
16 

Extended Data for: 
 
MIRA: Joint regulatory modeling of multimodal expression and chromatin 
accessibility in single cells 
 
Allen W. Lynch* 1,2, Christina V. Theodoris* 1, 3-4, Henry Long2,5, Myles Brown2,5, X. Shirley 
Liu# 1-2, 6, Clifford A. Meyer# 1-2, 6 
 
1 Department of Data Science, Dana-Farber Cancer Institute, Boston MA, USA.  
2 Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA. 
3 Division of Genetics and Genomics, Boston Children's Hospital, Boston MA, USA.  
4 Harvard Medical School Genetics Training Program, Boston, USA.  
5 Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's 

Hospital, and Harvard Medical School, Boston, MA, USA. 
6 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 

 

* Contributed equally. 
# Co-corresponding authors. 

 

Correspondence to: cliff_meyer@ds.dfci.harvard.edu, xsliu.res@gmail.com 

  



17 

Extended Data 
Extended Data Table 1. Gene set enrichments of each MIRA expression topic in the hair 

follicle dataset. 

Extended Data Table 2. Motif enrichments of each MIRA accessibility topic in the hair follicle 

dataset. 

Extended Data Table 3. Gene set enrichments of each MIRA expression topic in the IFE 

dataset. 

Extended Data Table 4. Motif enrichments of each MIRA accessibility topic in the IFE dataset. 

Extended Data Table 5. Gene set enrichments of each MIRA expression topic in the embryonic 

brain dataset. 

Extended Data Table 6. Motif enrichments of each MIRA accessibility topic in the embryonic 

brain dataset. 

 

The above Extended Data Tables are available at the following link: 

https://github.com/AllenWLynch/MIRA_supplementary_tables 

 

 
Extended Data Fig. 1 | Overview of MIRA topic model architecture. The MIRA topic model uses a variational 
autoencoder (VAE) approach to learn stochastic mappings between observations in X-space, gene-counts or peak-
counts in a cell, which are high-dimensional and noisy, and a simpler latent Z-space or topic space, which exists on 
the simplex basis with a Dirichlet prior. (bottom right) The generative model relates the observations X to the 
estimated composition ! over features (genes or peaks), sampling a negative binomial distribution for RNA counts 
and a multinomial distribution for ATAC peaks. (top right) The composition over features is given by the topic matrix " 
encoding topic-feature associations and the latent topics Z of a cell, which are sampled from the distribution q!(Z|X), 
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the variational approximation of p"(Z|X). (top left) The distribution of Z is parameterized by # and $², outputs from the 
encoder neural network given the X-space observations as inputs. (bottom left) The encoder neural network for RNA 
data performs deviance residual featurization of counts which are passed through feed-forward layers. The ATAC 
data encoder passes binarized peak accessibility features through a deep averaging network. (Illustration adapted 
from Kingma and Welling, Foundations and Trends in Machine Learning, 2019). 
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Extended Data Fig. 2 | MIRA defines branch points between lineages where fate commitment probabilities 
diverge. a, Ratio of probability of medulla fate commitment versus cortex commitment of each cell in the hair follicle, 
arranged by pseudotime. MIRA defines branch points between lineages where probabilities of differentiating into one 
terminal state diverges from another. b, MIRA joint representation UMAP colored by ratio of probability of medulla 
fate commitment within the ORS, matrix, medulla, and cortex populations. Differentiation in the hair follicle proceeds 
from ORS to progenitor matrix cells, which then specify into the medulla or cortex fate. (IRS cells indicated in black 
are not included in this trajectory). 
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Extended Data Fig. 3 | MIRA topics describing hair follicle cells were sparse and nonredundant. a, UMAP 
based on standard methodology versus MIRA topic modeling for expression or accessibility. Standard principle 
component analysis (PCA)-based representation of expression shows matrix population as shifted away from its 
predecessor ORS and descendant IRS, medulla, and cortex cells. However, MIRA topic modeling of expression 
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appropriately represents matrix cells as an intermediate population between the aforementioned lineages. Standard 
latent semantic indexing (LSI)-based representation of accessibility shows ORS cells interjected between matrix and 
its descendant IRS and shows medulla situated between two separate cortex populations. Conversely, MIRA topic 
modeling of accessibility appropriately represents matrix cells as continuous with its descendant IRS and better 
separates medulla and cortex into two distinct branches. b, MIRA joint topic representation of expression and 
accessibility. In (a-b), colors demonstrate expression of marker genes of indicated lineages. c, MIRA expression 
topics e1-6 and d, MIRA accessibility topics a1-7 on joint representation UMAP. In (c-d), colored boxes correspond to 
topic colors as on stream graphs in Fig. 2c and Extended Data Fig. 4a. 
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Extended Data Fig. 4 | MIRA topics described gene modules activated in each lineage. a, Stream graph of 
window-averaged cell-topic compositions starting from ORS cell state, progressing rightward through pseudotime (to 
facilitate visualization of all lineages concurrently, pseudotime scale is not log-transformed, unlike other presented 
stream graphs). b, MIRA joint topic representation colored by expression of genes highly activated in each of the 
indicated topics, which described the activated gene modules in each lineage. c, MIRA joint topic representation 
colored by indicated motif scores. 
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Extended Data Fig. 5 | Terminal medulla and cortex cells showed significantly higher NITE regulation 
compared to cells earlier in hair follicle differentiation. a, MIRA joint topic representation colored by expression of 
Hoxc genes, indicating that Hoxc motifs activated in both the medulla and cortex accessibility topics (a5 and a6, 
respectively) were most attributable to Hoxc13 based on its expression in these lineages. b, Comparison of motif 
enrichment in top peaks of preceding matrix versus subsequent branch accessibility topics (a2 and a4, respectively). 
While most motifs were shared between these topics, accessibility of Wnt signaling-related motifs uniquely arose at 
the branch. c, Distribution of NITE scores among genes expressed in the hair follicle. d, Medulla and cortex cells 
showed significantly more NITE regulation than other cells in the hair follicle (*p<0.05, Wilcoxon rank-sum). e, Genes 
ultimately expressed in medulla or cortex that were primed at the branch were defined as those with a NITE 
regulation score above the indicated thresholds that had positive chromatin differential at the branch, indicating that 
expression was over-estimated based on local chromatin accessibility. Branch-primed genes must also be up-
regulated in the downstream lineage relative to matrix cells. f, Driver transcription factor analysis of non-primed 
medulla versus cortex genes.  
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Extended Data Fig. 6 | MIRA expression topics describing IFE cells captured shared and lineage-specific 
states. a, Expression of marker genes of indicated lineages on MIRA expression, accessibility, and joint topic 
UMAPs. b, MIRA expression topics a1-13 on joint representation UMAP.   
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Extended Data Fig. 7 | MIRA accessibility topics describing IFE cells captured shared and lineage-specific 
states. MIRA accessibility topics a1-15 on joint representation UMAP. Colored boxes correspond to topics indicated 
in Fig. 5h, which are shared or lineage-specific within the basal-spinous-granular or intermediate basal-spinous-
granular differentiation trajectories as annotated in Fig. 5a-b.  
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Extended Data Fig. 8 | Terminal granular cells were enriched for NITE regulation. a, Thbs1 and b, Egr2 
expression distinguished basal cells distant from the hair follicle from those within the intermediate basal-spinous-
granular trajectory near the hair follicle (*p<0.05, Wilcoxon rank-sum, Benjamini-Hochberg corrected). c, NITE 
regulation score of each cell in the IFE. d, Terminal IFE granular cells showed significantly more NITE regulation than 
cells earlier in the differentiation trajectory (basal and spinous cells) (*p<0.05, Wilcoxon rank-sum). e, Genes 
upregulated in granular cells that were differentially-expressed between granular populations had significantly higher 
NITE scores than other genes. f, Examples of terminally upregulated, differentially-expressed granular genes’ local 
chromatin accessibility (LITE model prediction) and expression. Despite accessibility increasing in both lineages, 
expression only increased in one lineage. 
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Extended Data Fig. 9 | MIRA topics constructed a higher fidelity developmental trajectory of embryonic brain 
development compared to standard UMAPs. Expression of marker genes for Pax6+ common progenitors and 
terminal states of astrocytes, excitatory neurons, or inhibitory neurons mapped on a, standard UMAP based on PCA 
of normalized expression (inhibitory neuron branch was disjointed), b, MIRA expression topic UMAP (inhibitory 
branch was more uniform but tail converged into excitatory neurons), c, standard UMAP based on LSI of accessible 
regions (common progenitors were disjointed, neuronal excitatory and inhibitory branches were aberrantly attached, 
and the inhibitory neuron branch was disjointed), or d, MIRA accessibility topic UMAP (common progenitors were 
unified, neuronal excitatory and inhibitory branches diverged as expected, and the inhibitory branch was more 
uniform but discontinuous from neuronal progenitors). In contrast to standard methods, the MIRA joint expression and 
accessibility topic representation most accurately reflected the developmental trajectory of these cell populations (Fig. 
6a). e, MIRA joint expression and accessibility topic UMAP, colored by pseudotime of inferred trajectory.  
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Extended Data Fig. 10 | MIRA expression topics describing embryonic brain cells were sparse and 
nonredundant. MIRA expression topics e1-20 on joint representation UMAP. 
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Extended Data Fig. 11 | MIRA accessibility topics describing embryonic brain cells were sparse and 
nonredundant. MIRA accessibility topics a1-13 on joint representation UMAP. 
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Extended Data Fig. 12 | MIRA expression topics illuminated pathways key to each stage of differentiation in 
astrocytes, neuronal progenitors, and inhibitory neurons. Pathway enrichment of MIRA expression topics 
describing astrocytes (focal adhesion), neuronal progenitors (proliferation), early inhibitory neurons (retinoic acid 
signaling), and terminal inhibitory neurons (Bdnf signaling, GABA receptors) (expression of example genes shown to 
the right). 
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Extended Data Fig. 13 | MIRA expression topics illuminated pathways key to each stage of differentiation in 
excitatory neurons. a, Pathway enrichment of MIRA expression topics describing early excitatory (mitochondrial 
machinery) or terminal excitatory neurons (glutamatergic neurotransmission) (expression of example genes shown to 
the right). b, Mef2c was more highly expressed in excitatory neurons, indicating that Mef2 motifs enriched in the 
terminal excitatory neuron topic were likely attributable to Mef2c. c, Stream graphs of expression topics across 
pseudolineage trajectory colored by NITE versus LITE regulation of the top genes in each topic. Topics describing 
earlier states tended towards LITE regulation with the notable exception of topic e3, which is composed of cell cycle 
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genes that have been previously described to be regulated with minimal influence of local chromatin accessibility 
state3. Topics describing terminal states tended more towards NITE regulation, including the major terminal excitatory 
and inhibitory neuron topics that are composed of neurotransmitter genes. Overall, expression topics describing the 
neuronal progenitor state were significantly enriched for LITE regulation, whereas after commitment to either the 
excitatory or inhibitory fate, topics were significantly enriched for NITE regulation (*p<0.05, Wilcoxon rank-sum, 
Benjamini-Hochberg corrected). d, Genes predicted by MIRA pISD modeling to be regulated by pioneer transcription 
factor Ascl1 showed significantly more LITE regulation compared to genes predicted to be regulated by non-pioneer-
like Egr1 (*p<0.05, Wilcoxon rank-sum). 
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Extended Methods 
 

