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Table 3: The performance results compared to baselines (ROC-AUC(%)).

Learning Dataset BBBP BACE Tox21 ToxCast ClinTox Sider
paradigm #Molecules 2039 1513 7831 8575 1478 1427

TF_Robust[44] 86�01 � 0�090 82�38 � 0�022 69�78 � 0�011 56�39 � 0�056 76�51 � 0�089 60�68 � 0�031
GraphConv[29] 87�67 � 0�044 85�42 � 0�013 77�21 � 0�034 66�67 � 0�022 84�45 � 0�035 54�28 � 0�023
Weave[27] 83�71 � 0�067 79�12 � 0�011 74�11 � 0�034 65�45 � 0�012 82�33 � 0�022 54�31 � 0�023
SchNet[48] 84�67 � 0�023 75�01 � 0�023 76�67 � 0�245 67�12 � 0�013 71�73 � 0�024 59�54 � 0�023

Supervised MPNN[12] 91�30 � 0�044 81�52 � 0�045 80�81 � 0�033 66�50 � 0�025 87�89 � 0�051 59�48 � 0�095
DMPNN[66] 91�89 � 0�031 85�18 � 0�055 81�62 � 0�025 67�79 � 0�013 89�72 � 0�048 63�21 � 0�023
MGCN[34] 85�04 � 0�064 73�45 � 0�032 70�71 � 0�024 65�81 � 0�017 63�42 � 0�049 55�22 � 0�018
AttentiveFP[63] 90�81 � 0�050 86�34 � 0�002 80�78 � 0�020 57�04 � 0�011 93�36 � 0�020 60�54 � 0�060
Pre-GIN[23] 91�45 � 0�041 79�91 � 0�037 79�72 � 0�025 64�21 � 0�027 76�78 � 0�061 61�02 � 0�058

Self- GraphCL[69] 91�87 � 0�012 75�45 � 0�041 78�94 � 0�032 62�41 � 0�028 85�82 � 0�037 60�45 � 0�045
supervised GROVER[47] 93.53 � 0�031 88�63 � 0�067 81.88 � 0�023 68�89 � 0�011 90�21 � 0�046 63.01 � 0�033

MolCLE 92.66 � 0�037 91.71 � 0�045 80.57 � 0�091 69.01 � 0�016 92.51 � 0�021 62.67 � 0�011

Table 4: Ablation studies on parameterized graph augmentation schemes (ROC-AUC(%)).

Model variants Topo. Attr. BBBP BACE Tox21 ToxCast ClinTox Sider
MolCLE-TA-AA rand. rand. 91�25 � 0�051 75�83 � 0�035 78�81 � 0�039 62�34 � 0�026 85�26 � 0�057 60�97 � 0�044
MolCLE-TA rand. Param. 91�85 � 0�012 76�48 � 0�039 79�17 � 0�044 64�53 � 0�031 86�69 � 0�024 61�39 � 0�023
MolCLE-AA Param. rand. 92�43 � 0�052 90�96 � 0�048 79�89 � 0�018 68�78 � 0�020 91�95 � 0�034 62�14 � 0�031
MolCLE Param. Param. 92.66 � 0�037 91.71 � 0�045 80.57 � 0�091 69.01 � 0�016 92.51 � 0�021 62.67 � 0�011

4.3 (RQ2) Ablation studies on parameterized
graph augmentation schemes

To answer this research question, we conduct ablation studies re-
garding our proposed parameterized graph augmentation schemes,
where we substitute the parameterized topological and attributive
augmentation with random edge perturbation and attribute mask-
ing. The experimental results are shown in Table 4. Obviously, our
two parameterized augmentation components regarding topology
and attribute all achieve performance improvements. Comparing
MolCLE-TA with MolCLE-AA, we can conclude that the parameter-
ized topological augmentation plays a more important role than the
attributive one. The model variant without both these two parame-
terized schemes obtains the poorest performance which indicates
the superiority of our proposed two augmentation schemes.

