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Abstract 

The process of reprogramming patient samples to human induced pluripotent stem cells (iPSCs) 

is stochastic, asynchronous, and inefficient leading to a heterogeneous population of cells. Here, 

we track the reprogramming status of single patient-derived cells during reprogramming with 

label-free live-cell imaging of cellular metabolism and nuclear morphometry to identify high-

quality iPSCs. Erythroid progenitor cells (EPCs) isolated from human peripheral blood showed 

distinct patterns of autofluorescence lifetime for the reduced form of nicotinamide adenine 

dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) during 

reprogramming. Random forest models classified starting EPCs, partially-reprogrammed 

intermediate cells, and iPSCs with ~95% accuracy. Reprogramming trajectories resolved at the 

single cell level indicated significant reprogramming heterogeneity along different branches of cell 

state. This combination of micropatterning, autofluorescence imaging, and machine learning 

provides a unique non-destructive method to assess the quality of iPSCs in real-time for various 

applications in regenerative medicine, cell therapy biomanufacturing, and disease modeling.  

 

Introduction 

The derivation of patient-specific induced pluripotent stem cells (iPSCs) from their somatic cells 

via reprogramming generates a unique self-renewing cell source for disease modeling, drug 

discovery, toxicology, and personalized cell therapies1–3. These cells carry the genome of the 

patient, facilitating elucidation of the genetic causes of disease, and are immunologically matched 

to the patient, facilitating the engraftment of any cell therapies developed from these cells4–6.  

 With several clinical trials planned and underway7, there has been significant progress in 

developing iPSC-based cell therapies in recent years. However, several challenges remain in the 
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field8. First, the derivation of high-quality iPSCs must be efficient, rapid, and cost-effective to 

ensure that patients receive their treatments in a timely fashion for autologous iPSC-derived 

products. Second, iPSC-derived cell therapies for both allogeneic and autologous strategies require 

scalable and standardized manufacturing processes to overcome the inconsistencies arising from 

variability in human material sources, reagents, delivery of the reprogramming factors, 

microenvironmental fluctuations, or inherent stochasticity in epigenetic processes underpinning 

reprogramming9. Typical assays currently used for quality control of GMP (good manufacturing 

practices)-grade iPSCs include testing for cell line identity (STR analysis, SNP analysis, genomic 

sequencing), genomic instability (G-banding, chromosomal microarray, Nanostring technology), 

pluripotency (marker expression analysis via flow cytometry or immunochemistry, embryoid body 

analysis, teratoma assays, PluritestTM, TaqMan ScorecardTM Assay) and residual expression of 

reprogramming factors (PCR or immunochemistry)10–13. Each of these methods can be low-

throughput, labor-intensive, time-consuming, and require destructive processing.  

Using non-destructive strategies, recent studies have indicated that automated machine 

learning can be used to identify cell structures from label-free brightfield images that cannot be 

manually identified14–18. However, such automated methods to identify iPSCs based on cellular 

morphology have had limited success in the field19–21. Deep learning has recently been developed 

to analyze monoclonal cell cultures of iPSC22, however reprogramming cultures involve a higher 

number of cell fate transitions that have yet to be analyzed through deep learning pipelines. Hence, 

in complex cultures, like those in reprogramming, new standardized platforms with robust 

analytical methods for identifying high-quality iPSCs are still needed.  

 Our strategy to identify iPSCs and other cells during reprogramming exploits metabolic 

and nuclear changes during reprogramming. Somatic cells primarily utilize mitochondrial 
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oxidative phosphorylation (OXPHOS) to support cell proliferation23. However, pluripotent stem 

cells favor glycolysis, in a manner reminiscent of the Warburg effect in cancer cells23,24. During 

reprogramming, somatic cells thus undergo a metabolic shift from OXPHOS to glycolysis25,26, 

triggered by a transient OXPHOS burst, resulting in initiation and progression of reprogramming 

to iPSCs27–29. Recent evidence also indicates that this metabolic shift occurs prior to changes in 

gene expression and that the modulation of glycolytic metabolism or OXPHOS alters 

reprogramming efficiency24,30,31. High-resolution imaging of reprogramming cells has also 

identified that nuclear geometry is dramatically altered during reprogramming32–34. Therefore, 

simultaneous monitoring metabolic and nuclear changes during reprogramming could reveal 

insights into reprogramming and subsequent identification of iPSCs.  

Optical Metabolic Imaging (OMI), a non-invasive and label-free two-photon microscopy 

technique that provides dynamic measurements of cellular metabolism at a single-cell level. OMI 

is based on the endogenous fluorescence of metabolic coenzymes, NADH, and FAD35, which are 

both used across several cellular metabolic processes. NADH and NADPH have overlapping 

fluorescence properties and are collectively referred to as NAD(P)H36. The optical redox ratio, 

defined as the ratio of NAD(P)H intensity to total NAD(P)H and FAD intensity, provides a 

measure of the relative oxidation-reduction state of the cell [INAD(P)H/(INAD(P)H+IFAD)]37,38. 

Fluorescence lifetime imaging microscopy (FLIM) of NAD(P)H and FAD provides additional 

information specific to protein binding activity. The two-component decays of NAD(P)H and FAD 

measure the short (τ1) and long (τ2) fluorescence lifetimes that correspond to the free or bound 

states of these coenzymes39–41, along with fractional contributions of short (α1) and long (α2) 

lifetimes. Since NAD(P)H and FAD are found predominantly in the cytoplasm, the lack of 

fluorescence signal in images can also be used to identify cell borders and nuclei42. Thus, OMI 
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provides multiple readouts for cell metabolism and nuclear morphometry to track metabolic and 

nuclear changes of cells undergoing reprogramming. 

Here, we address some of the challenges associated with the biomanufacturing of iPSCs 

by developing a microcontact printed (µCP) platform34,43,44 to non-invasively monitor metabolic 

and nuclear changes over 22 days of reprogramming of human EPCs to iPSCs. With this study, 

we demonstrated that OMI is sensitive to the metabolic and nuclear differences during 

reprogramming, performed accurate classification of reprogramming status of cells using machine 

learning models, and subsequently built single-cell reprogramming trajectories45. Our label-free, 

non-destructive, rapid, scalable method to track reprogramming provides novel insights at the 

single cell level into human cell reprogramming and could enable the development of new 

technologies for biomanufacturing high-quality iPSCs.  