MIRA Input Data 
The input data for MIRA is expression (raw gene count) and accessibility (binary peak count) 

matrices from multimodal RNA-sequencing (scRNA-seq) and Assay for Transposase-

Accessible Chromatin-sequencing (scATAC-seq) in the same single cells. 
 
MIRA Topic Model 
Model architecture 
The MIRA topic model is a generative probabilistic model where the cell’s observed features 

(transcript counts or accessible genomic intervals) are explained by hidden latent variables. 

Inspired by topic modeling methods such as Latent Dirichlet Allocation (LDA)1, we assume that 

the latent variables describing a cell’s state are sparse and compositional. As such, only a few 

latent variables are active at a time to define each state, and that the latent variables relate 

linearly to changes in the cell’s observed attributes. This constrains the model such that the 

latent variables decompose expression and accessibility into coherent, interpretable patterns of 

covarying features. Each latent variable thereby describes a “topic” of coregulated genes or co-

accessible genomic loci, and suggests that the genes and loci influenced by that topic share 

some underlying facet of regulation.  

MIRA uses a variational autoencoding neural network2 (Extended Data Fig. 1) to 

discover latent topics from expression or accessibility data, which enables faster and more 

flexible inference than classic Gibbs sampling-based solutions like LDA3. The central part of the 

model is the same for expression and accessibility data, although the numbers of topics may 

differ. The input data is either a gene counts matrix for expression data or a binary peak-count 

matrix for accessibility data. From either of these inputs, the topic model learns a latent 

representation for cells	" ∈ I!cells×!topics where I is the unit interval [0,1] and where:  

 

% "#$

!topics

$%&
= 1,	"	) ∈ {1, … ,,cells} 

 

For matrices .+,, let the notation .+∙ indicate the matrix row indexed by / and .∙, indicate the 

matrix column indexed by 0. We specify a sampling procedure such that "#∙ ∈ I
!topics is Dirichlet-

distributed with a hierarchical prior controlling the pseudocounts allotted to each topic: 

 

"#∙	~	Dirichlet :;&, … , ;!topics< ,	"	) ∈ {1, … ,,cells} 

 

;$~	Gamma@2,
)*topics

ℐ
B,	"	C ∈ {1, … ,,topics} 

 

 

where ℐ	is the initial pseudocount allotted to the Dirichlet distribution, and E is the random 

variable controlling the sparsity of ". The gamma hyperprior, parameterized as (shape,	rate), 

controls the sparsity of each topic, allowing for the data-driven tuning of sparsity to fit different 
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patterns and modalities. Density of the gamma hyperprior is concentrated below the mean at 

ℐ/,topics, prioritizing the capture of very sparse topics but still enabling flexibility. 

The latent representation of each cell represents the composition of topics that describe 

the expression or accessibility observations measured from that cell. We adapt the generative 

process of the model to account for the distinct statistical properties of each modality4,5. We 

denote the gene expression data matrix as KRNA ∈ ℤ56
!cells×!genes, and specify a model such that 

each observation is independently drawn from the following generative process: 

 

K#7
RNA~	NegativeBinomial(	S#T#7 , U7 	), "	) ∈ {1, … ,,cells},	"	V ∈ {1, … ,,genes} 

 

T#∙ = softmax@	batchnorm(		"#∙Z	)B,	"	) ∈ {1, … ,,cells} 
 

S#~	LogNormal@log	 S\#
RNA, 1B, "	) ∈ {1, … ,,cells}    

 

S\#
RNA = ∑ K#7

RNA!genes
7%& ,	"	) ∈ {1, … ,,cells}    

 

where	T ∈ I!cells	×	!genes 	is the predicted composition of expression across all genes in each cell 

and ∑ T#7
!genes
7%& = 1,	"	) ∈ {1, … ,,cells}; Z is the ℝ!topics	×	!genes matrix linking gene expression to the 

influence of topics; and S# 	is the effective read depth of cell ). ` ∈ ℝ56
!genes is a global variable 

determining the overdispersion of the negative binomial distribution for each gene across all 

cells. 

