A fungal plant pathogen overcomes conserved broad-spectrum disease resistance by rapid gene loss

Stefan Kusch¹, Lamprinos Frantzeskakis¹,², Birthe D. Lassen¹, Florian Kümmel¹,³, Lina Pesch¹,⁴, Mirna Barsoum¹,³, Hongpo Wu⁵,⁶, Kim D. Walden¹, and Ralph Panstruga¹,⁵

¹Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringenweg 1, D-52056 Aachen, Germany
²Bayer Crop Science, 700 W Chesterfield Pkwy W, Chesterfield, MO 63017, USA
³Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne D-50829, Germany
⁴Institute for Plant Sciences, University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, D-50674, Cologne, Germany
⁵Institute of Plant Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, D-52057 Aachen, Germany

Hosts and pathogens typically engage in an evolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen *Blumeria graminis* f.sp. *hordei* is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function *mlo* mutants.

Partial *mlo* virulence is associated with a distinctive pattern of adaptive mutations, including small-sized (8-40 kb) deletions, one of which likely affects spore morphology. The detected mutational spectrum comprises the same loci in at least two independent *mlo*-virulent isolates, indicating convergent multigenic evolution. This work highlights the dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.

Adaptation	*Blumeria graminis* f.sp. *hordei* (*Bgh*)	(Co-)Evolution	Experimental evolution	Fungal genomics	Genome	Mildew resistance Locus O (*MLO*)	Plant Immunity	Powdery mildew	Rapid evolution
Correspondence: panstruga@bio1.rwth-aachen.de

Abbreviations

Bgh, *Blumeria graminis* f.sp. *hordei* | *bp*, base pair | *dpi*, days post-inoculation | *hpi*, hours post-inoculation | *LINE*, long interspersed nuclear element | *LTR*, long terminal repeat | *Mla*, Mildew resistance locus a | *Mlo*, Mildew resistance locus O | *MMEJ*, Non-homologous end joining | *NHEJ*, Non-homologous end joining | *PCA*, principal component analysis | *PCR*, polymerase chain reaction | *Pen1*, ENCODED PENETRATION1 | *Pen2*, Required for mlo-specified resistance1/2 | *qRT-PCR*, quantitative reverse transcriptase-polymerase chain reaction

Introduction

Pathogens and their hosts are locked in a coevolutionary competition where the host attempts to prevent pathogen infection, while the pathogen adapts to evade host recognition and retain its ability to infect the host. Generalist pathogens infect a broad range of hosts, and their genomes evolve in response to selection by many hosts under diffuse coevolution (1). Specialist pathogens, on the other hand, infect one or few hosts and are engaged in an intimate coevolutionary arms race. The gene-for-gene hypothesis is a paradigm for the arms race between plants and their pathogens (2).

Plants have intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that can recognize pathogen effectors and mount an effective defense response, while pathogens evolve to subvert or circumvent perception (3). Obligate biotrophic pathogens depend on living host cells and, thus, have to evade recognition by NLRs for their very survival and reproduction. Such specialist pathogens often rapidly overcome resistance conferred by effector recognition via cognate host NLRs. For example, the obligate biotrophic barley powdery mildew fungus *Blumeria graminis* f.sp. *hordei* (*Bgh*) frequently escapes resistance conditioned by alleles of *Mildew locus A* (*Mla*)-encoded NLRs in barley (4). *Mla* receptors directly bind secreted *Bgh* effectors, and loss of recognition happens by loss or modification of the cognate effector due to spontaneous mutations in the fungal genome (5, 6). In addition, copy number variation contributes to genetic variation and can lead to outbreaks of new strains of filamentous plant pathogens (7, 8).

Short generation times, large effective population sizes, and plastic genome architectures are drivers of rapid adaptation in microbial pathogens. Within the lifetime of a plant, pathogens can go through tens or even hundreds of generation cycles, and can produce thousands to millions of individual mito- and meiospores as offspring (9). Hence, the standing genetic variation of the pathogen population is much larger than that of its host by default. This is likely a prerequisite for pathogen survival, since recognition of a single effector suffices to prevent proliferation and reproduction.

The genomes of filamentous plant pathogens frequently exhibit special architectures and features including dispensable accessory chromosomes and hypervariable minichromosomes (10). These are often enriched with transposable elements, carry effector genes, and are otherwise gene-poor. Genome compartmentalization known as two-speed architecture is characterized by distinct transposable element-rich regions that mainly contain effector genes that evolve at a faster pace than the rest of the genome (11, 12). Intriguingly, some fungal plant pathogens including the cereal powdery mildew pathogen *B. graminis* harbor genomes that are massively inflated by transposable elements (13, 14). Trans-
posable elements are equally distributed throughout these genomes, which are further characterized by extensive copy number variation of effector genes and the loss of some conserved ascomycete genes (13, 15). In particular, long interspersed nuclear element (LINE) and long terminal repeat (LTR) retrotransposons are highly abundant, and these elements exhibit very low sequence divergence, suggesting that recent transposon bursts shaped the genome of B. graminis (13).

At least 900 species of powdery mildew fungi (Ascomycota, Erysiphaceae) infect >10,000 plant species worldwide (16), including crops, trees, and herbs (17). The pathogen causes significant yield losses if not held in check by fungicides, affecting grain yield and quality (18). Even though powdery mildews apparently occur as homogenous strains due to their dominating asexual mode of propagation, they can have a complex population structure with many different haplotypes present within a supposedly clonal isolate (19).

The loss-of-function mutation of Mildew resistance Locus O (MLO) gene(s) confers highly effective and durable broad-spectrum resistance against powdery mildew in many plant species (20). Pathogenesis is terminated prior to fungal host cell entry on mlo mutants, which have been used widely in European barley agriculture since the late 1970s (21). MLO genes encode seven-transmembrane domain proteins (22, 23) with a cytosolic calmodulin-binding domain in the carboxy-terminus (24) and yet unresolved biochemical function (20). Genetic suppressors of mlo-based resistance cause partial susceptibility to powdery mildew. These include the Required for mlo-specified resistance (Ror) genes in barley (25, 26), as well as PENETRATION (PEN) genes in Arabidopsis thaliana, which are major components of pre-penetration resistance to powdery mildew (26–28). In addition, abiotic stress conditions can result in a temporary breakdown of mlo-based resistance (29, 30). The Japanese Bgh isolate RACE1 is the only known natural case with partial virulence on barley mlo mutant plants (31, 32). The mlo virulence phenotype in Bgh depends on a small number of unidentified genes (33, 34), but the underlying mechanism remains elusive.