 

Results  

Metabolic imaging during reprogramming on patterned substrates 

We first designed a microcontact printed (µCP) substrate to spatially control the adhesion 

of EPCs undergoing reprogramming34,43,46. The µCP substrate is formed by coating 300µm radius 

circular regions, referred to as µFeatures, with Matrigel on a 35mm ibiTreat dish that allows for 

cell adhesion. The remaining regions of the dish are then backfilled with polycationic graft 

copolymer, PLL-g-PEG, that resists protein adsorption and prevents cell adhesion in these 

regions47,48 (Fig. S1a). The ibiTreat dishes are made of gas-permeable material, enabling 

maintenance of carbon dioxide or oxygen exchange during cell culture and have high optical 

quality. These properties make the dishes suitable for two-photon microscopy during 

reprogramming. To verify proper coating of the circular µFeature regions, we immunostained for 
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laminin, a major component of Matrigel49. Fluorescence imaging showed laminin consistently 

within the circular µFeatures indicating uniform patterning of Matrigel (Fig. 1a). We next assessed 

the ability of the µCP substrates to enable cell attachment by seeding two different cell types i.e., 

human dermal fibroblasts (HDFs) and H9 human embryonic stem cells (H9 ESCs). We observed 

that both HDFs and ESCs remained viable, attached, and confined to the circular µFeatures 

indicating that the µCP substrates enable spatial control of cell adhesion (Fig. S1b). 

Next, we isolated peripheral blood mononuclear cells (PBMCs) from peripheral blood of 

healthy human donors and further enriched them for EPCs prior to the delivery of reprogramming 

factors. We examined the enrichment of EPCs by flow cytometry with erythroid cell surface 

marker CD7150. Flow cytometry confirmed the presence of enriched EPCs with flow cytometry 

showing that >98% of the cells expressed CD71 on day 10 of PBMC culture (Fig. S1c).  

To initiate reprogramming, we electroporated the EPCs with four episomal reprogramming 

plasmids51,52 — encoding Oct4, shRNA knockdown of p53, Sox2, Klf4, L-Myc, Lin28, and 

miR302-367 cluster — and seeded them onto µCP substrates. We assessed the ability of the µCP 

substrates to sustain long-term reprogramming studies by performing high-content imaging to 

track individual µFeatures (>30 µFeatures per 35mm dish) longitudinally at multiple timepoints 

over the ~3-week of reprogramming. Day 22 was picked as the reprogramming endpoint because 

there were several iPSC colonies at this timepoint without significant outgrowth within a µFeature. 

While the starting EPCs are non-adherent, cells in the middle of reprogramming, termed 

intermediate cells (IMs), and endpoint iPSCs adhere to the circular µFeatures within the µCP 

substrates (Fig. 1a) indicating that µCP substrates can support the full reprogramming of EPCs. 

Overall, the µCP platform provides unique spatial control over reprogramming cells and enables 

high-content quantitative imaging of reprogramming. 
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Fig. 1. NAD(P)H and FAD autofluorescence imaging reveal metabolic differences during 

reprogramming. a) Left: Matrigel-coated μFeatures on the ibiTreat dish visualized with an anti-

laminin antibody (red) show good fidelity in the transfer from the Matrigel-coated PDMS mold. 

Scale bar, 100 µm. Right: Representative images of the progression of erythroid progenitor cells 

(EPCs) on a single circular µFeature (300 µm radius) through a reprogramming time course. b) 

Left: Image analysis pipeline to identify metabolic and nuclear parameters using ilastik and 

CellProfiler software. Right: Schematic representation of cell metabolism with NADH and FAD 

highlighted as the fluorescent molecules in the diagram, and molecules in bold indicate the net 

direction of the reaction. c) Representative optical redox ratio, NAD(P)H τm and FAD τm images 

(3 µFeatures selected from 36 µFeatures acquired from 3 different donors) for EPC, IM, and iPSC. 

Color bars are indicated on the right. Scale bar, 100 µm. d) Single-cell quantitative analysis of 

metabolic parameters: optical redox ratio, NAD(P)H τm, FAD τm, FAD α1; and nuclear parameters: 

area, perimeter, mean radius (n = 561, 990, 586 for EPC, IM, and iPSC respectively). Data are 

presented as median with interquartile range for each cell type. Statistical significance was 

determined by one-way analysis of variance (ANOVA) using the Kruskal-Wallis test for multiple 

comparisons; ns = p ≥0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p <0.0001.  

 

OMI reveals distinct metabolic changes during reprogramming 

Metabolic state plays an important role in regulating reprogramming and pluripotency of 

iPSCs53–57 and can be non-invasively monitored via OMI. NAD(P)H is an electron donor and FAD 

is an electron acceptor. Both are present in all cells as coenzymes and provide energy for metabolic 

reactions. For example, glycolysis in the cytoplasm generates NADH and pyruvate, while 

OXPHOS consumes NADH and produces FAD (Fig. 1a). Autofluorescence imaging of NAD(P)H 

and FAD is thus dynamically responsive to the oxidation-reduction state of a cell and is influenced 

by many reactions35,58. 

We tracked the autofluorescence dynamics of NAD(P)H and FAD by performing OMI on 

µCP substrates at different time points during EPC reprogramming. In these images, the nucleus 

remains dark as NAD(P)H is primarily located in cytosol and mitochondria, and FAD is primarily 

located in mitochondria. The NAD(P)H images were used as inputs for ilastik software59 to 

identify the nuclei. The identified nuclei were then used as an input for high-content CellProfiler 

software60 pipeline to segment the cytoplasm, and measure various metabolic and nuclear 
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parameters (Fig. 1b). Altogether, 11 metabolic parameters (NAD(P)H intensity, INAD(P)H; 

NAD(P)H α1; NAD(P)H τ1; NAD(P)H τ2; NAD(P)H mean lifetime, τm = α1τ1 + α2τ2, FAD intensity 

,IFAD; FAD α1; FAD τ1; FAD τ2; FAD τm; optical redox ratio, INAD(P)H / [INAD(P)H + IFAD]), and 8 

nuclear parameters34 (area; perimeter; mean radius, MeanRad; nuclear shape index, NSI; solidity; 

extent; number of neighbors, #Neigh; distance to closest neighbor, 1stNeigh) were measured by 

the analysis pipeline (Fig. S1d). By fixing the cultures at these time points, we verified the cell 

type by immunofluorescence labeling: EPCs (CD71+, Nanog-), IMs (CD71-, Nanog-), and iPSCs 

(CD71-, Nanog+). NAD(P)H and FAD autofluorescence imaging revealed metabolic differences 

between starting EPCs, intermediates (IM), and iPSCs (Fig. S2, S3).  