For chromatin accessibility data, we model observations of accessibility KATAC ∈

{0,1}!cells×!peaks across all regions given a cell using the multinomial distribution: 

 

K#∙
ATAC~	Multinomial@	T#∙, S\#

ATACB,	"	) ∈ {1, … ,,=>??@} 
 

T#∙ = softmax@	batchnorm(	"#∙Z	)B,	"	) ∈ {1, … ,,=>??@} 
 

S\#
ATAC =	% K#A

ATAC
!peaks

A%&
,	"	) ∈ {1, … ,,cells} 

 

where	T ∈ I!cells	×	!peaks 	is the predicted composition of accessibility across all regions in each 

cell; Z is the ℝ!topics	×	!peaks matrix linking accessibility to the influence of topics; and S\#
ATAC is the 

observed number of accessible peaks in cell ). Thus, accessibility in a cell is generated by S\#
ATAC 

independent samples from the categorical distribution over regions. This is the same 

assumption underlying the generative process of sparse wordcount compositions in a document 

used in natural language topic modeling. The likelihood function of the multinomial distribution 

given observed data K#∙
ATAC and region composition	T#∙ does not depend on the read depth 

parameter, so we do not learn a variable for effective scATAC-seq read depth. 

For both modalities, MIRA takes T#∙ to be the imputed value of the features, representing 

its estimated rate of occurrence relative to other features (genes or regions) in the same cell. 
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Notably, T#∙	does not depend on the read depth of a cell, enabling normalized comparisons of 

feature magnitude across cells with heterogenous capture rates.  

MIRA applies batch normalization6 to the activation of each gene or accessible region 

given the latent topics of a cell, "#∙Z∙7 or "#∙Z∙A, respectively. For genes V (or congruently peaks 

d), batch normalization standardizes that activation using summary statistics tracked from 

previous activation scores across many cells, the batch mean	e7
bn and batch standard deviation 

f7
bn, then projects that quantity to the mean, g7, and standard deviation, h7, of that feature’s 

space: 

 

batchnorm(	"#∙Z∙7 	) = 	 h7 i
"#∙Z∙7 −	e7

bn

f7
bn k + g7 

 

This normalizes the topic-feature matrix Z such that the topic-feature activation strengths are 

dependent on the strength of association and decoupled from the mean variance of the feature 

counts. This is critical to the analysis of the topics so that the most activated features 

correspond with the strongest associations rather than the most highly expressed genes or most 

accessible loci. 

 
Stochastic variational inference 
Given the observations from cells, KRNA or KATAC as K, MIRA finds topics Z; feature means and 

variances, h and g; dispersions U (only for expression data); as well as cell-level latent 

representations ", such that the probability of observing the data is maximized given those 

parameters m and conditioned on the latent space:  

 

mCD+ = argmaxE	log	nE(K) 

 

nE(K) = onE(K	|	")	nE(") q" 

m = (Z, h, g, U) 

 

The integral for the marginal likelihood of the model is intractable, so the values of the 

parameters cannot be solved analytically. Instead of using Monte Carlo sampling-based 

methods, MIRA employs the variational autoencoder approach2 which is based on a variational 

approximation of the distribution nE("	|	K), and the observation that the marginal distribution is 

related to the posterior predictive distribution of " by Bayes rule. 

 The variational distribution r,	conditioned on the observations K, is represented by an 

encoder neural network with weights s: 

 

rF("	|	K) ≈ 	nE("	|	K) 

 

"~	rF("	|	K) = 	EncoderF(K) 

 



36 

to approximate the marginal likelihood of the model. The encoder neural network uses the 

observations of K to parameterize the distribution from which " is sampled. MIRA provides the 

generative model and its parameters m, and the variational sampling method and its parameters 

s, to Pyro’s stochastic variational inference function7. Pyro then jointly estimates the parameter 

values by maximizing the evidence lower bound (ELBO) objective3 using stochastic gradient 

ascent, which maximizes the probability of the observed data given the variational 

approximation rF("	|	K), while minimizing the Kullback-Leibler (KL) divergence between 

variational distribution rF("	|	K)	and the prior distribution nE("). We assume the latent variables 

are independent, which satisfies Pyro’s mean field condition and enables Pyro’s use of 

analytical expressions for KL divergence. During inference, Pyro learns point estimates for all 

parameters m and s.  

 

Variational reparameterization 
To train the variational parameters of the model using gradient ascent, MIRA reparametrizes the 

latent variable sampling scheme in terms of normal distributions, enabling Pyro to find unbiased 

Monte Carlo estimates of the ELBO expectation’s gradient2. MIRA recasts the Dirichlet prior as 

implemented by ProdLDA8: 

 

"#∙	~	softmax@Normal(	e∙
G ,	diag((f∙

G)H)	)B 	≈ Dirichlet :;&, … , ;!topics< ,	∀	) ∈ {1, … ,,=>??@} 

 

e$
Z = log;$ −

1

,topics
% log	;J,	∀	C ∈ {1,… ,,topics}

!topics

J%&
 

 

 @f$
ZB
H
=

&

K1
x1 −

H

!topics
y +

&

!topicsK1
,	∀	C ∈ {1,… ,,topics} 

 

;$~	LogNormal@;L , ;M
HB 	≈ Gamma(2,

2,topics

ℐ
	)	,	"	C ∈ {1, … ,,topics} 

 

;L = log
ℐ

O2
)
	!topics

, 	 ;M
H = log

P

H
 

 

The ;L	and ;M parameters specify a log-normal distribution with the same mean and 

variance	as the generative gamma distribution, and softmax of samples from the normal 

distribution parameterized by e$
Z and f$

Z approximates the Dirichlet prior over topics. Using the 

output layer of the encoder neural network (see MIRA Topic Model: Stochastic variational 
inference section) conditioned on the observations from the cell, MIRA defines the variational 

distributions of the latent topics for each cell: 
 

z#∙
output

	=	EncoderF(K#∙) 

  

e#∙ = (z#&
output

, … , z#!topics
output

) 
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f#∙ = softplus	∘	(z#,(!345678T&)
VWXYWX

, … , z#,(H!345678)
VWXYWX

) 
 

For expression model only: 

e#
Z9 = z#,(H!345678T&)

VWXYWX
 

 

f#
Z9 = softplus(z

#,[H!345678TH\
VWXYWX

) 

 

For cell ), the neural network output z#∙
output

∈ ℝ gives a @2,topics + 2B-dimensional vector for 

expression or a 2,topics-dimensional vector for accessibility, which provides estimates of the 

mean e#∙ ∈ ℝ
!topics and standard deviation f#∙ ∈ ℝ

!topics parameters for the variational distribution 

of "#∙ for that cell. For expression data, the encoder network also parameterizes the distribution 

of effective read depth S#~LogNormal(e#
Z9 , (f#

Z9)H). When specifying standard deviation 

parameters for the variational distribution, we found the non-negative softplus transformation9 to 

be more numerically stable than the exponential transformation. Above, ∘ refers to the 

composition of the softplus function over the vector output of the encoder network. 