To close this gap in knowledge, we here deployed real-time evolution experiments to select a set of mlo-virulent Bgh isolates for detailed molecular analysis. We identified a distinctive pattern of few convergent mutational events in the three identified isolates, resulting in an altered transcriptional program during fungal pathogenesis on barley mlo mutant plants. Our data suggest that mutations in a gene coding for an ortholog of the Aspergillus transcriptional regulator medA cause altered conidiospore morphology. Enhanced Bgh virulence on mlo mutants seems to be correlated with a fitness cost in the form of lowered virulence on barley wild-type plants, which may explain why the mlo-virulent phenotype does not prevail under agricultural conditions. Collectively, our findings provide an example of how few mutations in the genome of a phytopathogen can cause a drastic change in its virulence spectrum, enabling its rapid adaptation to new host environments.
Results

Selection of three partially mlo-virulent Bgh isolates by experimental evolution. To study the rapid evolution of Bgh experimentally, we selected for mlo-virulent Bgh isolates derived from the mlo-avirulent parental strain Bgh K1. For 15 asexual generations, occasionally occurring Bgh K1 colonies on otherwise highly resistant barley mlo mutant plants were recovered, fungal biomass proliferated on the susceptible (Mlo genotype) cultivar (cv.) Ingrid, and then conidia re-inoculated on mlo plants, as described before (35). Subsequently, the resulting Bgh isolates were cultivated on barley mlo mutant plants only, yielding the three independent strains Supervirulent K1 (SK1), SK2, and SK3. These isolates showed stable yet partial mlo virulence with visible sporulation and a 15-25% host cell entry rate on barley mlo-3 mutant plants (Figure 1A and 1B). Bgh SK1 exhibited a similar level of virulence on a range of near-isogenic mlo lines with various mutational defects in Mlo (36), indicating that in contrast to Bgh RACE1 (37) the enhanced virulence of this strain is independent of the host mlo allele (Figure 1C and Supplementary Figure 1). We found comparable host cell entry levels on two mlo mutants in different barley lines, Pallas mlo-5 (approx. 15%) and Haissa mlo-1 (approx. 20%; Figure 1D), demonstrating that the Bgh SK1 virulence phenotype is also independent of the host genetic background. We nevertheless noticed a slight but statistically significant reduction of Bgh SK1 host cell entry rates compared to Bgh K1 on all wild-type (Mlo) genotypes tested (cv. Ingrid, Pallas and Haissa; Figure 1B and 1C), suggesting a reduction in pathogenic fitness in the mlo-virulent fungal isolate (see also below).

Enhanced virulence of Bgh SK1 is restricted to mlo mutants in barley and Arabidopsis thaliana. To assess whether Bgh SK1 has a generally altered virulence spectrum, we inoculated various host (barley) and nonhost (A. thaliana) genotypes with conidia of this isolate and assessed the infection success. On barley mlo ror1 and mlo ror2 double mutants, which have partially compromised mlo resistance due to second-site mutations in the genes Ror1 and Ror2 (25), the mlo-virulent isolate Bgh SK1 showed elevated entry rates compared to mlo single mutant plants, indicative of an additive effect of the host ror mutations and the presumed genomic alterations in the fungal pathogen. Further, Bgh SK1 exhibited increased host cell entry upon treatment with the cytoskeleton-disrupting agent alloxan (38) (Supplementary Figure 2), indicating that its partial mlo virulence does not rely on interference with cytoskeleton reorganization and associated secretory pathways. On barley lines carrying Mildew resistance locus A (Mla) alleles conferring isolate-specific immunity with different levels of effectiveness against Bgh K1 (32, 39), Bgh SK1 showed reduced entry success, but also on the near-isogenic control cultivars lacking the respective Mla genes (Supplementary Figure 3), suggesting that the isolate is incapable of overcoming race-specific resistance. Bgh SK1 was further unable to colonize eight wheat cultivars and exhibited entry success levels comparable to Bgh K1, except on three cultivars where we observed a slight increase (Supplementary Figure 4 A and B). Notably, Bgh SK1 had significantly reduced penetration success on the A. thaliana mutants pen2 padd4 sag101 and pen1, which are partially defective in resistance to the non-adapted Bgh pathogen (26, 27), but increased entry success on the A. thaliana mlo2 single mutant and the mlo2 mlo6 mlo12 pen1 pen2 quintuple mutant. Bgh SK1 even succeeded with occasional entry on the otherwise extremely resistant mlo2 mlo6 mlo12 triple mutant, providing an additional link to mlo virulence also in the Bgh nonhost species A. thaliana (Supplementary Figure 4C).