We observed a significant increase in the optical redox ratio (iPSC>IM>EPC) during 

reprogramming (Fig. 1c), indicating that individual erythroid progenitor cells are more oxidized 

than individual IMs and iPSCs (Fig. 1d). Additionally, we noted that patterned IMs and iPSCs 

have significantly higher optical redox ratios as compared to their non-patterned counterparts (Fig. 

S2k). This observation is consistent with previous studies which show that mechanical cues can 

regulate their relative use of glycolysis61–64. 

Next, we observed that NAD(P)H and FAD lifetime components undergo biphasic changes 

during the progress of reprogramming. For both phases, FAD lifetime components undergo a more 

significant change relative to the NAD(P)H components (Fig. 1d, Fig. S2a-j). On average, the 

fraction of protein-bound FAD (FAD α1) first decreases from its levels in EPCs to those in IMs 

and then increases during the IM to iPSC level, which could be reflective of the OXPHOS burst27–

29 (Fig. S2h). FAD τm (Fig. 1d) is inversely related to FAD α1 and therefore undergoes a biphasic 

change that is opposite to that of FAD α1. Similar biphasic changes occur in nuclear parameters 

during reprogramming, which is consistent with our previous study34 (Fig. 1e, Fig. S3).   
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We compared these measurements on cells undergoing reprogramming to established cell 

lines and primary cell populations. Both pluripotent stem cell lines — H9 ESCs and established 

iPSC lines — have similar metabolic and nuclear parameters, as expected. Fibroblasts from human 

donors (HDFs) had metabolic parameters significantly different from EPCs (Fig. S2). This could 

be because 1) fibroblasts are adherent while starting EPCs are non-adherent, 2) fibroblasts and 

EPCs have different proliferation rates and energy needs.  

Taken together, autofluorescence imaging of NAD(P)H and FAD revealed significant 

dynamic changes for various cell populations during reprogramming. 

 

OMI enables the classification of reprogramming cells with high accuracy 

To visualize cell states within the entire metabolic and nuclear morphometry dataset, 

Uniform Manifold Approximation and Projection (UMAP)65, a dimension reduction technique, 

was employed on the multi-dimensional measurements described above. Neighbors were defined 

through the Jaccard similarity coefficient computed across the metabolic parameters and nuclear 

parameters. UMAP was chosen over t-distributed stochastic neighbor embedding (t-SNE) since 

UMAP (Fig. 2a) yielded more distinct clusters for two different known cell types — EPCs and 

iPSCs — than t-SNE (Fig. S4a). Moreover, we found that UMAP on our dataset has a higher 

speed. In addition, UMAP can include non-metric distance functions while preserving the global 

structure of the data. 

  UMAP was next used on subsets of the entire dataset to investigate which measurements 

were leading to different cell states.  Distinct cell populations could be derived from datasets built 

exclusively from the 11 metabolic parameters (Fig. 2b) and datasets built exclusively from the 8 

nuclear parameters (Fig. 2c). While these UMAP representations revealed some distinct clusters 
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of EPCs, IMs, and iPSCs; UMAP generated using both metabolic and nuclear parameters provided 

less overlap of cell clusters among EPCs, IMs, and iPSCs (Fig. 2a). We also plotted a heatmap 

representation of the z-score of metabolic and nuclear parameters at the donor level (each row is 

the mean data of a single donor and cell type) to examine heterogeneity arising from individual 

donors (Fig. S4b). Despite donor-to-donor heterogeneity, EPCs and iPSCs could be distinguished 

based on a combination of 11 metabolic and 8 nuclear parameters. 

Next, classification models were developed based on 11 metabolic and 8 nuclear parameters to 

predict the reprogramming status of cells, i.e., EPCs, IMs, or iPSCs. Supervised machine learning 

classification (Naïve Bayes, K-nearest neighbor) and regression algorithms (logistic regression, 

and random forest)66 were implemented to test the prediction accuracy for iPSCs when all the 

metabolic and nuclear parameters are used. To protect against over-fitting, various classification 

methods were trained using 15-fold cross-validation on single-cell data from three different donors 

with reprogramming status assigned from morphological characteristics. Further, we tested the 

various classification methods on data collected from CD71 and Nanog immunofluorescence 

staining with the same cells from three donors (completely independent and non-overlapping 

observations). Receiver operator characteristic (ROC; One-vs-Rest) curves of the test data 

revealed highest classification accuracy for predicting iPSCs (area under the curve, AUC = 0.993), 

IMs (AUC = 0.993) and EPCs (AUC = 0.999) when a random forest classification model is used 

(Fig. 2d, Fig. S4c,d). We thus used the random forest classification model for further analysis in 

this study.  
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Fig. 2.  Optical metabolic imaging enables the classification of cells based on their 

reprogramming status. Uniform Manifold Approximation and Projection (UMAP) 

dimensionality reduction was performed on a) all 11 metabolic and 8 nuclear parameters, b) only 

11 metabolic parameters, and c) only 8 nuclear parameters for each cell, projected onto 2D space 

and enables separation of different cell types (EPC, IM, and iPSC). Each color corresponds to a 

different cell type. Data are from three different donors. Each dot represents a single cell, and n 

=561, 990, and 586 cells for EPC, IM, and iPSC, respectively. d) Model performance of the 

different classifiers (random forest, simple logistic, k-nearest neighbor (IBk), naïve bayes) for 

iPSCs was evaluated by receiver operating characteristic (ROC) curves using all 11 metabolic and 

8 nuclear parameters. The area under the curve (AUC) is provided for each classifier as indicated 

in the legend.  e) Parameter weights for random forest classification of EPCs, IMs, and iPSCs 

using the gain ratio method. Analysis was performed at a single-cell level using three different 

donors. f) Classification accuracy with respect to number of parameters was evaluated based on 

the gain ratio parameter selection with the random forest model (parameters added from highest 

to lowest gain ratio in panel e. The number of parameters included in the random forest model is 

indicated on the x-axis. g) Model performance of the random forest classifier for iPSCs was 

evaluated by ROC curves using different metabolic and nuclear parameter combinations as 

labeled. AUC is provided for each parameter combination as indicated in the legend. h) Imaging 
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time (left y-axis) and accuracy score (right y-axis) evaluation of the random forest classifier for 

different metabolic and nuclear parameter combinations as labeled.  