 

Encoder network architecture 
The encoder neural network takes the observations of a given modality as features and outputs 

a parameterization for the latent representation for the cell. MIRA adapts the architecture of the 

encoder neural network to fit the properties of that modality. For gene expression data, MIRA 

first transforms raw count observations to normalized quantities using deviance residual 

featurization10 of highly variable genes, which are then passed through the neural network. The 

deviance residuals {#7 of the raw counts K#7
RNA	regress out the effects of count variation and 

circumvent count distortions induced by traditional log-plus-one featurization of expression 

count data, providing a better initial representation of cell state for decomposition into topics by 

the encoder network. 

MIRA passes the deviance residuals through two hidden layers of a feed-forward neural 

network and an output layer. Each layer consists of a fully-connected layer, batch normalization, 

ReLU activation11, then dropout12. The hidden layers have 128 nodes. Thus, the encoder 

network conditioned on expression of cell ) is given by: 

 

|](}) = dropout(	ReLU(	batchnorm(	Ä]} + g]))) 

 

{#∙ = DevianceResiduals(K#∙
RNA) 

z#∙
6 = |6@{#∙⊕ log	S\#

RNAB 

z#∙
& = |&(z#∙

6) 

z#∙
output

= batchnorm(ÄHz#∙
& + gH) 

 

where |] is the function of the Ç$^ layer of the encoder network, Ä] 	and g] are the weights 

associated with that layer, and z#∙
] ∈ ℝ!nodes is the output of the Ç$^ layer for the )$^ cell. The 
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output layer of the encoder network specifies parameters z#∙
VWXYWX

 for the latent variational 

distribution (see MIRA topic model, Variational reparameterization section) and is not subject to 

ReLU nonlinearity or dropout. We inject the observed read depth of the cell S\#
RNA into the first 

feed-forward layer of the neural network by concatenating it (⊕) to the deviance residual 

features. 

The encoder network for chromatin accessibility data requires a different model 

architecture due to the large number of peaks with high degree of sparsity. MIRA uses a Deep 

Averaging Network (DAN)13, which averages embedding vectors of all features found in the 

sample before passing that resultant vector through successive feed-forward layers. Applied to 

accessibility data, each site is associated with a 128-dimensional vector, and those vectors are 

averaged for every accessible site in a cell. The averaged vector passes through a hidden layer 

of the same specification as the expression encoder, then an output layer. The output of the 

DAN network for cell ) is given by: 

 

z#∙
6 =	

1

|Ω#|
% ÄA∙

6

A	∈	`9

 

z#∙
& = |&@z#∙

6⊕ log	S\#
ATACB 

z#∙
output

= batchnorm(ÄHz#∙
& + gH) 

 

where ÄA∙
6 ∈ 	ℝ	!nodes denotes the embeddings for each peak, and z#∙

6 is the average of the 

embedding vectors in Ω#, which is the set of accessible peaks K#A
ATAC	in the cell ) regularized by 

leaving out peaks at a rate given by Bernoulli trials with parameter q. Again, we inject the read 

depth of the cell S\#
ATAC into the first feed-forward layer of the neural network. 

 

Feature selection and training procedure 
To increase training speed, the number of input features used by the encoder can be limited by 

selecting highly variable genes in expression data and optionally randomly down-sampling 

peaks in ATAC-seq data for samples with a large number (>200,000) of peaks. On the other 

hand, topic enrichments may be more relevant when including additional genes and peaks that 

may not have met arbitrary feature selection cutoffs. For this reason, MIRA topic models may 

learn patterns in a superset of features while only utilizing a subset as features for the encoder 

network.  
MIRA maximizes the ELBO objective by gradient ascent using the ADAM optimizer14. 

We adapt the learning rate of the optimizer during training using the one-cycle learning rate 

policy15. In two phases, the learning rate starts small and peaks one-third of the way through 

training, then slowly diminishes over the remainder of training. We set the initial and maximum 

learning rates using the learning rate range test15. 

To prevent node collapse (when topics settle into insurmountable local minima early in 

training) we employ KL annealing of the ELBO objective16 (see MIRA Topic Model: Stochastic 
variational inference section). The KL	term exerts a strong regularizing influence through the 

prior nE("), which can dominate the gradient early in training and reduce expressivity of the 

model. Initially, the KL term weight is set to zero and increases linearly until plateauing at one, 

which occurs half-way through training. 
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Hyperparameter optimization 
MIRA includes a rigorous hyperparameter tuning scheme to ensure the model captures 

informative, non-redundant topics in the data. The most influential parameter on downstream 

analysis is ,topics, the number of topics, which is tuned along with e, the smoothing parameter 

for the ADAM optimizer steps, the dropout rate of the encoder neural network, batch size, and 

the number of epochs trained. We evaluate a given specification of the model using the 

negative ELBO as the loss on a held-out set of cells. Empirically, the model loss appears to be 

stochastically convex and separable with respect to each of these parameters, meaning they 

may be jointly tuned using zero-order optimization of the model loss with respect to the 

hyperparameter values to approach the most optimal model for a given dataset.  

For each iteration of hyperparameter optimization, MIRA uses a Tree of Parzen 

estimator17 (TPE) implemented by Optuna18 to suggest a new combination of hyperparameters 

that may improve on the previous best model. TPE is a Bayesian method for hyperparameter 

selection that uses pre-defined priors over the parameter space and evidence from previous 

trials to inform the next suggested hyperparameter combination.  

To evaluate a set of hyperparameters recommended by TPE, MIRA performs five-fold 

cross-validation on a training set of cells and reports the average loss across all folds. To 

prevent excessive time spent on poorly performing models, each fold’s loss is compared to 

previous trials, and the trial is terminated early if the current iteration’s model does not meet the 

criteria of a successive halving bandit19 with a reduction factor of three. The scores of early-

terminated trials are penalized by the addition of a trial penalty factor, P, to the average loss: 

 

Ö = 	Ö62
&aZ 

 

where S ∈ {1,… ,4} is the cross-validation fold at the point of early termination. The penalty 

decreases for each fold tested and encourages TPE to explore the parameter spaces of trials 

that survived for more folds. Tuning may be run for a set number of iterations, 32 for large 

datasets with lower variance model performance estimates or 75 for small datasets, or until TPE 

converges and repeatedly suggests a similar number of topics.  

After the tuning phase, the top five models are trained on the entire training set of cells, 

and performance compared on a held-out test set of cells. The best performing model from this 

phase is selected as the final model of the data and retrained on all available cells. MIRA 

repeats these optimization steps for each modality. 

 

Topic Analysis 
Given a trained topic model, the Z	matrix encodes the linear associations between topics and 

expression or accessibility features. To get the normalized activation á$7 ∈ 	ℝ of a gene j (or 

congruently peak k) given topic t, we scale the value of the Z matrix using the learned batch 

normalization function’s feature-specific variance and bias parameters: 

 

á$7 = 	sign@h7B
Z$7 − e7

bn

f7
bn  
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The distribution of activations across all genes and topics is roughly standard normal 

and is not skewed by the variance and mean levels of the feature. The top S	features most 

strongly associated with a topic are given by the top S	activation scores. 

To annotate expression topics, MIRA extracts the top S genes and passes the geneset 

to Enrichr20 for comparison to precompiled ontologies. To annotate accessibility topics, MIRA 

extracts the top ä percentile of most activated peaks in a topic, then finds transcription factors 

(TFs) with predicted binding sites (by either motif analysis as described below or occupancy if 

provided chromatin immunoprecipitation-sequencing (ChIP-seq) data) enriched in the most 

activated peaks versus the remaining peaks using the Fisher exact test21, implemented by 

scipy22. The Fisher exact test gives a fast approximation of Monte Carlo-based simulations of 

the null distribution of intersection between two sets of genomic regions23. 