Bgh SK1 has an altered transcriptional profile during haustorium formation. To identify genes contributing to mlo virulence in Bgh SK1 compared to Bgh K1 we performed whole transcriptome shotgun sequencing (RNA-seq) at 6 hours post inoculation (hpi: appressorium formation) and 18 hpi (haustorium establishment; Supplementary Table 1) using RNA extracted from inoculated barley leaf epidermal strips. The expression profiles of the host, representing the majority of the RNA-seq reads (>90%), did not vary significantly between the barley epidermal samples inoculated with the two Bgh isolates according to principal component analysis (PCA; Figure 2A, Supplementary Figure 5, and Supplementary Tables 2 and 3). PCA revealed a clear separation of the host and pathogen responses between 6 hpi and 18 hpi. However, there were no differentially expressed (DE) host genes at 6 hpi and only seven DE genes at 18 hpi (log fold change >1, \(P_{\text{adj}} < 0.05 \); Supplementary Table 4). Between 282,167 (3.5%) and 1,472,273 (9.9%) RNA-seq read pairs mapped to the manually annotated Bgh reference genome DH14 v4 (13) (Supplementary Table 1). While we did not identify DE genes at 6 hpi, 121 genes were significantly (\(P_{\text{adj}} < 0.05 \); log fold change >1) up-regulated and two genes down-regulated in Bgh SK1 at 18 hpi compared to Bgh K1 (Figure 2, Supplementary Figure 5, and Supplementary Tables 5 and 6). Among the 121 up-regulated genes, 93 (76.8%) code for proteins that harbor a canonical secretion signal (mostly putative effectors; Supplementary Table 7). The two down-regulated genes were BLGH_02703 and BLGH_06013 (see below). We validated the expression profiles of six up-regulated and the two down-regulated genes by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and found that most of these genes behave similarly in Bgh strains SK2 and SK3, pointing to a common transcriptomic signature during pathogenesis in the three mlo-virulent isolates (Figure 2D, Supplementary Figure 6).

Three genes are affected by genomic events in the mlo-virulent Bgh isolates. Next, we explored whether genomic alterations occur between the three Bgh SK isolates and their parental meta-population (Bgh K1) using whole-genome shotgun sequencing (Supplementary Table 8). We queried these genomes after at least 50 asexual generations when the mlo virulence phenotype stabilized, since we expect purifying selection will have favored adaptive mutations to dominate within the populations at this time. Com-
Fig. 2. A distinct transcriptomic pattern is associated with mlo virulence of Bgh isolate SK1. We conducted RNA-seq of epidermal samples collected from barley BCI mlo-3 inoculated with Bgh K1 and SK1, respectively, at 6 hpi and 18 hpi, each with n = 4 independent replicates. (A) Principal component (PC) analysis of gene expression in barley mlo-3 in the 18 samples accounting for the four conditions. Green, K1; blue, SK1; squares, 6 hpi; circles, 18 hpi. Numbers in brackets indicate the ratio of data explained by the principal component. (B) PCA of gene expression in Bgh K1 and Bgh SK1 at 6 hpi and 18 hpi on barley mlo-3. (C) Differential expression analysis revealed 121 up-regulated and 2 down-regulated genes in Bgh SK1 at 18 hpi on barley mlo-3 (Supplementary Figure 5, Supplementary Table 6). The heatmap shows the normalized relative expression (expressed as Row Z score) of these 123 genes in the two isolates at 6 and 18 hpi according to the color-coded scale on the right. (D) Data of qRT-PCR analysis for BLGH_02703, BLGH_06013, and six up-regulated genes (see Supplementary Figure 6 for full set) according to DE analysis for the isolates Bgh K1 (green), SK1 (blue), SK2 (orange), and SK3 (purple) after inoculation of barley mlo-3 or cv. Ingrid. The x-axis shows the time-point after inoculation (0, 6, and 18 hpi), the y-axis displays relative transcript abundance calculated by ΔCt analysis. Data shown are based on n = 3 biological replicates with 3 technical replicates each.
Fig. 3. Loss of genes BLGH_06013 and BLGH_02703 in mlo-virulent Bgh isolates. We performed high-throughput whole-genome DNA sequencing with the isolates Bgh K1, SK1, SK2, and SK3. (A) Venn diagram summarizing single nucleotide variants (SNVs) occurring in Bgh K1, SK1, SK2, and SK3 relative to the reference genome of Bgh DH14 v4. All variants were confirmed by manual inspection, except the SNVs common in all four isolates (grey). SNVs affecting coding sequences are indicated. (B) SNVs were detected with Freebayes using an optimized pipeline and visualized using the IGV browser. The red lines highlight a variation (3 bp deletion) in Bgh SK1 compared to K1. White bar, scaffold_34 of the Bgh DH14 reference assembly; below, the nucleotide and amino acid sequence of BLGH_06013 are shown. Mapping coverage is shown in grey, individual mapped reads are displayed in green, gaps in light grey. (C) Mapping coverage of Bgh DH14 scaffold_34; 390,000…510,000 of Bgh K1, SK1, SK2, and SK3, including the locus of BLGH_06013. The x-axis shows the position on the scaffold, the y-axis read coverage, and transposable elements are indicated at the top. The black line shows the average coverage for the respective isolate, site-specific coverage is displayed in dark blue. (D) Local synteny plot of scaffold_34; 390,000…510,000 (BLGH_06013 locus in orange). Genes are indicated by blue arrows and transposable elements by grey blocks. Bgh DH14 scaffold_34 was assembled in Bgh SK1 (sk1_contig_609) using nanopore MinION sequencing. (E) Mapping coverage of Bgh DH14 scaffold_23; 1,725,000…1,750,000 of Bgh K1, SK1, SK2, and SK3, including the locus of BLGH_02703. Displayed as in (C). (F) Genotyping PCRs for BLGH_02703 and BLGH_06013 alleles using genomic DNA of Bgh K1, SK1, SK2, and SK3, respectively. Gene BLGH_00850 served as a positive control for PCR amplification. DNA Ladder, 1 kb plus (Invitrogen-Thermo Fisher, Waltham, MA, USA). (G) Primer locations for genotyping of BLGH_06013. Oligonucleotides are listed in Supplementary Table 12.
pared to the near-chromosome level reference genome sequence of Bgh DH14, isolates K1 and SK1, SK2, and SK3 shared 140,639 single nucleotide variants (SNVs), 2,137 of which were predicted to vary between the isolates. We manually confirmed 84 unambiguous polymorphisms of which 81 were intergenic and three affected genes (Figure 3A, Table 1, and Supplementary Table 9). SK2 and SK3 only differed in one intergenic SNV, implying that the two isolates are genetically redundant. The other variations include an SNV in BLGH_06723 (encoding a putative conserved RBR-family E3 ubiquitin ligase), causing the change of glutamine-49 to lysine in all three mlo-virulent isolates, and a three-base-pair deletion in gene BLGH_02703, serving RBR-family E3 ubiquitin ligase), causing the change of glutamine-49 to lysine in all three mlo-virulent isolates, and a three-base-pair deletion in gene BLGH_02703, serving RBR-family E3 ubiquitin ligase), causing the change of glutamine-49 to lysine in all three mlo-virulent isolates, and a three-base-pair deletion in gene BLGH_02703, serving