 

Gain ratio analysis on the decision tree within this random forest model revealed that FAD 

lifetime components, FAD α1, FAD τ1, and FAD τm, are the most important parameters for 

classifying the reprogramming status of cells (Fig. 2e). This result is consistent with the 

observation that FAD lifetime components are significantly different among EPCs, IMs, and iPSCs 

(Fig. 1, Fig. S2). We then plotted the accuracy score as a function of the number of parameters 

(chosen based on the gain ratio values for random forest classifier) used for classification. This 

plot revealed that the accuracy score increases with the number of parameters until 8 parameters 

and plateaus thereafter (Fig. 2f). Notably, high classification accuracy can be achieved for 

predicting iPSCs (area under the curve AUC = 0.944), IMs (AUC = 0.968) and EPCs (AUC = 

0.987) when using only FAD lifetime variables (FAD τm, τ1, τ2, α1; collected in the FAD channel 

alone) (Fig. 2g, Fig. S4e,f). Using only FAD lifetime parameters ensures minimal imaging time 

of 2.5 min per µFeature (Fig. 2h), and no additional reliance on intensity parameters which are 

associated with higher variability due to the confounding factors of intensity levels (e.g., 

throughput due to laser power, detector gain). Hence, FAD lifetime parameters alone are sufficient 

to predict the reprogramming status of cells.  

 

Pseudotemporal ordering of single cells resolves cellular transitions 

By sampling a process over a time course, single-cell profiles can be used to order cells 

along a “pseudotemporal” continuum; a method that has helped resolve cellular transitions during 

development45,67. Here we used 11 metabolic and 8 nuclear parameters to construct pseudotime 

single-cell trajectories of cellular reprogramming using the Monocle3 algorithm68,69. Monocle3 is 
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a trajectory inference method that learns combinatorial changes that each cell must go through as 

a part of a process and subsequently places each cell at its inferred location in the trajectory. The 

inferred pseudotime trajectories built on our entire dataset consisted of EPCs, IMs, and iPSCs 

distributed across 10 clusters, 4 branching events, and a disconnected branch (Fig. 3a-c). The 

primary trajectory colored by pseudotime and actual reprogramming time points showed ordering 

from EPCs to IMs to iPSCs as expected (Fig. 3b, Fig. S5a).  

Trajectory inference indicated that the starting EPCs were heterogeneous and occupied 

three clusters (Fig. 3c; clusters: 1, 2, 3). While cluster 2 consists of starting EPCs that undergo 

reprogramming, clusters 1 and 3 constituted the disconnected branch with EPCs that were not 

permissive to reprogramming. iPSCs predominantly occupied two clusters (clusters: 7, 10) 

irrespective of the reprogramming timepoint, while IMs belonged to several clusters (clusters: 4, 

5, 6, 8, 9) with clusters 6 and 8 concentrated at the unsuccessful reprogramming branches (Fig. 

3c). Overall, these various trajectories provide a detailed map of several cases of reprogramming 

heterogeneity within human cells. For example, cells that advance right at branch points 1, 2, and 

3 (Fig. 3a,b) completely reprogram to iPSCs within 25 days of reprogramming initiation while 

cells that proceed left at branch points 1 and 3 (Fig. 3a,b) remain at the intermediate stage.  

Subsequent heatmap analysis (Fig. 3d) on the clusters in the single-cell reprogramming 

trajectory map revealed that the clusters exhibited correlation patterns based on their 

reprogramming status i.e., EPCs (clusters: 2) have a high correlation to early IMs (cluster: 4), while 

late IMs (clusters: 5,6,8,9) demonstrate high correlation to iPSCs (clusters: 7) (Fig. 3d). When we 

compared IMs that undergo reprogramming (cluster: 9) and the IMs that do not reprogram to iPSCs 

(cluster: 6), we noted differences in their NAD(P)H lifetime components, indicating that these 

parameters might play a role in determining reprogramming cell fate. To further examine the 
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parameters that distinguished the cell clusters, we performed spatial correlation analysis using 

Moran’s I70, which is a statistic that reports whether cells at nearby positions on a trajectory will 

have similar (or dissimilar) expression levels for a given parameter (Fig. S5b). When the 

parameters were ranked by Moran’s I, FAD lifetime parameters (FAD τ1, τ2, τm) were most 

important in distinguishing clusters followed by NAD(P)H lifetime parameters [NAD(P)H τ2, α1, 

τ1], in agreement with expression level maps (Fig. S5c-h). This result is consistent with high gain 

ratio values for FAD lifetime parameters (Fig. 2e) and the observation FAD lifetime parameters 

are significantly different among EPCs, IMs, and iPSCs (Fig. 1d).  

While FAD parameters are important in distinguishing EPCs, IMs, and iPSCs, NAD(P)H 

parameters are key for determining the eventual reprogramming fate of cells. When we plotted the 

identified important metabolic parameters as a function of pseudotime, we observed that they 

undergo biphasic changes during reprogramming that could be representative of the OXPHOS 

burst (Fig. 3e-j). These pseudotime trajectories complement the UMAP visualizations (Fig. 2a-c) 

by providing higher temporal resolution of changes occurring during reprogramming.  
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Fig. 3. Inference of single-cell reprogramming trajectories reveals heterogeneity during 

reprogramming. Trajectory analysis of reprogramming EPCs constructed from the metabolic and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471827doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471827
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                             17 

 

nuclear parameters based on UMAP dimension reduction using Monocle3 revealed four branch 

points, colored by a) cell type and b) pseudotime. c) Monocle UMAP plots showing clustering of 

reprogramming EPCs. Samples were grouped into 10 clusters. Cells colored by cluster. d) 

Heatmap representing the metabolic and nuclear parameters of 10 clusters. Each column is a 

separate cell group based on the generated clusters and each row represents a single metabolic or 

nuclear parameter. Z-score = (𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑟𝑜𝑤)/σ𝑟𝑜𝑤, where μobserved is the mean value of each 

parameter for each cell; μrow is the mean value of each parameter for all cells together, and σrow is 

the standard deviation of each parameter across all cells. Dot plots indicating the expression of e) 

FAD τ1, f) FAD α1, g) FAD τm, h) NAD(P)H τ2, i) NAD(P)H α1 and, j) NAD(P)H τ2 along the 

pseudotime. Smooth lines are composed of multiple dots representing the mean expression level 

at each pseudotime, regardless of the cell type. Four branch points are labeled on the smooth lines.  