 

Joint representation 
The topic composition of cell ) is given by the expected value of the variational approximation of 

the posterior of "#∙, denoted "ã#∙: 

 

"ã#∙ = 	åçrF("#∙	|	K#∙)é ≈ softmax(e#∙), 

 

where r is the variational distribution parameterized by the encoder neural network conditioned 

on the observed features of cell ) and mean e#∙	 ∈ ℝ
!topics is given by the output layer of the 

network (see MIRA topic model: Variational reparameterization section). MIRA projects the 

,topics-dimensional simplex space topic compositions for each cell to (,topics − 1)-dimensional 

real space using the isometric log-ratio transformation (ILR)23: 
 

ILR@"ã#∙B = xlog
Gb9;
c(Gb9∙)

, … ,	log	
Gb9*topics 	

c(Gb9∙)
y ∙ ê  

 

ë@"ã#∙B = 	exp i
1

,topics
% log

!topics

$%&
	"ã#$k 

 

ê$J =

⎩
⎪
⎨

⎪
⎧ñó (ó + 1)⁄

ó
							if	C < ó + 1

−ñó (ó + 1)⁄ 				if	C = ó + 1

0																											if	C > ó + 1

	 

 

for	C ∈ {1,… ,,XVYd=@}	 

and ó ∈ {1,… , (,topics − 1)} 

 

where ë@"ã#∙B is the geometric mean of the composition of "ã#∙, and ê ∈ ℝ	!topics×[!topicsa&\ is a 

Gram-Schmidt orthonormalized basis matrix derived from an arbitrary hierarchical relationship 

between topic compositions24. Transformation to (,topics − 1)-dimensional space by the ê matrix 

aligns topic activations along an orthogonal basis. To create a joint representation encoding 
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information from both modalities, MIRA concatenates the isometric log-ratio transformed vectors 

for expression and accessibility topics into one vector representing the multimodal cell state, 

õ#∙ ∈ ℝ
!topics
RNA T!topics

ATACaH : 

 

õ#∙ = 	ILR@"ã#
RNAB ⊕ ILR@"ã#

eTACB	,	for	) ∈ {1, … ,,cells} 

 

Using the Manhattan distance between cells in the joint space, MIRA constructs a k-

nearest neighbors (KNN) graph where edges represent cells with similar transcriptional and 

accessibility states. Assuming transitions between topics capture major biological state 

changes, those changes would be aligned along the axes in orthonormal ILR-transformed 

space. Therefore, the Manhattan distance represents the distance between cells as the 

transitions required to traverse the axes along topics to arrive at the other cells’ biological state. 

In addition, the Manhattan distance has also been shown to preserve nearest-neighbor 

relationships in high-dimensional space better than Euclidean distance25. 

The joint KNN graph may be used for clustering by the Leiden algorithm26 and low-

dimensional visualization using UMAP27. To generate UMAP visualizations, we use the default 

parameters given by the umap-learn Python package.  

 

Motif score 
Using the JASPAR CORE collection28, we call motifs hits within scATAC-seq peaks with the 

MOODS3 algorithm29. The adjusted p-value threshold is set to p<1e-5. Then, we calculate motif 

scores ú ∈ ℝ!cells×!factors for each cell and each factor using the query likelihood model30. The 

score for TF ℎ in cell ) is given by the log-probability of sampling the set of regions predicted to 

be bound by ℎ, ℭ^ (the cistrome of ℎ), from the distribution of regions ü given by the ATAC topic 

model: 

 

ú#^ =	 % log T\#A
ATAC

A∈(ℭD∩h)

		for	) ∈ {1, … ,,cells}	and	ℎ ∈ {1,… ,,factors} 

 

where T\#∙
ATAC is the composition of peaks in a cell given by the mean variational estimate of the 

latent topics "ã#. The ú matrix is first normalized such that the factor scores in a cell have a 

Euclidean norm of 1, then each factor’s scores are standardized to the standard normal 

distribution across all cells for comparability. 

 

Pseudotime Trajectory Inference 
Transport map construction 
A transport map, or Markov chain model † ∈ I!cells×!cells where I is the unit interval [0,1], 

describes the transition probabilities between cells progressing through a differentiation system: 

 

	% †#l = 1
!cells

l%&
,	"		) ∈ {1, … ,,cells} 
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where †#l is the probability of transitioning from cell ) to cell ° after an arbitrary discrete time 

step. MIRA uses the Palantir algorithm31 to transform the undirected joint KNN graph describing 

cells in similar states into a directed transport map † representing the stochastic differentiation 

process based on multimodal transition probabilities. First, Palantir assigns each cell a 

pseudotime describing its progress through the differentiation process. Pseudotime ¢ is taken to 

be the shortest path distance of traversing the joint KNN graph from the origin cell £ to each cell 

). Then, Palantir transforms the undirected joint KNN graph into a directed transport map by 

pruning edges in the joint KNN graph that travel “backwards” relative to the pseudotemporal 

flow of cells progressing from the user-chosen origin cell £. 

From the transport map, MIRA identifies terminal cells where the forward progress of the 

differentiation reaches a stationary state at the end of each lineage. MIRA finds the left 

eigenvectors of the transport map whose eigenvalues are approximately one. The cells with the 

maximum value for each associated eigenvector mark the terminal states32.  

Lastly, MIRA again uses the Palantir algorithm to assign to each cell a probability of 

reaching each lineage’s terminal state following a random walk through the transport map. We 

denote the probability of reaching the §$^ terminal state from cell ) following a random walk 

through the joint space derived transport map as n(õm	|	õ#). 

 

Lineage tree inference 
Here we describe a novel extension of the Palantir algorithm which uses the cell terminal state 

probabilities to construct a bifurcating tree structure representation of the data. MIRA 

determines lineages and branch points using the terminal fate probabilities found by Palantir. 

First, a lineage ℓnm is defined as the set of all cells for which the probability of reaching that 

lineage’s terminal state § is greater than or equal to the probability of reaching that terminus 

from the origin state £: 

 

ℓnm = {	)	 ⊆ 	 {1, … ,,cells	}	|	n(õm|	õ#) 	≥ n(õm	|	õn	)}	 

 

The branch time ¢∗ between two lineages with terminal states ®	and g	is defined by: 

 

¢∗(£, ®, g) 	= min
	
{	¢())	|		abs@©#

DpB > ™, ) ∈ 	 ℓnD ∪ ℓnp}	 

  

©#
Dp = log

n(	õD|	õ#)
n(	õp|	õ#)
¨

n(õD|	õn)
n(	õp|	õn)
¨

,	for	)	 ∈ 	 ℓnD ∪ ℓ£p 

 

First, all cells in lineages	®	and g are merged into a combined set of cells, ℓnD ∪ ℓnp, then MIRA 

calculates ©#
Dp, the log fold change of the ratios between the probability of reaching lineage 

terminus ® versus lineage terminus g at cell ) relative to the probability at the start cell £. 

Intuitively, before the branch between two lineages, the ratios of the probabilities of 

differentiating down two different trajectories is constant, and after the branch point, these 

probabilities diverge from the initial balance as cells become more likely to reach one terminal 
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state rather than the other. The branch time between two lineages is taken to be the pseudotime 

¢	of the first cell where ©#
Dp	exceeds some threshold ™.  