<table>
<thead>
<tr>
<th>Gene</th>
<th>BLGH_06013</th>
<th>BLGH_06723</th>
<th>BLGH_02703</th>
<th>BLGH_05230</th>
<th>BLGH_05231</th>
<th>BLGH_05232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoded protein</td>
<td>MedA-like transcripational regulator</td>
<td>E3 ubiquitin ligase</td>
<td>Unknown protein, Blumeria-specific</td>
<td>Nuclear transport factor (karyopherin) / aminopeptidase / glutathione peroxidase</td>
<td>Sgk2-like serine-threonine protein kinase</td>
<td></td>
</tr>
<tr>
<td>Bgh isolate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K1</td>
<td>n.v.</td>
<td>n.v.</td>
<td>n.v.</td>
<td>2x coverage</td>
<td>3x coverage</td>
<td></td>
</tr>
<tr>
<td>SK1</td>
<td>Absent (partially)</td>
<td>Q<sup>49</sup>K</td>
<td>Absent (partially)</td>
<td>2x coverage</td>
<td>3x coverage</td>
<td></td>
</tr>
<tr>
<td>SK2</td>
<td>Absent</td>
<td>Q<sup>49</sup>K</td>
<td>Absent</td>
<td>1x coverage</td>
<td>2x coverage</td>
<td></td>
</tr>
<tr>
<td>SK3</td>
<td>Absent</td>
<td>Q<sup>49</sup>K</td>
<td>Absent</td>
<td>1x coverage</td>
<td>2x coverage</td>
<td></td>
</tr>
</tbody>
</table>

* n.v., no variation compared to the reference Bgh isolate DH14 v4 (13).

dery mildew pathogen, B. graminis f.sp. tritici (EPQ63962; BLASTP query cover 92%, E value 2e-154, 68.3% sequence identity), and otherwise has weak similarity to atrophin-1, K⁻-dependent Na⁺/Ca²⁺ exchanger, and the alpha subunit of transcription initiation factor IIF (Supplementary Table 11). Both regions showing deletions in the SK isolates (in scaffolds 23 and 34) were flanked by long terminal repeat (LTR)-type transposable elements such as Tad1, Gypsy, Copia, and Non-LTR4 (Figure 3C and 3E). Partial absence of BLGH_02703 and BLGH_06013 within the Bgh SK1 population likely accounts for the reduced transcript accumulation of these two genes seen in RNA-seq analysis at 18 hpi (see above). We did not find these three polymorphisms in the naturally mlo-virulent RACE1 isolate, suggesting that its virulence is mechanistically different from Bgh SK1 and SK2/3. The copy number variations we detected were limited to two loci (Supplementary Figure 7 and 10). Scaffold 27:312,420-348,900 encompasses BLGH_05230, BLGH_05231, and BLGH_05232, coding for a karyopherin nuclear transport factor, an aminopeptidase, and a glutathione peroxidase, respectively. The region exhibited 2-fold coverage by sequence reads of isolates K1 and SK1 compared to isolates SK2 and SK3, whose sequence reads showed no elevated coverage for these three genes. Likewise, sequence coverage indicated that the neighboring gene BLGH_05233, encoding a Sgk2-like serine-threonine kinase, was represented by two copies in isolates Bgh SK2 and SK3 instead of three copies in isolates Bgh K1 and SK1. Scaffold 8:1,787,835-1,794,235, containing BLGH_00850, whose encoded protein is 36.5% similar to the protein encoded by the adjacent gene BLGH_00851 (CSEP0327) and thus possibly a diverged copy thereof, was recently (probably in 2018) lost in our locally propagated Bgh K1 population (Bgh K1_{Aachen}) but not in the original Bgh K1 population (Bgh K1_{Cologne}) and also not in the SK descendants derived from Bgh K1 (see below; Supplementary Figure 10A and 11). We confirmed the presence-absence polymorphisms of BLGH_02703 and BLGH_06013 by genotyping PCR and the C²²A nucleotide exchange in BLGH_06723 by Sanger sequencing of the PCR products (Figure 3F and Supplementary Figure 12). We summarized all genomic alterations detected in the three Bgh SK isolates in Table 1.
Loss of BLGH_02703 is dispensable for mlo virulence of Bgh SK1. We next aimed to address whether the mlo virulence phenotype depends on the loss of the genes BLGH_02703 and/or BLGH_06013, which are partially absent or mutated in the Bgh SK1 population (Figure 3, Table 1). Given the lack of reliable genetic tools for obligate biotrophic plant pathogens including powdery mildews, we took advantage of the non-homogenous SK1 population to isolate single spore-derived and PCR-validated Bgh genotypes. We succeeded in separating individual colonies that either carry or lack BLGH_02703 in combination with either the BLGH_06013 deletion or the BLGH_06013ΔK445 variant (three different combinations; Figure 4A). The entry success of these genotypes on mlo mutant leaves ranged from 5-12%, and there was no statistically significant difference in this respect between these isolates (Figure 4B). By contrast, reminiscent of the original SK1 isolate (Figure 1D), SK2 and SK3 as well as all SK1-derived genotypes showed reduced entry access on barley wild-type (Mlo genotype) leaves (Figure 4C). Transient silencing of BLGH_02703 and BLGH_06013, separately or in combination, by particle bombardment-mediated host-induced gene silencing (40) did not confer virulence to Bgh K1 on barley mlo-3 leaves (Supplementary Figure 13). Taken together, this data indicates that the loss of BLGH_02703 is not required for Bgh to acquire mlo virulence.