 

Isolation of high-quality iPSCs 

While visualizing reprogramming heterogeneity at a high temporal resolution and single-

cell resolution with our methods can be insightful, the terminal goal of any reprogramming 

platform is to successfully isolate iPSCs that can be used for downstream applications. As proof-

of-concept, we used a combination of OMI, µCP platform, and machine learning models 

developed in this study to isolate high-quality iPSCs (Fig. 4). First, we tracked the metabolic and 

nuclear parameters of µFeatures throughout the reprogramming time course using OMI (Fig. 4a). 

Second, we employed our random forest classification model to predict the reprogramming status 

of the tracked µFeatures (Fig. 4b). Third, we inferred the pseudotimes during the reprogramming 

time course to monitor the progress of the µFeatures along the reprogramming trajectory (Fig. 4c). 

Finally, we performed immunostaining on the µFeatures, which showed that the reprogramming 

status predictions made by the machine learning models correlated well with the actual staining 

(Fig. 4d).  
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Fig. 4. Optical metabolic imaging of µFeatures aids in the identification and isolation of iPSC 

populations. a) Representative optical redox ratio images of a single µFeature at different days 
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through the reprogramming time course. Color bar is indicated on the right. Scale bar, 100 µm. b) 

Stacked column bar graph showing the variation in distribution of cell types during reprogramming 

as predicted by random forest classifier using all metabolic and nuclear parameters. The color of 

the bar corresponds to the cell type and the height of the bar represents the percentage of cell types. 

c) Violin plots showing the distribution of reprogramming pseudotime of single cells within a 

µFeature as a function of the actual reprogramming timepoint. Dashed lines indicate median and 

dotted lines indicate the interquartile range. Statistical significance was determined by one-way 

analysis of variance (ANOVA) using the Kruskal-Wallis test for multiple comparisons; ns = p 

≥0.05, * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p <0.0001). d) Representative 

images of cell subpopulations on µFeatures at different days through the reprogramming time 

course, stained using antibodies against Hoechst (blue), TRA-1-60 (white), Nanog (green), and 

CD71 (magenta). Scale bar, 100 µm.  e) Representative image of iPSC colony isolated from a 

µFeature, stained with Hoechst (nuclear dye), TRA-1-60, and Nanog (pluripotency markers). Scale 

bar, 50 µm. f) iPSCs derived from µCP substrates show normal karyotype suggesting that no major 

chromosome abnormality was present within the cells after reprogramming. 

 

 We then isolated iPSCs from the µCP culture platform based on the predictions made by 

the random forest classification model. The physical separation of micropatterns from one another, 

combined with a high fraction of predicted iPSCs, even up to 100% throughout the µFeature, 

resulted in easy picking and isolation of completely reprogrammed iPSCs. We further confirmed 

that the isolated iPSCs expressed pluripotency markers (Fig. 4e) and showed no genomic 

abnormalities (Fig. 4f), indicating that our reprogramming platform can be used to generate 

genetically-stable iPSC lines.  

 

Discussion  

Here, we report a non-invasive, high-throughput, quantitative, and label-free imaging platform to 

predict the reprogramming outcome of EPCs by combining micropatterning, live-cell 

autofluorescence imaging, and automated machine learning. We can predict the reprogramming 

status of EPCs at any timepoint during reprogramming with a prediction accuracy of ~95% and 

model performance of ~0.99 (AUC of ROC) using a random forest classification model with 11 

metabolic parameters and 8 nuclear parameters (Fig. 2g, Fig. S4c-f). Additionally, we provide a 
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single cell roadmap of EPC reprogramming, which reveals diverse cell fate trajectories of 

individual reprogramming cells (Fig. 3).  

Recent evidence indicates that metabolic changes during reprogramming include 

decreasing OXPHOS and increasing glycolysis26,71, along with a transient hyper-energetic 

metabolic state, called OXPHOS burst. This OXPHOS burst occurs at an early stage of 

reprogramming and shows characteristics of both high OXPHOS and high glycolysis, which could 

be a regulatory cue for the overall shift of reprogramming28,29,72,73. These changes are accompanied 

by alterations in the amounts of corresponding metabolites and have been confirmed by genome-

wide analyses of gene expression, protein levels, and metabolomic profiling74–77. The shifts in 

cellular metabolism affect enzymes that control epigenetic configuration78, which can impact 

chromatin reorganization and provide a basis for changes in nuclear morphology as well as gene 

expression during reprogramming 34,79–82. Consistent with these studies, the redox ratio increases 

during reprogramming (Fig. 1d), which could be indicative of increased glycolysis during 

reprogramming83.  

The changes in NAD(P)H and FAD lifetime parameters that occur during reprogramming 

(Fig. 1, Fig. S2) could reflect changes in quencher concentrations, such as oxygen, tyrosine, or 

tryptophan, or changes in local temperature and pH35,84,85. Specifically, the biphasic changes in the 

metabolic and nuclear parameters could due to the increased production of ROS by 

mitochondria35,58,86,87 during the OXPHOS burst. The generated ROS further serves as a signal to 

activate Nuclear Factor (erythroid derived 2)-like-2 (NRF-2), which then induces hypoxia-

inducible factors (HIFs) that promote glycolysis during reprogramming by increasing the 

expression levels of the glycolysis-related genes25,73,76.  
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Moreover, the importance of FAD parameters for distinguishing various reprogramming 

cell types (Fig. 1d, Fig. 2e) could point to the significant changes in the mitochondrial environment 

during reprogramming. The differences in NAD(P)H lifetime parameters among IMs that 

successfully undergo reprogramming and the ones that do not (Fig. 3d), may suggest the role for 

NAD(P)H in impacting reprogramming barriers.  

The classification analysis revealed that models trained on all 11 metabolic and 8 nuclear 

parameters yielded the highest accuracy for the classification of reprogramming status of cells. 

Random forest classification using only FAD lifetime parameters yielded comparatively high ROC 

AUC values (Fig. 2g, Fig. S4e,f). Additionally, FAD lifetime parameters were more accurate for 

predicting reprogramming status than using nuclear parameters alone, which can be obtained using 

widefield or confocal fluorescence microscopy. Imaging only FAD lifetime parameters instead of 

imaging all the parameters significantly reduced the time of imaging from 7 min to 2.5 min per 

µFeature (Fig. 2h). This is especially helpful when assessing multiple µFeatures for iPSC quality 

at a manufacturing scale, and lifetime measurements benefit from fewer confounding factors and 

less variability compared with intensity measurements.  