 To construct a bifurcating lineage tree using these definitions, MIRA starts with all 

terminal states as disconnected leaves. MIRA first finds the branch times between all lineages, 

and the lineages which branch latest in the differentiation are merged to create a new super-

lineage, where each cell’s probability of differentiating into the super-lineage is n(õD|	õ#) +

n(õp	|	õ# 	). A node is added upstream connecting these lineages’ terminal states with a branch 

point, and all cells in the lineages with a pseudotime greater than the branch time are assigned 

to the appropriate child of the branch node depending on which lineage they have more affinity 

to, determined by sign(©#
Dp). Then, MIRA recomputes branch times between the lineages to 

account for the super-lineage and again merges the last-branching trajectories. This process is 

repeated until all lineages have been connected to the root node and all cells have been 

assigned to a node.  

 

MIRA regulatory potential (RP) model 
Model architecture 
The MIRA RP model relates changes in local accessible chromatin to gene expression by 

learning upstream and downstream distances of perceived regulatory influence that maximize 

the probability of observing the expression data given the accessibility state in the same single 

cells. MIRA models the generative process of sampling expression counts for gene V ∈

{1,… ,,q>r>@}	in cell ) ∈ {1,… ,,=>??@}	given the accessibility state Æ#∙ of the cell as: 

 

K#7
stu	~	NegativeBinomial@	S#T#7 , U7 	B 

 

T#7 =
vE9F

∑ >xY	(	yzX={rV|}G[	Gb9∙
RNA~∙H	\)

*genes
HI;

  

 

Ø#7 =	h7 x
�9Fa	LF

bn

MF
bn y + g7  

 

																	ä#7 = 	∞@±7∙, Æ#∙, ®7∙, ≤7∙, ∆7∙B = % ®7Ä % Æ#Å2
a
ÇFK

∆FL
Ñ

Å∈ÖFL

	

Ä∈{U,D,P}

 

 

Æ#Å = T\#Å
ATAC 

 

For each cell ) and gene V, the ∞ function takes as arguments: the genomic interval sets	

±7Ä 	for	¥ ∈ {U,	D,	P} which filters peaks based on strand-oriented positional relationships 

upstream (U), downstream (D), or proximal (P) to the gene transcription start site (TSS); the 

accessibility state Æ#∙ ∈ ℝ56
ãÖFMãTãÖFNãTãÖFOã of each locus in a cell; non-negative ®å, ®ç,	and 

®é	parameters that scale the relative effects of upstream (U), downstream (D), or proximal (P) 

accessibility (®å, ®ç, ®é~	HalfNormal(0, 1)), respectively; the distances ≤7∙ ∈ ℝ56
ãÖFMãTãÖFNãTãÖFOã 
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from the TSS of gene V to the loci in the specified genomic interval set; and the decay rate 

parameters ∆#D and ∆#U.  

The accessibility of each region in ±7Ä is weighted by its distance from the TSS in terms 

of the learned decay rate parameter	∆#Ä, and the effects of all loci are summed together to 

summarize the cis-regulatory effect on gene expression. The accessibility state Æ#∙ of loci in cell 

) is taken to be the predicted compositional distribution T\#∙
ATAC given by the chromatin 

accessibility topic model, to reduce noise and normalize for differences in read depth of ATAC 

observations between cells. The upstream and downstream region sets encompass regions 

between 1.5 and 600 kilobases from the TSS; the proximal region is within 1.5 kilobases from 

the TSS. Regions within 1.5 kilobases of other genes are masked.  

The ∆7D and ∆7U	parameters affect the respective downstream (∂) and upstream (∑) 

decay rates of local chromatin accessibility’s influence on gene expression. The value of the 

parameter is the estimated distance, in kilobases, over which the influence of accessible sites 

on gene expression is halved, ∆U, ∆D~	LogNormal(	log(15), 1.44). The prior distribution reflects 

a priori information about the likely ranges of regulatory influence33,34, placing the mean decay 

distance at 15 kilobases and penalizing extreme ranges which suggest spurious long-range 

correlations. The variance given by 1.44 places the 90% and 99% quantiles of the prior over 

regulatory distances at 69 and 242 kilobases, respectively. Influence of accessibility in the 

promoter region is not decayed, thus ∆7P is set to ∞. 

The model relates the cis-regulatory relationship ä#7 to the observed expression data 

K#7
stu	following the same generative statistical method as the expression topic model. 

Parameters h7 and g7 form a Bayesian batch normalization function, which disconnects the 

magnitude of change in accessibility from that of gene expression and reduces the variance of 

gradient updates: 	h7 	~	LogNormal(0,1), g7 	~	Normal(	0, 25	). U7 regulates overdispersion of the 

negative binomial	count observations, U7 	~	Gamma:2,
&

H
	<. 

The compositional rate of expression T#7 is estimated by approximating the softmax 

function of the RNA topic model using the RP model activation Ø#7 for the numerator and topic 

model activations across all genes "ã#∙
RNAZ for the denominator. This ensures that the RP model 

is learning compositional relationships of gene expression consistent with those learned by the 

RNA topic model and that we may use the same estimated read depth random variable 

S# 	estimated by the RNA topic model. 

Notably, this model adjusts for technical variation and noise between both assays to 

learn regulatory distances describing the cis-regulatory relationship between local chromatin 

and expression. 

 

Parameter Estimation 
The objective is to find parameters m that maximize the probability of the observed expression 

KRNA	given the accessibility state Æ: 

 

mmax = argmaxE log nE@K
RNA	∫	Æ) 

 

m = {	®7∙, 	∆7∙, 	h7 , g7 , 	U7} 
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MIRA employs variational inference3 to estimate the posterior predictive distribution of the 

parameters given the data, using the variational distribution r and maximizing the ELBO 

objective. Point estimates for each parameter in the variational distribution are estimated using 

delta distributions. MIRA takes gradient steps to maximize the ELBO using the 2nd order 

Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS)35. Because the batch 

normalization parameters e7
bn and	f7

bn	are updated after each batch but are not tuned by the 

optimizer, the gradient history may cause updates to become unstable. To prevent update 

instability, we implemented Frozen-batch L-BFGS36, a variant of L-BFGS that improves the 

algorithm’s performance in stochastic settings. MIRA trains until the loss does not decrease by 

more than a given threshold for three iterations.  

 

NITE model architecture 
The RP model discussed above is defined as the local chromatin accessibility-influenced 

transcriptional expression (LITE) model. The LITE model learns a cis-regulatory relationship 

relating expression to local chromatin accessibility. The non-local chromatin accessibility-

influenced transcriptional expression (NITE) model augments the LITE model to additionally 

include knowledge of cell-wide chromatin state through the incorporation of the MIRA latent 

accessibility topics as features. The specification of the NITE model mirrors the LITE model (see 

Regulatory Potential Modeling: Model architecture section) except for the inclusion of 

coefficients describing the relationship between cell-wide chromatin topics and expression: 

 

ä#7 = ∞(±7∙, Æ#∙, ®7∙, ≤7∙, ∆7∙) + ∑ ®$
topics

"ã#$
uëuí!topics

$%&   

 

®$
topics

~	Normal(0, 1),			for			C ∈ {1, … ,,topics} 

 

U7
NITE ← U7

LITE 

 

The dispersion parameter Utñëó is fixed as the value learned by the LITE model for the same 

gene so performance differences between the LITE and NITE models are not driven by the 

effect of dispersion on the distribution of expression. For a given gene, MIRA first trains a LITE 

model, then seeds the variational distribution of the NITE model with the point estimates from 

the LITE model. NITE model training proceeds in the same manner as LITE model training and 

learns new values for each parameter. 