Loss of BLGH_06013 affects conidia Bgh morphology. The transcription factor medA is required for conidia formation in the ascomycete Aspergillus fumigatus, as A. fumigatus medA mutants display aberrations in conidia number and shape (41, 42). We observed that while Bgh K1 exhibited uniform oval-shaped conidiospores, the mlo-virulent isolates SK1, SK2, and SK3 showed the presence of markedly elongated ellipse-shaped conidiospores (Figure 5A). We, therefore, assessed essential conidia size parameters (length, width, length/width ratio, area, perimeter) of the SK isolates in comparison to Bgh K1. All tested mlo-virulent genotypes (SK1, SK2, SK3, and the mutant combinations described above) had significantly increased conidia length (median 32-36 μm) compared to the parental isolate Bgh K1 (median 23 μm; Figure 5B). The same applied to the conidia length/width ratio (approx. 3.0 vs. 2.1) and perimeter (approx. 82 μm vs. 56 μm), and, in tendency, to conidia area (approx. 213 μm² vs. 160 μm²), while conidia width of the SK isolates was indistinguishable from Bgh K1 conidia (both approx. 11 μm; Supplementary Figure 14). These findings suggest that BLGH_06013 (medA) is involved in the determination of conidia shape in Bgh, analogous to its role in A. fumigatus. Similar to the mlo virulence phenotype (Figure 4), the aberrant conidia shape phenotype is independent of BLGH_02703 and occurred with both the null allele of BLGH_06013 and the single amino acid deletion variant BLGH_06013ΔK445 (Figure 5B). We hypothesized that the aberrant conidia shape might affect the fitness of Bgh SK iso-
Fig. 5. The loss of BLGH_06013 affects conidiospore morphology. (A) Representative micrographs of conidia (brightfield); scale bar: 50 μm. (B) Length of conidia [μm] for Bgh K1, SK1, SK2, SK3, and ten isolates derived from the SK1 meta-population. Genotypes are color-coded as indicated below the panels (Δ indicates BLGH_06013Δ3546). Statistical analysis was performed via GLM (Poisson); n = 5 independent replicates. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (C) Conidia were inoculated on agar plates and the germination rate (appearance of primary germ tubes) in % determined after 6 h. n = 5 independent replicates. Genotypes are color-coded as indicated below the panels (Δ indicates BLGH_06013Δ3546). *, P < 0.05; **, P < 0.01; ***, P < 0.001. (D) Penetration success [%] of conidia from Bgh K1 (green) and SK1 (blue) on barley cultivars (Mlo genotype) Ingrid (n = 12), Pallas (n = 15), Manchuria, Foma, and Carlsberg-II (n = 5 independent replicates each). Statistical analysis was performed comparing SK1 with K1 on the respective cultivar using GLM (Poisson); *, P < 0.05; **, P < 0.01; ***, P < 0.001. (E) Model for partial mlo virulence in the barley powdery mildew pathogen. Multiple pathways contribute to mlo-based resistance against powdery mildew pathogens, including secretin-based resistance (e.g., the t-SNARE PEN1/Ror2 involved in defense-related vesicle fusion), cell wall reinforcements (e.g., callose appositions), and antimicrobial compounds (e.g., PEN2-mediated indole glucosinolates in A. thaliana). Our experiments demonstrated that mlo virulence in Bgh SK1 is additive to suppression of resistance by loss of known pathways, suggesting a different mechanism that leads to successful infection. We identified three genes to be associated with the mlo virulence in Bgh SK1 and SK2/3, the E3 ubiquitin ligase BLGH_06013, the transcriptional regulator BLGH_06013, and a third protein of unknown function (BLGH_02703). We postulate that these three genes alter the infection program of Bgh SK1 and SK2/3 to collectively enable infection of mlo-resistant barley. Purple ovals symbolize the three proteins found to be lacking/mutated in the three Bgh SK1 isolates.
lates. We allowed the conidia of Bgh K1, SK1, SK2, SK3, and the various genotypes to germinate on agar medium. Under these in vitro conditions, around 50-75% of conidia formed germ tubes. The majority of the SK isolates displayed normal or slightly enhanced germination rates (approx. 50-70%; Figure 5C), suggesting that germination and formation of the primary germ tube remained largely unaffected. Additionally, we analyzed a set of barley cultivars susceptible to Bgh K1 and carrying a functional Mlo allele to compare the entry success of the two isolates Bgh K1 and SK1. Intriguingly and consistent with our other experimental data (Figure 1D and Figure 4C), Bgh SK1 showed a significantly reduced entry success with a decrease of about 5-15% compared to Bgh K1 on these cultivars, suggesting a fitness penalty for Bgh SK1 (Figure 5D). To assess whether Bgh K1 would outcompete Bgh SK1 as a consequence of this fitness penalty, we performed competition experiments. However, Bgh K1 did not outcompete Bgh SK1 in these settings, and mlo-virulent Bgh isolates did not lose their mlo virulence after 12 generations of propagation on wild-type barley leaves (cv. Ingrid; Mlo genotype), i.e., in the absence of the selective pressure (Supplementary Figure 15).