Our single-cell reprogramming trajectory maps based on metabolic and nuclear parameters 

(Fig. 3) could indicate that the reprogramming process proceeds by a combination of elite and 

stochastic models88. While a fraction of starting EPCs are refractory towards reprogramming 

supporting the elite model of reprogramming89, there is also a fraction of intermediate cells at 

various stages of reprogramming that do not completely reprogram to iPSCs corroborating the 

stochastic model of reprogramming90.   

Much of the current work to understand the heterogeneity during reprogramming relies on 

bulk analysis91–94 or single-cell analysis95–103 techniques. While bulk samples obscure variability 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471827doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471827
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                             22 

 

in both the starting cell population and during fate conversion, owing to the variable kinetics and 

low efficiency of reprogramming; single-cell techniques disrupt the cells’ microenvironment, 

resulting in significant changes in the biophysical properties of cells undergoing reprogramming. 

Our methods overcome these challenges with the combination of a µCP culture platform, OMI, 

and machine learning. Firstly, the µCP platform ensures an intact microenvironment for 

reprogramming cells while enabling single-cell analysis. Secondly, OMI provides single-cell 

measurements non-destructively to assess the influence of neighboring cells and provides high 

temporal resolution for time-course studies of reprogramming. Finally, machine learning with 

trajectory inference is applied here to a new type of cellular measurement, single cell metabolism. 

These methods excel in analyzing time course data containing asynchronous processes within cells 

— as seen in prior studies with flow cytometry and gene expression data68,75,101,102,104. Machine 

learning here overcomes the problems of reprogramming trajectories built based on absolute time 

points that disregard the asynchrony of the reprogramming process. Overall, these methods could 

aid in the identification of somatic cells or early reprogramming cells that are refractory towards 

reprogramming and thus increase the success rate of iPSC generation from patient-derived primary 

cells or cell lines.  

These methods could be adapted for industrial-scale, GMP-compliant manufacturing 

system. First, the µCP platform involves direct ECM printing onto optically clear substrates (Fig. 

S1a) and does not involve any gold coating, unlike traditional microcontact printing methods105,106. 

Therefore, the µCP platform is cost-effective and relatively simple because it does not require 

cleanroom access. Second, we isolated fully pluripotent iPSCs without any genomic abnormalities 

(Fig. 4f) using this µCP platform. The use of EPCs with episomal reprogramming plasmids are 

likely to generate genetically-stable iPSCs devoid of reprogramming factors, as based on prior 
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studies with EPCs107,108 and episomal plasmids52,109110,111. Plus, our µCP platform is xeno-free and 

feeder-free to eliminate the reprogramming inconsistencies arising from the undefined nature of 

xeno-components of other reprogramming culture systems. Third, the autofluorescence imaging 

technique is label-free, unlike other common methods to study metabolism such as electron 

microscopy, immunocytochemistry, and colorimetric metabolic assays. Autofluorescence imaging 

provides non-destructive real-time monitoring of live cells with lower sample phototoxicity 

compared to single-photon excitation112. Taken together, the processes of µCP platform 

fabrication, reprogramming, cell culture, autofluorescence imaging, iPSC identification based on 

machine learning models and iPSC isolation can all be automated and extended to different 

reprogramming methods113 (e.g., mRNA, Sendai virus), to other starting cell types (e.g., 

fibroblasts, keratinocytes), to other parameters (e.g., cell morphology19–21, mitochondrial 

structure71,77,114), and to other processes (e.g., differentiation115–118). 

Some of the limitations of our current approach include two-dimensional imaging, culture 

duration, and per-µFeature image analysis. First, comprehensive three-dimensional imaging of 

each µFeature could provide maps at higher resolution to further dissect the metabolic and nuclear 

changes occurring throughout the entire depth of the reprogramming cultures. Second, there is a 

limited duration of culture before cells overgrow within the µFeature. This could also result in cell 

detachment from the µFeature, which is difficult to image with OMI. For the reprogramming 

experiments described here, circular features with 300 µm radius have been used for ~25 days of 

culture, although the cell seeding density or micropatterned geometry34,43,105 could be easily 

changed.  Finally, imaging analysis was performed at different reprogramming timepoints on a 

per-µFeature basis. However, tracking single cells within the µFeature during reprogramming 
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using cell tracking algorithms119  could provide deeper insights into metabolic and nuclear changes 

during reprogramming.  

Overall, we developed a high-throughput, non-invasive, rapid, and quantitative method to 

predict the reprogramming status of cells and study reprogramming heterogeneity. Our studies 

indicate that OMI can predict the reprogramming status of cells, which could enable real-time 

monitoring during iPSC manufacturing, thereby aiding in the identification of high-quality iPSCs 

in a timely and cost-effective manner. Similar technologies could impact other areas of cell 

manufacturing such as direct reprogramming, differentiation115, and cell line development.  

 

Materials and Methods 

EPC isolation and cell culture 

EPCs were isolated from fresh peripheral human blood that was obtained from healthy donors 

(Interstate Blood Bank, Memphis, TN). Blood was processed within 24 hours of collection, where 

hematopoietic progenitor cells were extracted from whole blood using negative selection 

(RosetteSep; STEMCELL Technologies) and cultured in polystyrene tissue culture plates in 

erythroid expansion medium (STEMCELL Technologies) for 10 days to enrich for EPCs. 

Enriched EPCs from Day 10 were examined by staining with APC Anti-Human CD71 antibody 

(334107; Biolegend; 1:100) and incubating for 1 hour at room temperature. Data were collected 

on Attune Nxt flow cytometer and analyzed with FlowJo.  

 

Micropattern Design and PDMS stamp production 

First, a template with the feature designs was created in AutoCAD (Autodesk). The template was 

then sent to the Advance Reproductions Corporation, MA for the fabrication of a photomask, and 
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a 6-inch patterned Si wafer was fabricated by the Microtechnology Core, University of Wisconsin-

Madison, WI120. Using soft photolithography techniques, the Si wafer was spin-coated with a SU-

8 negative photoresist (MICRO CHEM) and exposed to UV light. The Si mold was then developed 

for 45 minutes in SU-8 developer (Sigma) which yielded features with a height of 150 μm. The Si 

mold was then washed with acetone and isopropyl alcohol.  