 

LITE vs. NITE regulation test 
To test the ability for local chromatin to predict expression of a gene, we perform a likelihood 

ratio test37 between the LITE and NITE models, where the null hypothesis is that the LITE 

model, based only on local chromatin features, is sufficient to predict expression: 

 

Λò = −2	log
ℒLITEöT∙7

LITEõ	K∙7
RNAú

ℒNITEöT∙7
NITEõ	K∙7

RNAú
, for	V ∈ {1, … ,,genes}  
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Here, ℒℳ@T∙7
ℳ∫	K∙7

RNAB is the likelihood of the expression predictions of model ℳ, the LITE or 

NITE model for that gene, given the observations of the expression of gene V across all cells, 

where K∙7
RNA ∈ ℤ56

!cells. The LITE and NITE models parameterize a negative binomial distribution 

of expression given the accessibility state Æ#∙ of the cell. Thus, for model ℳ: 

 

ℒℳ@T∙7
ℳ∫	K∙7

RNAB = 	ø n:K#7
RNA = NegativeBinomial@S#T#7

ℳ , U7
LITEB<

!cells

#%&
 

 

If the expression predictions given the NITE model parameters are more likely given the 

observed data than the LITE model predictions, this increases the test statistic. The test statistic 

Λò is not directly comparable between genes due to differences induced by count variability, so 

we normalize all genes’ test statistics to remove this effect: 

 

NITE	score7 =	
¡7

1 +
∑ ¬(K#7 > 0)
!cells
#%&

median
c∈{&,…,!genes}

@∑ ¬(K#c > 0)
!cells
#%& B

,	for	V ∈ {1, … ,,genes} 

 

where		¬(True) = 1	and	¬(False) = 0. 

 

Due to the properties of expression counts and the negative binomial	distribution, both the LITE 

and NITE models predict zero counts for a gene with high probability. Thus, cells with no reads 

observed for a given gene are not as informative to the test, and genes which have a smaller 

fraction of zero counts have larger test statistics. Above, we scale the test statistic for each gene 

based on the number of nonzero counts relative to the median nonzero counts across all genes 

tested. When the number of nonzero counts for a gene is greater than the median the penalty to 

the test statistic increases. This procedure yields a comparable NITE score for each gene.  

 

Cell NITE score 
The cell NITE score is calculated similarly to gene NITE score, except the test is performed on 

rows of the	expression matrix	KRNA	instead of columns: 

 

Λ# = −2	log
ℒLITE@T#∙

LITE∫	K#∙
RNAB

ℒNITE@T#∙
NITE∫	K#∙

RNAB
, 	for	) = 1,… ,,cells 

 

NITE	score# =	
Λ#

1 +
∑ ¬(K#7 > 0)
!genes
7%&

median
A∈{&,…,!cells}

(∑ ¬(KA7 > 0)
!genes
7%& )

,	for	) = 1,… ,,cells 

 

Chromatin differential 
The chromatin differential ≈ in cell ) ∈ {1,… ,,=>??@}	for gene V ∈ {1,… ,,q>r>@}	is given by: 
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≈#7 = log
T#7
LITE

T#7
NITE 

 

which is the log-ratio of the compositional prediction of expression given by the LITE and NITE 

models.  

 

Probabilistic in silico deletion 
Gene-TF associations 
MIRA makes use of the LITE model and probabilistic in silico deletion (pISD) to predict the TFs 

that regulate a gene or set of genes38. This method assesses the strength of association 

between a gene and the observed or predicted TF binding sites by probing how the LITE model 

performance is affected by masking out scATAC-seq reads from that TF’s binding sites. TFs 

that severely degrade the LITE model’s predictive strength are more likely to be regulators of 

the gene than TFs for which binding site masking has no effect on the model’s predictive 

strength. This method reveals TFs that bind regions where accessibility correlates with a given 

gene’s expression. 

As such, the pISD test compares the ability of the LITE model to predict expression K∙7
RNA 

given the local chromatin accessibility around a gene, relative to its predictive ability after 

masking the set of accessible sites ℭ^ predicted to be bound by a given TF ℎ. If the TF ℎ is 

predicted to bind regulatory regions that degrade the ability of the model to predict expression, 

this increases the value of the association score ∆7^. 

MIRA’s association score between gene V and TF ℎ is given by the likelihood ratio test: 

 

∆7^ =	−2 log
ℒℏ@T∙7

ℏ ∫	K∙7
RNAB

ℒ@T∙7∫	K∙7
RNAB

 

 

The denominator describes the likelihood ℒ	of the expression predictions T∙7 of the LITE model 

given K∙7
RNA using all nearby accessible regions. The numerator describes the likelihood ℒℏ of 

the LITE model prediction of the expression of gene V when the regions ℭ^ predicted to bind TF^	

are masked (modeling the TF^’s deletion ℏ), and is given by: 

 

ℒℏ@T∙7
ℏ ∫	K∙7

stuB 	= 	ø n
!cells

#%&
:K#7

RNA = 	NegativeBinomial@	S#T#7
ℏ , U7

LITE	B< 

 

T#7
ℏ =

»†9F
ℏ

∑ exp	(	batchnormc@	"ã#∙
RNAZ∙c	B)

!genes
c%&

,	for	)	 ∈ {1, … ,,cells} 

 

Ø#7
ℏ =	h7 i

ä#7
ℏ −	e7

bn

f7
bn k + g7 ,	for	)	 ∈ {1, … ,,cells} 

 
ä∙7
ℏ = QuantileNorm@∞@±7∙\ℭ^ , Æ∙∙, ®7∙, ≤7∙, ∆7∙B, ä∙7B 
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∞@±7∙\ℭ^ , Æ∙∙, ®7∙, ≤7∙, ∆7∙B = % ®7Ä % Æ#Å2
a
ÇFK

∆FL
Ñ

Å∈ÖFL\ℭD

	

Ä∈{U,P,D}

	 

for	) ∈ {1, … ,,=>??@}	 

 

Æ#Å = T\#Å
ATAC 

 

The same values for the learned parameters ®7∙, h7 , g7 , ∆7∙, e7
bn,	and	f7

bn are applied to the 

masked and the unmasked models and are determined from the maximum a posteriori estimate 

of the unmasked model. Masking regions around the gene reduces the amount of observed 

accessible chromatin in the LITE model and induces a downward shift in the value of the RP, 

which may confound detection of binding in binding sites that support driving of expression. To 

compensate for the shift, we perform quantile normalization39 of the cis-regulatory prediction of 

the masked model to the distribution of the prediction from the unmasked model, mapping the 

distribution of ä∙7
ℏ  to ä∙7. This ensures that when the predictions are passed through the 

generative statistical model of expression, the difference in probability of observed expression is 

not influenced by the mean shift. Instead, the difference in probability is driven by differences in 

the ordering of predictions. For example, if a given gene’s expression is solely defined by 

accessibility of a single upstream enhancer, masking that region will render the accessibility 

states indistinguishable whether the gene is expressed or not expressed. This drives an 

increase in the test statistic. 

Because the predicted binding sites of TFs, whether given by motifs or by ChIP-seq 

occupancy, can be noisy and inaccurate, driver TF analysis gains statistical power from testing 

many genes against many TFs. However, testing every gene in every cell against every TF 

quickly becomes computationally intensive. Therefore, MIRA down-samples the cells used for 

each gene in the pISD test based on stratified sampling of its expression quanta. First, MIRA 

takes the log of expression in each cell and adds a pseudocount equal to mean log expression 

of the gene across all cells. Then the cells are sorted based on their expression level and 

divided into quanta such that the first group are the cells with the highest expression that 

comprise expression proportional to 
&

!bins
 worth of the total expression, the second group are the 

cells with the next-highest expression comprising 
&

!bins
  of the total expression, et cetera. An 

equal number of cells are taken from each bin so that a diverse array of expression states are 

sampled, but more informative highly-expressed states are prioritized. By default, 1500 cells are 

selected. 