Discussion

Experimental evolution can be a powerful tool to study genome evolution in plant-associated fungal microbes (43). Using this approach, we discovered a single amino acid exchange in one gene and the loss of two genes co-occurring in all three Bgh SK isolates (Table 1). This mutational spectrum correlates with the gain of virulence on otherwise highly powdery mildew-resistant barley mlo mutant plants, which confer a type of broad-spectrum resistance that mechanistically differs from isolate-specific immunity conferred by NLR proteins (44, 45). Other than mutations leading to the loss of NLR-mediated isolate-specific resistance, none of these genes code for effectors but rather a RBR-family E3 ubiquitin ligase (BLGH_06723), a medA-like transcriptional regulator (BLGH_06013), and a protein of unknown function (BLGH_02703). The Q49K substitution in BLGH_06723 does not affect a conserved amino acid and is not located in an annotated functional domain of the protein (Supplementary Figure 16). We can, however, not exclude that this missense mutation leads to either a non-functional version or a gain-of-function variant, or, alternatively, affects the stability and accumulation levels of the protein. Our analyses based on the segregating SK1 population demonstrated that the lack of BLGH_02703 is dispensable for both mlo virulence and the conidiospore morphology phenotype (Figure 4 and 5). Likewise, the copy number variation of genes BLGH_05230, BLGH_05231, BLGH_05232, and BLGH_05233 is restricted to Bgh SK2 and SK3 (Table 1). These variations are thus unlikely to be causative for mlo virulence. This leaves the Q49K substitution in BLGH_06723 and/or the lack of BLGH_06013 as the most probable mutations conferring partial mlo virulence in the Bgh SK isolates. The lack of genetic tools for the obligate biotrophic powdery mildew pathogens at present prevents a more rigorous testing of the candidate genes, e.g., by targeted gene knock-outs or complementation analysis. It is intriguing that all three Bgh SK isolates share an almost identical set of adaptive mutations (Table 1). Similarly, previously isolated Bgh isolates depended on three unidentified genes that equally contributed to mlo virulence (33, 34). These experiments resulted in strains of three distinctive levels of virulence, suggesting at least three major adaptive mutations (46). This observation prompts the question whether these isolates represent independent mutational events, and whether these sequence variants might pre-exist as balanced polymorphisms within the Bgh K1 population or are independently and convergently acquired de novo events selected for during experimental evolution. Since isolate SK1 on the one hand and SK2/SK3 on the other hand were selected more than two years apart from each other, and differ in the mutational spectrum detected for BLGH_06013 and the copy number variation of BLGH_05230, BLGH_05231, BLGH_05232, and BLGH_05233 (Table 1), we can assume at least two independent and convergent sets of adaptive mutational events. By contrast, isolates SK2 and SK3 are near-identical and only differ by one validated SNV in an intergenic region, suggesting that these two isolates might have the same origin. Bgh isolates are non-homogenous and have a complex population structure, with many different haplotypes present within a supposedly clonal isolate (19). It may thus be possible that a founder event for mlo virulence (e.g., the Q49K substitution in BLGH_06723) is present at low levels as a balanced polymorphism within the parental Bgh K1 population, which may give rise to sporadic colony formation on mlo plants. One or more additional events, such as the loss of functional BLGH_06013, might be required to stabilize virulence on mlo mutant plants. However, we found no evidence for the BLGH_06723 Q49K variant to be present in the K1 population, which could either mean that the variation does not pre-exist or occurs at a frequency below our detection limit.

Various processes could facilitate the rapid gain and loss of genes in Bgh. Genome recombination due to mating can promote genetic diversity, which for example recently gave rise to the emergence of B. graminis f.sp. tritici by hybridization of wheat and rye powdery mildews (47). However, we isolated the mlo-virulent strains from asexually-reproducing populations. Thus, the extensive repertoire of transposable elements (13) is the most likely driver of rapid genomic changes in the fungus. We noted that in the case of BLGH_06013 a Tad1-9 transposon appears to have replaced the locus containing this gene in SK1 (Figure 3D), suggesting that transposition of a Tad1 element caused genome recombination at this site, consistent with the copy-paste mechanism of retroelements (48). However, the transposition itself would not explain the loss of a large genomic segment. While non-homologous end joining (NHEJ) is the dominant mechanism to repair double strand breaks in genomic DNA in haploid genomes (49, 50), it accounts predominantly for indels of <20 bp. Microhomologies however can cause long-distance template switching due to replication fork collapse during cell division, which can frequently
occur in repetitive and AT-rich regions (51, 52). The resulting DNA end intermediates can be stabilized and repaired by microhomology-mediated end joining (MMEJ), which in this case uses microhomologies from non-homologous templates and is therefore error-prone (53–55). Microhomology-driven replication-based DNA repair mechanisms such as MMEJ cause large-scale insertions, deletions, and copy number variation (1, 56, 57). Since powdery mildew genomes are enriched with repetitive elements including retrotransposons that exhibit little sequence divergence (13, 58), microhomology-based repair of double strand breaks occurs in repetitive and AT-rich regions (51, 52). The result of transposable elements, frequently embedded within extensive structural variation in the fungus. Typically, virus-encoded effectors, carbohydrate-processing enzymes (CAZymes), and toxins are often found in the vicinity of transposable elements, frequently embedded within transposon-rich genome compartments (11, 59, 60). For example, population-wide screening of the gene content in the Septoria leaf blotch pathogen Zymoseptoria tritici identified 599 gene gains and 1,024 gene losses, which mainly occurred in subtelomeric regions and in proximity to transposable elements. The majority of these genes encode virulence factors, secreted proteins, and enzymes involved in the biosynthesis of secondary metabolites (8). Inaccurate microhomology-based repair of double strand breaks occurring in the transposon-rich and repetitive regions may be one major driver of copy number variation of effectors and other virulence factors.

Why do the mutational events observed in the Bgh SK isolates not occur naturally in barley powdery mildew populations in the field? This might be explained by the fact that the affected isolates show reduced infection success on susceptible (Mlo wild-type) barley genotypes (Figure 5D). Due to the adverse effects of this adaptation, such strains may not emerge in a non-selective environment where susceptible barley genotypes are available as hosts. It is conceivable that the rotation of mlo-resistant and non-resistant spring and winter varieties, respectively, as currently practiced by farmers in European agriculture (21), results in the absence of constant selection pressure, thereby preventing the occurrence of natural mlo-virulent strains so far. Given the rapidity with which mlo virulence appeared under our laboratory conditions, we caution against the permanent deployment of barley mlo mutants without rotation to prevent the appearance of mlo-virulent barley powdery mildew in agricultural settings.

Methods

Plant growth conditions. All plants were cultivated in SoMi513 soil (HAWTA). Healthy barley and wheat plants were grown under a long day cycle (16 h light period at 23 °C, 8 h darkness at 20 °C) with 60-65% relative humidity (RH) at a light intensity of 105-120 µmol s⁻¹ m⁻². Arabidopsis thaliana plants were cultivated under a short-day cycle (8 h light period at 22 °C, 16 h darkness at 20 °C), at 80-90% RH, and a light intensity of 100 µmol s⁻¹ m⁻². For powdery mildew infection assays, the plants were transferred to isolate-specific infection chambers with a long day cycle (12 h light at 20 °C and 12 h dark period at 19 °C), ca. 60% RH and 100 µmol s⁻¹ m⁻².