Elastomeric stamps used for microcontact printing were generated by standard soft lithographic 

techniques. The silicon mold was rendered inert by overnight exposure in vapors of (tridecafluoro-

1, 1, 2, 2-tetrahydrooctyl) trichlorosilane. Poly-dimethylsiloxane (Sylgard 184 silicone elastomer 

base, 3097366-1004, Dow Corning; PDMS) was prepared at a ratio of 1:10 curing agent (Sylgard 

184 silicone elastomer curing agent, 3097358-1004, Dow Corning) and degassed in a vacuum for 

30 minutes. The PDMS was then poured over the SU-8 silicon mold on a hot plate and baked at 

60°C overnight to create the PDMS stamp.  

 

µCP Well Plate construction 

Microcontact patterned (µCP) substrates were constructed based on previous studies47,48,121. In 

brief, polydimethylsiloxane (PDMS) stamps with 300 µm radius circular features were coated with 

Matrigel (WiCell Research Institute) for 24 h. After 24 h, the Matrigel-coated PDMS stamp was 

dried with N2 and placed onto 35 mm cell culture treated ibiTreat dishes (81156; Ibidi). A 50 g 

weight was added on top of the PDMS stamps to ensure even pattern transfer from the Matrigel-

coated PDMS stamp to the ibiTreat dish. This setup was incubated for 2 h at 37°C. The 35 mm 

ibiTreat dish was then backfilled with PLL (20 kDa)-g-(3.5)-PEG (2 kDa) (Susos), a graft 

polymer solution in with a 20 kDa PLL backbone with 2 kDa PEG side chains, and a grafting ratio 

of 3.5 (mean PLL monomer units per PEG side chain), by using 0.1 mg/mL solution in 10 mM 
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HEPES buffer for 30 min at RT. The ibiTreat dish was then washed with PBS and exposed to 

UV light for 15 min for sterilization to yield the micropatterned substrate.  

 

Reprogramming  

Day 10 EPCs were electroporated with four episomal reprogramming plasmids encoding Oct4, 

shRNA knockdown of p53 (#27077; Addgene); Sox2, Klf4 (#27078; Addgene); L-Myc, Lin28 

(#27080; Addgene); miR302-367 cluster (#98748; Addgene), using the P3 Primary Cell 4D-

Nucleofector Kit (Lonza) and the EO-100 program51,52. Electroporated EPCs were seeded onto 

micropatterned substrates with erythroid expansion medium (STEMCELL Technologies) at a 

seeding density of 2000k cells/dish. Cells were supplemented with ReproTeSR (STEMCELL 

Technologies) on alternate days starting from Day 3 without removing any medium from the well. 

On Day 9, the medium was entirely switched to ReproTeSR, and the ReproTeSR medium was 

changed daily starting from Day 10.  

 

Isolation of iPSCs 

To isolate high-quality iPSC lines, candidate colonies were picked from micropatterns using a 200 

µL micropipette tip and transferred to Matrigel-coated polystyrene tissue culture plates in mTeSR1 

media (WiCell Research Institute). If additional purification was required, one additional manual 

picking step with a 200 µL micropipette tip was performed. During picking and subsequent 

passaging, the culture media was often supplemented with the Rho kinase inhibitor Y-27632 

(Sigma-Aldrich) at a 10 µM concentration to encourage cell survival and establish clonal lines. 

iPSCs obtained from EPCs were maintained in mTeSR1 media on Matrigel-coated polystyrene 
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tissue culture plates and passaged with ReLeSR (STEMCELL Technologies) every 3-5 days. All 

cells were maintained at 37ºC and 5% CO2.  

 

Antibodies and Staining 

All cells were fixed for 15 minutes with 4% paraformaldehyde in PBS (Sigma-Aldrich) and 

permeabilized with 0.5% Triton-X (Sigma-Aldrich) for >4 hours at room temperature before 

staining. Hoechst (H1399; Thermo Fisher Scientific, Waltham, MA) was used at 5 µg/mL with 15 

min incubation at room temperature to stain nuclei. Primary antibodies were applied overnight at 

4°C in a blocking buffer of 5% donkey serum (Sigma-Aldrich) at the following concentrations: 

Anti-Laminin (L9393; Sigma-Alrich) 1:500; TRA-1-60 (MAB4360; EMD Millipore, Burlington, 

MA) 1:100; Nanog (AF1997; R&D Systems) 1:200; CD71 (334107; Biolegend) 1:100. Secondary 

antibodies were obtained from Thermo Fisher Scientific and applied in a blocking buffer of 5% 

donkey serum for one hour at room temperature at concentrations of 1:400 – 1:800. A Nikon 

Eclipse Ti epifluorescence microscope was used to acquire single 10x images of each 

micropattern, and a Nikon AR1 confocal microscope was used to acquire 60x stitched images of 

each micropattern using the z-plane closest to the micropatterned substrate for reprogramming 

studies. 

 

Autofluorescence imaging of NAD(P)H and FAD 

Fluorescence lifetime imaging (FLIM) was performed at different time points during 

reprogramming by an Ultima two-photon microscope (Bruker) composed of an ultrafast tunable 

excitation laser source (Insight DS+, Spectra-Physics) coupled to a Nikon Ti-E inverted 

microscope with time-correlated single-photon counting electronics (SPC-150, Becker & Hickl). 
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The laser source enables sequential excitation of NAD(P)H at 750 nm and FAD at 890 nm. 

NAD(P)H and FAD images were acquired through 440/80 nm and 550/100 nm bandpass filters 

(Chroma), respectively, using Gallium arsenide phosphide (GaAsP) photomultiplier tubes (PMTs; 

H7422, Hamamatsu). The laser power at the sample was approximately 3.5 mW for NAD(P)H and 

6 mW for FAD. Lifetime imaging using time-correlated single-photon counting electronics (SPC-

150, Becker & Hickl) was performed within Prairie View Atlas Mosaic Imaging (Bruker 

Fluorescence Microscopy) to capture the entire µFeature. Fluorescence lifetime decays with 512-

time bins were acquired across 512 × 512-pixel images with a pixel dwell time of 4.8 μs and an 

integration period of 60 seconds. Photon count rates were ~1-5 x 105 and monitored during image 

acquisition to ensure that no photobleaching occurred. All samples were placed on a stage-op 

incubator and illuminated through a 40×/1.15 NA objective (Nikon). The short lifetime of red-

blood-cell fluorescence at 890 nm was used as the instrument response function and had a full-

width half maximum of 240 ps. A YG fluorescent bead (τ = 2.13 ± 0.03 ns, n= 6) was imaged daily 

as a fluorescence lifetime standard35,122.  