4.4 (RQ3) Meaningful augmented graph views
Here we provide many molecule examples to illustrate what aug-
mented graph views our MolCLE model generates. Figure 3 shows
two augmented views for each of the three molecular graphs in
a column. As shown in this figure, we can find that, although the
two augmented views are very similar, they still remain slightly
different, which demonstrates our proposed parameterized graph
augmentation can generate effective positive pairs. Besides, the
selected fragments for each molecular graph are obviously preserv-
ing chemical meanings. As shown in Figure 3, effective functional
groups like benzene ring, carbonyl, hydroxy, carboxyl and halogen
are all detected. On the opposite, futile fragments like carbon chains
are ignored. Finally, we can notice that all of the augmented graph
views keep a certain ratio with the original topological size, instead
of select only a few bonds or all bonds.

4.5 (RQ4) Explaining chemical intuitions from
constrained augmentations

We demonstrate that MolCLE generates explainable augmentations
with chemical meanings by case studies on the BBBP dataset. Vari-
ous visualization examples verify the effectiveness of the proposed
constraints to preserve chemical priors in generated augmentations
automatically, as summarized in Figure 4.

We first concentrate on the most important aromatic rings in
organic chemistry. On the left column of Figure 4, MolCLE learns
to generate graph views preserving aromaticity, which allows con-
trastive training to learn the correct semantic information of the
original molecule. Secondly, we demonstrate that, compared to gen-
erated graph views without constraints, MolCLE learns to cover
the most meaningful functional groups in the molecule. As shown
in the middle column in Figure 4, MolCLE could focus on both
aromatic rings and the other amine group on the other side of the
molecule. This result is in agreement with existing work that the
property of the original molecule could be considered of the sum-
mation of the properties of its functional groups [9]. In addition,
we find that molecule augmentations learned from MolCLE are de-
cent molecular backbone fragments, similar to what the rule-based
molecular fragmentation approach obtained [33]. This phenome-
non reveals that our proposed parameterized graph augmentation
scheme could decompose molecules from the connecting atoms,
usually alkyl groups, to obtain a set of functional group fragments.
As a matter of fact, molecular virtual fragmentation has proved
to be an efficient way for in silico screening the chemical space in
drug discovery, indirectly proving the effectiveness of our proposed
parameterized graph augmentation scheme.
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Figure 3: Generated views from two topological augmentation components in MolCLE. The two graph views from the same
molecule serve as positive pairs during contrastive learning.

Figure 4: A comparison of topological augmentations learned from MolCLE without (blue) and with (red) the proposed con-
straints. With constraints, MolCLE (a)tends to generate augmentations with closed aromatic rings, such as phenyl, imidazolyl,
and pyridineyl groups; (b)learns to cover all functional groups rather than the linkage atoms, e.g., selecting amine groups and
aromatic rings on both sides of the molecule but not the alkyl groups between them; (c)decomposes a whole molecule into
non-overlapping but property-preserving functional groups by bonds even without linkage atoms between functional groups.

In conclusion, MolCLE could learn explainable molecule aug-
mentations with chemical intuitions, providing a novel method to
learn task-agnostic molecule embeddings from unlabeled data.

5 CONCLUSION
In this paper, we have developed a novel molecular graph con-
trastive learning framework with parameterized explainable aug-
mentations. We pre-train our MolCLE model by maximizing the
agreement between two augmented graph views from the same
molecule. The proposed parameterized graph augmentation scheme
self-adaptively learns topological and attributive augmentations
for each molecule, which preserves the domain priors to make all
augmented graph views chemically meaningful. The augmenta-
tion scheme can capture implicit graph connectivity patterns with

chemical intuitions, and meanwhile, emphasize the underlying se-
mantic information by selecting important feature dimensions. Our
model outperforms many supervised counterparts and achieves a
considerable performance compared to other state-of-the-art base-
lines. We also analyze the explainability of our generated graph
views by case studies. Comprehensive experiments across multiple
real-world datasets demonstrate the superiority of our model. In
our future works, we will explore more contrastive learning frame-
works and tailor a best-matched one for molecular graph data.
Besides, we will try more downstream tasks like quantum chemical
properties of molecules for better validate the generalizability and
transferability of our proposed MolCLE model.
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