Powdery mildew infection assays. One-week-old barley and wheat plants and four to five-week-old Arabidopsis plants (rosette size of 2-2.5 cm) were used for powdery mildew infection assays. The powdery mildew conidiospores were blown onto the plants in an infection tower; spores were allowed to settle for 10-15 min. Inoculated plants were incubated in the respective Bgh infection chamber. The samples for penetration assays were bleached in 80% ethanol at 48 hpi. The leaves were submerged twice in Coomassie staining solution (45% v/v MetOH, 10% v/v acetic acid, 0.05% w/v Coomassie blue R 250; Carl Roth, Karlsruhe, Germany) for 15-20 s, and then mounted on a glass slide with 50% glycerol. The samples were evaluated by bright field microscopy. Leaves from four to five plants/genotype were scored for penetration success with 100-200 interaction sites per leaf. Penetration success is expressed as the percentage of spores forming secondary hyphae upon interaction over spores forming an appressorium only.

For the Bgh–Arabidopsis interaction assays, the leaves were stored in Aniline blue staining solution (150 mM K₂HPO₄, 0.01% w/v Aniline blue; Sigma-Aldrich, Munich, Germany) in the dark overnight to stain callose, before Coomassie staining. These samples were analyzed by fluorescence microscopy with illumination by a UV lamp (bandpass 327-427 nm) and an emission filter for Aniline/DAPI at 417-477 nm.

Analysis of conidia shape. Conidia were collected from the surface of susceptible barley leaves at 7 dpi using transparent Scotch™ tape, which was then mounted onto a glass slide with 20 µL of tap water. Brightfield photographs were taken with the Keyence Biorevo BZ-9000 and BZII Viewer software (Keyence, Osaka, Japan) using the 10x magnification objective. Conidia shape (length and width, area, and perimeter) was determined using the ImageJ (https://imagej.nih.gov) function Analyze Particles.

Conidia germination assay. Conidia from 7-10-days-old powdery mildew colonies were blown onto 1% agar-agar Kobe I (Carl Roth, Karlsruhe, Germany). Conidia germination was assessed via brightfield microscopy at 6 hpi, scoring the percentage of spores that formed primary germ tubes and counting the number of germ tubes on germinated conidia.

Whole transcriptome shotgun sequencing analysis. Epiphytic fungal material was collected as described in (61) at 6 hpi (appressorium formation) and 18 hpi (early penetration). Whole transcriptome shotgun sequencing (RNA sequencing) was done by the service provider CeGaT (CeGaT, Tübingen, Germany), yielding 100-bp paired-end reads. Raw reads were trimmed using Trimmomatic v0.36 (62) and quality control of the reads was done with FastQC v0.11.5 (Babraham Bioinformatics, UK). HISAT2 (63) with ‘--max-intronlen 500 -k 1’ mapped the reads to the Bgh DH14 reference genome (13) and the H. vulgare reference transcriptome IBSC_PGSB_r1_HighConf
Kusch et al.

The SAM/BAM files were parsed with SAMtools v1.3.2 (64) and BEDtools v2.26.0 (65). Non-expressed genes were removed with a cutoff of FPKM < 1 in any sample. Differential expression analysis was performed via the limma-VOOM pipeline with cutoffs log-fold-change > 1 and \(P_{adj} < 0.05 \) (66). Differential expression of selected genes was verified by qRT-PCR, performed as in (61); primers are listed in Supplementary Table 12.

Quantitative real-time polymerase chain reaction (qRT-PCR). Detached barley leaves were placed on 1% agar-agar Kobe I (Carl Roth, Karlsruhe, Germany) plates containing 85 µM benzimidazole, and inoculated with \(Bgh \) isolates K1, SK1, SK2, and SK3, respectively. Epidermal peelings were collected at 0, 6, and 18 hpi in three biological replicates, and flash-frozen in liquid nitrogen. RNA extraction was performed using the TRIZol protocol (Invitrogen-Thermo Fisher, Waltham, MA, USA). RNA concentration was determined using Nanodrop 2000c (Thermo Fisher Scientific) and RNA integrity was assessed on a 2% agarose gel. Genomic DNA removal was done via Dnase I (RNase-free, Thermo Fisher Scientific). Complementary DNA (cDNA) was synthesized using the High-Capacity RNA-to-cDNA Kit (Applied Biosystems-Thermo Fisher) and stored at -20 °C until further use. qRT-PCR was performed using the Takyon No ROX SYBR MasterMix blue dTTP Kit (Eurigenece, Seraing, Belgium) and the LightCycler 480 II (Roche, Rotkreuz, Switzerland). 1:10-diluted cDNA was used as a template for qRT-PCR reactions. The PCR efficiency of all primers used in this study (Supplementary Table 11) was between 1.8 and 2.0 and the annealing temperature was set to 58 °C. Evaluation of expression levels of target genes in relation to the housekeeping gene \(Bgh\text{-}GAPDH \) (61) was performed using the \(\Delta \text{CT} \) method (67), calculated as \(2^{(-\Delta\text{CT(target)}-\Delta\text{CT(GAPDH)})} \). Each biological replicate was measured in technical triplicates.

