical/behavioral, and task performance measures  

The demographic, clinical/behavioral, and task performance measures were compared between 

the groups of NC and TBI, by using Chi-square test for discrete variables (i.e., gender and 

race/ethnicity) and independent samples t-test for continuous variables. 

2.9.2. Topological properties of WM and GM functional networks 

Group comparisons of the WM and GM network topological measures (including both global- 

and nodal-level measures) were first carried out using one-way analysis of covariance, with 

gender as a fixed-effect covariate and age, participant’s education level, and participant parents’ 

education level as random-effect covariates. For topological measures that showed significant 

between-group differences, post-hoc t-tests were further compared between the NC and TBI 

groups. Multiple comparisons were controlled for the results in both steps using Bonferroni 

correction [72] at α = 0.05. 

2.9.3. WM and GM functional network interaction analysis 
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For all the WM and GM nodes that reported significant between-group differences in any of the 

5 nodal-level topological properties, pair-wise Pearson’s correlation analysis of each nodal-level 

topological measure was conducted in each diagnostic group, respectively. Multiple comparisons 

were controlled using Bonferroni correction [72] at α = 0.05. 

2.9.4. Brain-behavior relationship analysis  

Brain-behavior relationships were investigated in each diagnostic group using Partial correlation, 

between the neuroimaging measures that had significant between-group differences and the raw-

scores of the CAARS inattentive and hyperactive symptoms subscale scores, by controlling age, 

participant’s education level, and participant parents’ education level. Again, multiple 

comparisons were controlled using Bonferroni correction [72] at α = 0.05. 

3. Results 

3.1. Demographic, clinical/behavioral, and task performance measures  

Demographic characteristics and task performance measurements showed no significant 

between-group differences. All participants achieved > 95 % responding accuracy when 

performing the experimental task during fMRI. Relative to NCs, individuals with TBI showed 

significantly higher inattentive, and hyperactive symptom scores (Table 1). 

3.2. Topological properties of WM and GM networks 

The WM and GM network global- and local-efficiency measures did not significantly differ 

between the two groups. Group comparisons of WM network nodal properties showed that 

relative to NCs, individuals with TBI had significantly higher nodal local-efficiency (t=2.143, 

p=0.035 after Bonferroni correction) in left PCR, and significantly lower nodal global-efficiency 

(t=-2.072, p=0.042 after Bonferroni correction) in right posterior thalamic radiation (PTR). 

Group comparisons of GM network nodal properties showed that relative to controls, the TBI 
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group had significantly higher nodal degree (t=2.246, p=0.027 after Bonferroni correction) and 

nodal global-efficiency (t=2.426, p=0.036 after Bonferroni correction) in left postcentral gyrus 

(PoG), and significantly higher nodal local-efficiency (t=2.016, p=0.047 after Bonferroni 

correction) in right superior temporal sulcus (STS). 

3.3. Interactions of WM vs. GM network topological properties  

In the group of controls, nodal local-efficiency of left PCR in WM was significantly positive 

correlated with nodal degree (r=0.363, p=0.017 after Bonferroni correction) and nodal global-

efficiency (r=0.330, p=0.031 after Bonferroni correction) of left PoG in GM. Whereas in the 

group of TBI, nodal local-efficiency of left PCR in WM showed a significant negative 

correlation with nodal degree of left PoG (r=-0.320, p=0.039 after Bonferroni correction) and a 

trend of significantly negative correlation with nodal global-efficiency of left PoG (r=-0.277, 

p=0.075 after Bonferroni correction) in GM; and the nodal global-efficiency of right PTR in 

WM was significantly positively correlated with nodal local-efficiency of right STS (r=0.353, 

p=0.022 after Bonferroni correction) in GM (Figure 2). 
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Figure 2. Interactions of white matter (marked in green) vs. gray matter (marked in yellow) network topological 
properties in the groups of NC and TBI. (NC: normal control; TBI: traumatic brain injury; r: correlation coefficient; 
p: level of significance; L.: left hemisphere; R.: right hemisphere; PoG: postcentral gyrus; PCR: posterior corona 
radiata; STS: superior temporal sulcus; PTR: posterior thalamic radiation; Nod_Dg: nodal degree; Nod_Loc_Eff: 
nodal local-efficiency; Nod_Glo_Eff: nodal global-efficiency) 

 

3.4. Brain-behavior relationships 

BC of left PCR in WM demonstrated a trend of significant negative correlation with raw-scores 

of the CAARS hyperactive symptoms (r=-0.292, p=0.075) in the group of TBI, however, such 

pattern was not found in controls (Figure 3). 