 

Gene set driver TF test 
Since associations between individual genes and TFs are noisy due to the inability to ascertain 

a TF’s true binding sites and regulatory influence in a particular cell, we instead test for shared 

influence of a TF across multiple genes with similar dynamics or properties. We predict TFs 

driving expression of a query set of genes using a one-sided Mann-Whitney U test40 over the 

association scores ∆. For each TF, MIRA compares the query gene set’s association scores 
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with that TF versus a background gene set’s association scores to find TFs with significantly 

higher association with the query set. By default, the background gene set is taken to be all 

genes for which association scores were estimated which are not in the query set. 
 

Stream graphs 
MIRA renders stream graphs using Matplotlib41. In stream mode, the value of a feature at each 

pseudotime point is calculated by Savitzky-Golay42 filter over a user-defined window size. 

Features are ordered by the pseudotime of their maximum value, which roughly layers features 

in the order in which they appear on the stream. In heatmap mode, each box represents the 

average value of cells within that window. 

 

Software 
Models were implemented using Pyro7 and PyTorch43, numerical calculations were implemented 

using Numpy44, and statistical tests were conducted with Scipy22. Data is stored in the AnnData 

structure for interoperability with Scanpy45. The MIRA analysis package is freely available at 

https://github.com/cistrome/MIRA.  
 

Normalized expression 
Raw RNA-seq count matrices were normalized for streamplot and UMAP visualization using 

Scanpy’s normalize_total function, with target_sum set to 10000. 

 

Representation comparisons 
We compared representations generated by standard methods using either expression or 

accessibility data to those generated by MIRA topic modeling. Standard expression-based 

representations were calculated following Scanpy’s recommended workflow. First, count 

matrices were normalized for read depth by the normalize_total function with target_sum set to 

10000, followed by log-plus-one transformation. Genes with mean expression greater than 

0.0125 and dispersion greater than 0.5 (default values) were taken to be highly variable. Next, 

each genes’ log-normalized expression was standardized, and principal component analysis 

(PCA) was performed on the standardized expression of highly variable genes. A neighborhood 

graph of cells was then calculated using the PCA representation of the data, which was used to 

generate a UMAP representation. 

 Standard accessibility-based representations were calculated based on latent semantic 

indexing. Latent semantic indexing of ATAC-seq data was calculated using scikit-learn’s46 TF-

IDF transformation, followed by truncated singular value decomposition (SVD) of all peaks. This 

was used to calculate a KNN graph with d=15 using Euclidean distance on the first 50 

eigenvectors, which then was used to generate a UMAP using the default parameters of the 

umap-learn27 Python package. 

 

Feature selection for expression topic model 
We calculated dispersions and mean counts from log-normalized expression using Scanpy. 

Genes with mean expression greater than 0.0125 and dispersion greater than 0 were selected 

as exogenous features. Genes from that group that had dispersion greater than 0.5 were 

selected as endogenous features for the encoder network.  
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Feature selection for accessibility topic model 
All peaks identified for the 10X brain dataset were used as endogenous and exogenous 

features. All peaks identified for the SHARE-seq skin dataset were used as exogenous features, 

and 100,000 peaks were randomly selected as endogenous features. 

 

Data availability 
The authors of the SHARE-seq skin study48 provide the RNA-seq count matrix at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156608 and the ATAC-seq peak 

count matrix at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4156597. 10X 

provides the brain dataset49 RNA-seq count matrix and ATAC-seq peak count matrix at 

https://www.10xgenomics.com/resources/datasets/fresh-embryonic-e-18-mouse-brain-5-k-1-

standard-2-0-0.  

 
Data preprocessing 
We used the count matrices provided by the authors of the SHARE-seq skin study48 for our 

analysis. CellRanger count matrices were used for the 10X brain dataset49.  

 

Skin dataset cell type selection 
We calculated one expression and one accessibility topic model describing all cells in the 

SHARE-seq skin data including the hair follicle, interfollicular epidermis (IFE), and mesenchymal 

cell populations. The joint KNN graph was defined by topics across all cell types. Cells were 

clustered using the Leiden algorithm on the joint KNN graph with a resolution of 2.5. Then, 

clusters were merged and assigned cell type labels using known skin marker gene expression. 

Cell type labels were cross-referenced with those provided by the authors of the original 

SHARE-seq skin study48. We then used labeled cells corresponding to the hair follicle or IFE for 

downstream analyses. Mesenchymal cell populations were not further analyzed. For the hair 

follicle, we re-calculated the UMAP representation from the joint KNN graph subset. When 

training RP models, we used all cells in the hair follicle and the IFE, excluding the mesenchymal 

cells. 

 

Skin poised gene identification 
To classify cortex and medulla gene expression based on branch dynamics, we first found 

genes that were differentially-expressed between lineages using Scanpy’s rank_gene_groups 

(Wilcoxon with Benjamini-Hochberg correction), with adjusted p-value less than 0.1 and log2 

fold change between populations greater than 1. Next, we classified differentially-expressed 

genes based on their expression at the branch. Genes were denoted “expressed at branch” if 

they were neither differentially-expressed between the matrix and cortex cells, nor between 

matrix and medulla cells, again with adjusted p-value less than 0.1 and log2 fold change greater 

than 1. Lastly, we determined a gene to be poised if it was not expressed at the branch, if its 

average chromatin differential was greater than 0.15 in cells at the branch point, and if its NITE 

score was greater than 5 (Extended Data Fig. 5e). The top 200 cells scored by branch 

accessibility topic a4 composition were chosen as branch cells. 
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Skin poised gene driver TF analysis 
We identified driver TFs of cortex and medulla fate commitment using probabilistic in silico 

deletion. Query sets encompassing the medulla-poised and cortex-poised genes were 

compared to the background genes that included all other genes for which RP models were 

trained. The background gene set thus included all highly-variable genes (see Feature selection 

for expression topic model section), in addition to the top 200 most-activated genes for any 

topic.  

 

IFE differentially-expressed terminal genes 
We identified terminally upregulated genes that were differential-expressed between the 

granular and intermediate granular cell populations in the IFE. First, differentially-expressed 

genes between granular populations were identified using Scanpy’s rank_gene_groups 

(Wilcoxon with Benjamini-Hochberg correction), with adjusted p-value less than 0.1 and log2 

fold change between populations greater than 1. Then we selected genes that were 

differentially-expressed between granular and spinous cells, or between intermediate granular 

and intermediate spinous cells, with adjusted p-value less than 0.1 and log2 fold change greater 

than 1. Therefore, we defined terminally upregulated, differentially-expressed genes as those 

which were both differentially-expressed between granular lineages and upregulated in the 

granular populations relative to their precursor spinous populations.  

 

Brain dataset cell type selection 
In addition to the major cell populations described in the main text, the 10X brain dataset also 

detected a minimal number of Olig1/2+ oligodendrocytes, VWF+/Cdh5+ endothelial cells, and 

Reelin-positive cells potentially consistent with Cajal-Retzius cells, a transient molecularly and 

morphologically distinct neuronal population in the developing cerebral cortex. All cells in the 

dataset were included for MIRA topic modeling, but these minimally detected cell populations 

were excluded from trajectory analyses due to being too small in number to reliably determine 

their state along pseudotime and due to the endothelial and Reelin-positive cells being distinct 

from the major lineages represented in the data. The expression topics exclusively associated 

with the endothelial and Reelin-positive clusters were therefore also excluded from the later 

trajectory analyses. 
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