Genome sequencing and analysis. High molecular weight genomic DNA from barley powdery mildew conidia was generated according to (68) with the modifications indicated in (13). DNA shotgun sequencing was performed using Illumina NovaSeq technology with 1 µg input DNA at the service provider CeGaT (CeGaT, Tübingen, Germany), yielding 150-bp paired-end reads. Long-read sequencing by MinION (Oxford Nanopore Technologies, Oxford, UK) technology and genome assembly of \(Bgh \) SK1 were done as in (13). Single Nucleotide Polymorphisms (SNPs), insertions, and deletions (indels) were detected with FreeBayes v1.3.1-dirty (69) and raw SNPs and indels were filtered using VCFTools v0.1.16 (70) and bcftools v1.9 (https://samtools.github.io/bcftools/bcftools.html) according to (19). We used SnpEff v4.3t (build 2017-11-24 10:18) (71) to identify SNPs and indels in genomic loci with predicted effects, and manually inspected candidate polymorphisms with Integrative Genomics Viewer (IGV) browser v2.6.2 (72). Genome mapping coverage was determined with BEDTools v2.26.0 (65). Gene losses and gene alleles were verified by \(Taq \) polymerase-based polymerase chain reaction (PCR) on genomic DNA; primers are listed in Supplementary Table 12.

Phylogenetic and functional analysis. Orthologues of *Aspergillus fumigatus* and *Bgh medA* were identified using BlastP (https://blast.ncbi.nlm.nih.gov/Blast.cgi) at E value < 1E-25. Protein alignments were done with ClustalW in MEGAX (73) and visualized using Jalview2 (74). The phylogenetic tree building was facilitated by Phylogeny Analysis at http://www.phylogeny.fr, with 100 bootstrap replications and otherwise default parameters. Functional predictions were done with InterProScan (https://www.ebi.ac.uk/interpro/), NCBI CDART (www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi), PROSITE (https://www.expasy.org/resources/prosite), and protein disorder by IUPRED3 (75). Protein structures were visualized with YASARA (http://www.yasara.org); structural comparison of BLGH_06723 was performed against E3 ubiquitin-protein ligase parkin of *Rattus norvegicus* (10.2210/pdbK95/pdb/ (76)).

Statistical analysis. The statistics program R v4.1.0 (77) (R foundation, www.r-project.org) was used for statistical analysis and plotting. Based on the nature of our data, which shows a non-normal distribution, unequal variance, and consists of small sample sizes (usually \(n = 5 \) independent replicates unless mentioned otherwise), statistical analyses were conducted by Generalized Linear Modeling (GLM) (78).

Data availability. All raw RNA and DNA sequencing data generated in this study are deposited at https://www.ebi.ac.uk/ena under project IDs PRJEB36770 (*Bgh* K1 (13)) and at https://www.ncbi.nlm.nih.gov/ena/sra under BioProject ID PRJNA639160. The draft genome assembly for *Bgh* SK1 has been deposited at DDBJ/ENA/GenBank under the accession JAJOCF00000000.

ACKNOWLEDGEMENTS

Seeds of the wheat cultivars used in this study were kindly provided by the late Patrick Schuewer (IPK Gatersleben, Germany) and Beat Keller (Zürich University, Switzerland). We thank Bernd Denecke (IKZ Aachen) for permitting access to the Illumina NextSeq sequencer and the Agilent Bioanalyzer platform. We acknowledge Alexander Vogel, Blanca Reiß, and Björn Usadel (RWTH Aachen University) for access to DNA quantification via Qubit. The analysis was performed with computing resources granted by RWTH Aachen University under project ID rwth0146. This study was supported by the RWTH Aachen Excellence Initiative [RWTH fellow grant to R.P.] and funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 274447795 [grant 861/11-1 awarded to R.P.] in the context of the DFG-funded priority program SPP1819 “Rapid evolutionary adaptation – potential and constraints”.

AUTHOR CONTRIBUTIONS

R.P. and S.K. designed the study; R.P., L.F., and S.K. were responsible for experiment conception. L.F. generated *Bgh* SK1, L.F. and M.B. *Bgh* SK2 and SK3, S.K., B.D.L., and K.D.W. performed the pathogen assays, H.W. conducted the alloxan assay. L.F. generated the samples for RNA-seq, S.K. analyzed the quantitative data and the RNA-seq data. S.K., L.F., and M.B. prepared high molecular weight genomic DNA of the *Bgh* strains. L.F., M.B., and S.K. performed genome assemblies, comparative genomics, and subsequent data analysis. F.K. sampled and isolated RNA for qRT-PCR, performed qRT-PCR, and cloned the primer to *Bgh* SK1 (13) and at https://www.ncbi.nlm.nih.gov/ena/sra under BioProject ID PRJNA639160. The draft genome assembly for *Bgh* SK1 has been deposited at DDBJ/ENA/GenBank under the accession JAJOCF00000000.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial and nonfinancial interests.
8..CompareTag()
Kusch et al. A fungal plant pathogen overcomes disease resistance by rapid gene loss

BioRxiv preprint doi: https://doi.org/10.1101/2021.12.09.471931; this version posted December 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Supplementary data

Supplementary Table 1. RNA-seq mapping statistics.
Supplementary Table 2. Differential expression analysis results of *Hordeum vulgare mlo-3* at 6 hpi with *Bgh* SK1 and K1.
Supplementary Table 3. Differential expression analysis results of *Hordeum vulgare mlo-3* at 18 hpi with *Bgh* SK1 and K1.
Supplementary Table 4. Annotations of differentially expressed genes in *Hordeum vulgare mlo-3* at 18 hpi.
Supplementary Table 5. Differential expression analysis results of *Bgh* SK1 compared to *Bgh* K1 on *Hordeum vulgare mlo-3* at 6 hpi.
Supplementary Table 6. Differential expression analysis results of *Bgh* SK1 compared to *Bgh* K1 on *Hordeum vulgare mlo-3* at 18 hpi.
Supplementary Table 7. Annotations of differentially expressed genes in *Bgh* SK1 at 18 hpi.
Supplementary Table 8. Whole genome shotgun DNA sequencing mapping statistics.
Supplementary Table 9. List of SNVs detected and manually inspected in K1, SK1, SK2, and SK3.
Supplementary Table 10. Genome assembly statistics for *Bgh* SK1 compared to publicly available *B. graminis* f.sp. *hordei* genome assemblies.
Supplementary Table 11. NCBI CDART results for the protein *BLGH_02703*.
Supplementary Table 12. List of oligonucleotides used in this study.