 

t; 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.11.30.470633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470633


20 

 

Figure 3. Brain-behavior relationships in the groups of NC and TBI. (NC: normal controls; TBI: traumatic brain 
injury; PCR: posterior corona radiata; Raw_Hyper: raw-scores of the Conner’s adult ADHD self-reporting rating 
scales (CAARS) hyperactive symptoms; r: correlation coefficient; p: level of significance) 

 

4. Discussion 

The current study, for the first time in the field, investigated the functional network organizations 

in both WM and GM during sustained attention processing and their inter-actions with post-TBI 

behavioral attention deficits in adults with TBI. Relative to the matched controls, individuals 

with TBI demonstrated abnormally higher ability of infor-mation propagation (represented by 

significantly increased nodal local-efficiency [64]) of the left PCR, as well as lower functional 

integration (represented by significantly de-creased nodal global-efficiency [73]) of the right 

PTR in WM. The TBI group also showed significantly higher functional integration and 

connectivity strength (represented by sig-nificantly increased nodal global/nodal-efficiency and 

degree) of the left PoG and right STS in GM, when compared with the group of controls. In the 

systems-level, subjects with TBI also demonstrated abnormally strong functional 

synchronization between the PTR and STS in the right hemisphere, as well as hypo-interaction 

between PCR and PoG in the left hemisphere.  

 

ns 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 3, 2021. ; https://doi.org/10.1101/2021.11.30.470633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.30.470633


21 

 

As the most prominent projection fiber, PCR contains both ascending and descend-ing 

fibers that connect subcortical nuclei and primary sensory cortex, including the PoG in parietal 

lobe [74, 75]. The PTR, also referred to as thalamocortical radiations, connects fi-bers extending 

from subcortical regions to visual and sensorimotor cortices [76]. However, there is no evidence 

showing any major branches of the PTR anatomically connecting the STS.  The PCR, PTR, and 

the cortical and subcortical GM regions anatomically connected with these two major association 

WM tracts, have been widely validated to play critical role in normal attentional deployment [77-

87]. Previous dMRI studies in adults with TBI have frequently reported microstructural 

abnormalities, including reduced FA and in-creased MD and RD in PCR and PTR [13, 88, 89]. 

Structural MRI studies have also report-ed regional cortical abnormalities in PoG and STS [90-

92]. Merging into these existing re-sults, our findings suggest that TBI-related abnormal 

topological properties associated with PCR and PTR in WM, PoG and STS in GM, and their 

abnormal functional interac-tions in the WM/GM functional networks for attentional information 

processing, may be partially underlined by the structural anomalies in these critical WM and GM 

regions subserving attention and higher order cognitive information processing. 

Our analyses of brain-behavior relationships showed that decreased BC of left PCR was 

correlated with elevated hyperactive/impulsive symptoms in subjects with TBI. This is the first 

time in the field demonstrating the linkage of systems-level functional aber-rances in PCR with 

TBI-related behavioral impairments in the attention domain. Indeed, TBI-related functional and 

structural alterations in cortical and subcortical regions, which are structurally connected by PCR, 

and their significant involvement in altered attentional control have been demonstrated in 

existing neuroimaging studies. For instance, enhanced brain activations during executive control 

processing were observed in multiple subre-gions within the frontal lobe, a key component of the 
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ascending fibers of PCR [74, 75], in male TBI patients [82]. GM tissue integrity reduction of 

thalamic nuclei, which are in-volved in PCR descending pathways [74, 75], were found to be 

associated with poorer performance for attention processing in adult TBI patients [84]. Taken 

together, our results suggest that reduced ability for functional information flow control (which 

can be meas-ured using the BC property) in PCR and its anatomically connected GM regions 

may sig-nificantly contribute to post-TBI attention problems, including behavioral hyperactivity, 

in adults with TBI.  

There are some issues associated with this study that need to be further discussed. First, 

our study sample included both male and female subjects. Clinical studies have re-ported sex-

specific patterns of post-TBI cognitive and behavioral impairments [93-96]. However, findings 

from neuroimaging studies on sex-related brain mechanisms associ-ated with TBI are far from 

converging, with some reported differentiated values of func-tional or structural neuroimaging 

measures between males and females with TBI [97, 98], while others observed no significant 

between-sex differences [99]. Our supplementary analyses in the clinical, behavioral, and 

topological measures in both WM and GM net-works did not report any significant between-sex 

differences in the TBI or control groups. Second, among the 42 subjects in the TBI group, 24 had 

one TBI, 18 had multiple TBIs. Clinical studies have examined the impact of repetitive TBI on 

neuropsychological and behavioral impairments and demonstrated contradictory results [100-

105]. As another supplementary test, we conducted Pearson’s correlation between the behavioral 

scores of the CAARS inattentive and hyperactive/impulsive symptoms and the number of TBIs 

in the patient group and did not find any significant results. In addition, the locations of brain 

injury varied in our TBI subjects. All the subjects in our TBI group have been re-cruited from the 

NJIT sports teams. Most of them received a rapid forward or backward force and several had the 
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violent blow occurred to the left or right side of the brain during sports-related or recreative 

activities. There exists a concern in the field that different cog-nitive and/or behavioral problems 

may be caused by injuries to specific locations of the head 

(https://msktc.org/tbi/factsheets/Understanding-TBI/Brain-Injury-Impact-On-Individuals-

Functioning). Although there is no evidence yet suggested direct impact of injury location on 

cognitive and behavioral impairments, its potential influence should be investigated in future in a 

much larger study sample. 
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