 

Image analysis 

Fluorescence lifetime decays were analyzed to extract fluorescence lifetime components via 

SPCImage software (Becker & Hickl). A threshold was used to exclude pixels with low 

fluorescence signals (that is, background). A bin of 3x3 pixels was used to maintain spatial 

resolution, the fluorescence lifetime decay curve was convolved with the instrument response 

function and fit to a two-component exponential decay model, I(t) = α1e
-t/τ

1 + α2e
-t/τ

2
 + C, where 

I(t) is the fluorescence intensity as a function of time t after the laser pulse, α1 and α2 are the 

fractional contributions of the short and long lifetime components, respectively (that is, α1 + α2 = 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471827doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471827
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                             29 

 

1), τ1 and τ2 are the short and long lifetime components, respectively, and C accounts for 

background light. Both NAD(P)H and FAD can exist in quenched (short lifetime) and unquenched 

(long lifetime) configurations39,40; the fluorescence decays of NAD(P)H and FAD are therefore fit 

to two components. Fluorescence intensity images were generated by integrating photon counts 

over the per-pixel fluorescence decays. 

Images were analyzed at the single-cell level to evaluate cellular heterogeneity123. 

A pixel classifier was trained on 15 images using ilastik59 software to identify the pixels within the 

nuclei in NAD(P)H images. An object classifier was then used to identify the nuclei in NAD(P)H 

images using the pixel classifier along with the following parameters: Method = Simple, Threshold 

= 0.3, Smooth = 1, Size Filter Min = 15 pixels, Size Filter Max = 500 pixels. A customized 

CellProfiler60 pipeline was then used to obtain metabolic and nuclear parameters. The CellProfiler 

pipeline applied the following steps: Primary objects (nuclei) were inputted from ilastik. 

Secondary objects (cells) were then identified in the NAD(P)H intensity image by outward 

propagation of the primary objects. Cytoplasm masks were determined by subtracting the nucleus 

mask from the cell mask. Cytoplasm masks were applied to all images to determine single-cell 

redox ratio and NAD(P)H and FAD lifetime parameters. A total of 11 metabolic parameters were 

analyzed for each cell cytoplasm (Fig. S1d): NAD(P)H intensity (INAD(P)H), NAD(P)H α1, 

NAD(P)H τ1, NAD(P)H τ2, NAD(P)H mean lifetime (τm = α1τ1 + α2τ2), FAD intensity (IFAD), FAD 

α1, FAD τ1, FAD τ2, FAD τm, optical redox ratio [INAD(P)H / (INAD(P)H + IFAD)]. A total of 8 nuclear 

parameters were analyzed for each nucleus: area, perimeter, mean radius (MeanRad), nuclear 

shape index (NSI), solidity, extent, number of neighbors (#Neigh), distance to closest neighbor 

(1stNeigh).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471827doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471827
http://creativecommons.org/licenses/by-nc-nd/4.0/


                                                                                                                                             30 

 

Representative images of the optical redox ratio, NAD(P)H τm and FAD τm were computed using 

the Fiji software.  

 

UMAP Clustering 

Clustering of cells across EPCs, IMs, and iPSCs was represented using Uniform Manifold 

Approximation and Projection (UMAP). UMAP dimensionality reduction65 was implemented 

using R on all 11 OMI parameters (optical redox ratio, NAD(P)H τm, τ1, τ2, α1, α2; FAD τm, τ1, τ2, 

α1, α2) and/or all 8 nuclear parameters (Area, Perimeter, MeanRad, NSI, Solidity, Extent, #Neigh, 

1stNeigh) for projection in 2D space. The following parameters were used for UMAP 

visualizations: “n _neighbors”: 20; “min_dist”: 0.3, “metric”: Jaccard, “n_components”: 2.  

 

Z-score hierarchical clustering 

Z-score of each metabolic and nuclear parameter for each cell was calculated. Z-score = 

(𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑟𝑜𝑤)/σ𝑟𝑜𝑤, where μobserved is the mean value of each parameter for each cell; μrow is the 

mean value of each parameter for all cells together, and σrow is the standard deviation of each 

parameter across all cells. Heatmaps of z-scores for all OMI variables were generated to visualize 

differences in each parameter between different cells. Dendrograms show clustering based on the 

similarity of average Euclidean distances across all variable z-scores. Heatmaps and associated 

dendrograms were generated in Python.  

 

Classification methods  

Random forest, Simple Logistic, k-nearest neighbor (IBk), and naïve bayes classification methods 

were trained to classify reprogramming cells into EPCs, IMs, and iPSCs using Weka software124. 
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All data were randomly partitioned into training and test datasets using 15-fold cross-validation 

for training and test proportions of 93.3% (1994 cells) and 6.7% (143 cells), respectively. Each 

model was replicated 100 times; new training and test data were generated before each iteration. 

Parameter weights for metabolic and nuclear parameters were extracted using the 

GainRatioAttributeEval function in Weka to determine the contribution of each variable to the 

trained classification models.  One-vs-Rest receiver operating characteristic (ROC) curves were 

generated to evaluate the classification model performance on the classification of test set data and 

are the average of 100 iterations of data that was randomly selected from training and test sets. All 

of the ROC curves displayed were constructed from the test datasets using the model generated 

from the training data sets.  

 

Karyotyping 

Cells cultured for at least 5 passages were grown to 60-80% confluence and shipped for karyotype 

analysis to WiCell Research Institute, Madison, WI. G-banded karyotyping was performed using 

standard cytogenetic protocols125. Metaphase preparations were digitally captured with Applied 

Spectral Imaging software and hardware. For each cell line, 20 GTL-banded metaphases were 

counted, of which a minimum of 5 was analyzed and karyotyped. Results were reported in 

accordance with guidelines established by the International System for Cytogenetic Nomenclature 

2016126. 

 

Statistics 

p-values were calculated using the non-parametric Kruskal-Wallis test for multiple unmatched 

comparisons with GraphPad Prism software. Statistical tests were deemed significant at α≤0.05. 
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Technical replicates are defined as distinct µFeatures within an experiment. Biological replicates 

are experiments performed with different donors. No a priori power calculations were performed. 
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