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Supplementary Figure 1. Venn diagram of gene lists linked to type 2 diabetes by different
types of evidence. KM = KinderMiner, a text-mining tool. SKiM - Serial KinderMiner, a
literature-based discovery system.



Heterozygosity spectrum of the Nile rat
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Supplementary Figure 2. Heterozygosity inferred by comparing the paternal and maternal
scaffolded contigs, shown on the paternal scaffolds. From inner ring, the plots show density
of heterozygous SNV, indels up to 50 bases, and finally insertion and deletion structural variants
(= 50 bases). The outer rim shows translocations.
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Supplementary Figure 3. Length distributions of structural variants. A. Indels. B. Other
structural variants.

Functional classification of duplicated genes.
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Supplementary Figure 4. Functional classification of duplicated genes. Genes are
classified by name according to large categories of gene function, immune (MHC),
Mitochondrial, Olfactory, Predicted, and Zinc-finger. The remaining category (Other) represents
multi-copy genes not part of large gene families.
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Supplementary Figure 5. A portion of a multiple alignment of the two Nile rat Gekr proteins to
113 mammalian orthologs displayed in JalView. The second copy of Nile rat Gcekr is in the top
row, canonical Nile rat Gekr in the second row, followed by human, rat, mouse, and other
mammals. Positions 459 and 460 of the alignment correspond to T109 and S110 of the human
protein. These constitute a part of the F1P binding site, with T109 involved in polar contacts with
hydroxyl substituents of fructopyranose and S110 forming a hydrogen bond with a terminal
phosphate oxygen (Pautsch et al. 2013). The predicted sequence of the second putative Nile rat
Gckr retrieved from Ensembl has different residues in these positions and their immediate
vicinity.
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Supplementary Figure 6. Hadh. TOGA failed to find a functional Hadh gene in the primary
assembly but did find it in the alternate assembly. A. Hadh gene in the mouse has 8 exons. B. A
putative Hadh gene predicted by RefSeq in Nile rat primary haplotype assembly has only 3



exons. It has been disrupted by a gap in the assembly, which can be seen within the second
intron. This gene is not supported by any Iso-seq transcripts. C. A full length Iso-seq transcript
containing 8 exons and expressed in both brain and testis maps to the alternate haplotype
assembly. This indicates haplotype variation and emphasizes the importance of analyzing both
haplotypes.
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Supplementary Figure 7. Orm2. A. Orm gene cluster in house mouse visualized in NCBI
Genome Data Viewer. The cluster contains 3 protein coding genes and 1 pseudogene. B. Nile
rat has only one Orm gene. C. A whole genome alignment of mouse genome vs. Nile rat shows
the presence of a 4-fold duplication of the Orm region in the mouse genome.

GO enrichment analysis of 1601 Nile rat-specific genes

A gene set enrichment analysis of the 1601 genes that do not overlap TOGA projections from
house mouse on the NaviGO server (Wei et al. 2017) revealed that several of the most highly
enriched GO terms were linked to protein biosynthesis (supplementary data:
https://osf.io/fh62m/). Of the top 20 statistically significant terms, the most specific protein
biosynthesis-related term was G0:0022625, cytosolic large ribosomal subunit (supplementary
figure NRnotMouseTop20GOTerms). Examination of several genes linked to this GO term
revealed that these are retrogenes derived from ribosomal proteins such as L19, L21, and L23.
All of these exist in multiple copies in the Nile rat genome. Multiple copies of retrogenes derived
from ribosomal proteins have been known to exist in many other species of mammals (Dharia et
al. 2014)

Overview
. . 2. Virus
1. Translation and ribosome
G0:0019538 GO:0003735 - ™
protein metabolic 50:003¢ |
oces structural R
225 genes el
cel ide /
3 metahol ic process | —
1 2 2 212 genes G0:1901566
e :
(/s](=k te | : =
P B ;
{ ~ G0:0043232 er
\ v X intracellular non- L J
ded
G0:0043604 G0:0006518
(] \ amide biosynthetic peptide metabolic
\| f7\ orocess process
\ \ 213 g 217 genes = N
\ \ 02
Vo \ / ;
BEE = S| \ \\ \ /
\
| v
=a] 5] \ R N
S 4= ‘\\ \
= =] \o |\
\/,J G0:0006412
1 translation G0:0022625
218 genes cytosolic large
ribosomal subunit
B 115 genes
]



https://paperpile.com/c/bLk7c5/Dqol
https://osf.io/fh62m/
https://paperpile.com/c/bLk7c5/Crsgt
https://paperpile.com/c/bLk7c5/Crsgt

Supplementary Figure 8. Top 20 GO terms overrepresented in Nile rat genes that do not
overlap TOGA projections from the house mouse. Overview of the 20 terms in the context of
the GO hierarchy is shown on the left. The terms are grouped into 3 broad categories: 1.
Translation and ribosome, 2. Virus, and 3. Host. Hierarchical relationships between terms in
each category are shown on the right. The number of genes annotated with each term is shown
in the corresponding box.
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Supplementary Figure 9. Hmga1b. A. Mouse Hmga1b gene visualized in the UCSC genome
browser. Hmga1b is a likely retrogene, as it lacks introns. Additionally, this gene is not present in
the Norway rat. B. Hmga1b gene insertion in mouse relative to Nile rat. A whole genome
alignment of Nile rat genome vs. mouse in the vicinity of the mouse Hmga1b locus (highlighted).
The mouse Hmga1b locus does not align to the Nile rat genome, while the surrounding region
aligns to chromosome 6.
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Supplementary Figure 10. G6pd2. A. Mouse G6pd2 gene visualized in the UCSC genome
browser. G6pd2 is a likely retrogene, as it lacks introns. Additionally, this gene is not present in
the Norway rat. B. G6pd2 gene insertion in mouse relative to Nile rat. A whole genome
alignment of Nile rat genome vs. mouse in the vicinity of the mouse G6pd2 locus (highlighted).
The mouse G6pd2 locus aligns to the G6pd locus on Nile rat chromosome X, while the
surrounding region aligns to chromosome 7. Mouse G6pd is likewise located on chromosome X
and is the likely parent of the G6pd2 retrogene.

Manual modifications of haplotype assemblies for heterozygous
variation detection

Having several scaffolds not anchored to chromosomes can result in overestimating overall
heterozygosity and the number of structural variations. To minimize this effect, we manually
modified the haplotype assemblies using a Mummer (Margais et al. 2018) alignment. Only
unanchored scaffolds longer than 500 kb, with alignment similarity over 98% and aligned blocks
longer than 10 kb were used in this analysis. We applied the following three rules: 1) when
maternal and paternal assemblies had a different orientation, the maternal assembly was


https://paperpile.com/c/bLk7c5/09wO

reversed; 2) when small scaffolds of maternal (or paternal) assembly uniquely mapped to
existing chromosomes of paternal (or maternal) and had no overlap with other mapped
scaffolds, these small scaffolds were linked to existing ones with the insertion of 1000 bp gaps;
3) in more complicated cases, especially for those scaffolds that had overlaps with others, the
overlapped regions were carefully trimmed as shown in (Supplemental Figure 9). This resulted
in an improved version of haplotype assemblies, described by an AGP (“AGP Specification
v2.1” n.d.) file available from https://osf.io/v4ypz/.
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Supplementary Figure 11. Schematic diagram of trimming alignment. A and c can
potentially link unplaced scaffolds, but b and d are not likely to be the right placements.

Comparison of the mouse segmental duplications computed by
our workflow to prior work

To gauge how our SD annotations compare with existing ones, we compared our mm10
annotations using the sedef software with those from the UCSC genome browser generated
using the software WGAC (Bailey et al. 2004). The unfiltered sedef annotations cover 149 Mb of
sequence, or 5.4% of the genome, compared to 215 Mb of sequence (7.9%) by WGAC, with the
majority of the difference accounted for by the Y-chromosome annotations where 69.5 Mb of
additional SD are annotated by WGAC. On other chromosomes, there are roughly 20 Mb of
duplicated sequences annotated by each method individually indicating that our approach
mostly replicates the existing annotations of SD sequence on autosomal chromosomes.

The comparison of SD annotations for the long-read assembly of the C57BL strain of house
mouse and mm10 illustrates the differences of SD resolution between the whole-genome
shotgun (C57BL) assembly, and manually curated mm10 assembly. A total of 204 Mb of
sequence is annotated as SD in the C57BL assembly, though the distribution of percent identity
of duplications is shifted lower in C57BL (Figure 1a). Furthermore, the average length of SD
annotated in C57BL is lower than mm10 (5.6 kb versus 8.4 kb), indicating that long-read
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sequencing assemblies may contain shorter repetitive DNA that is not removed by masking
approaches and annotated as SD. When measuring gene duplication using gene multi-mapping
and read depth, a similar number of duplicated genes are observed in the mm10 and C57BL
(Figure 1b), indicating that the difference in total bases annotated as duplication may be
accounted for by repeat masking or alignment artifacts.

Positively selected single amino-acid substitutions in Xiap

Xiap 122 G>A substitution appears to be unique among rodents. However, this residue is not
well-conserved across mammalian genomes. Xiap 135T is conserved in 149 mammals, but Nile
rat has 135 T>P, and four other mammals have N, |, or S. Notably, S, T, and N are all amino
acids with polar uncharged side chains, but P is a nonpolar cyclic amino acid. Human variants
have not been reported in residue 135, but nearby disease variants exist in positions 130, 145,
and 152 (UniProt). Finally, Xiap 190Y is conserved in all mammals except African woodland
thicket rat, Jamaican fruit bat, and Nile rat with Y>F substitution. The African woodland thicket
rat is closely related to the Nile rat (Steppan and Schenk 2017). Although no human variant has
been reported at position 190, there are nearby disease variants at positions 188 and 189
(Karczewski et al. 2020).
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