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Plant life-history strategies are constrained by cost-benefit trade-offs that determine6

plant form and function. However, despite recent advances in the understanding of7

trade-offs for vegetative and physiological traits, little is known about plant repro-8

ductive economics and how they constrain plant life-history strategies and shape9

interactions with floral visitors. Here, we investigate plant reproductive trade-offs10

and how these drive interactions with floral visitors using a dataset of 17 reproduc-11

tive traits for 1,506 plant species from 28 plant-pollinator studies across 18 countries.12

We tested whether a plant’s reproductive strategy predicts its interactions with floral13

visitors and if the different reproductive traits predict the plant’s role within the14

pollination network. We found that over half of all plant reproductive trait variation15

was explained by two independent axes that encompassed plant form and func-16

tion. Specifically, the first axis indicated the presence of a trade-off between flower17

number and flower size, while the second axis indicated a pollinator dependency18

trade-off. Plant reproductive trade-offs helped explain partly the presence or absence19

of interactions with floral visitors, but not differences in visitation rate. However,20

we did find important differences in the interaction level among floral visitor guilds21

on the different axes of trait variation. Finally, we found that plant size and floral22

rewards were the most important traits in the understanding of the plant species23

network role. Our results highlight the importance of plant reproductive trade-offs24

in determining plant life-history strategies and plant-pollinator interactions in a25

global context.26
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Despite the astonishing diversity of floral structures among flowering plants1,2 and their33

importance in shaping plant-pollinator interactions3,4, a unified framework that ex-34

plores plant reproductive trade-offs is currently lacking5. In addition, macroecological35

studies that investigate plant reproductive traits are scarce6–9 and consequently, there is36

poor understanding of how reproductive traits drive interactions with floral visitors at37

large scales10–13. Linking the plant’s position in trait-space with the different pollinator38
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groups could help to improve our understanding of plant-pollinator associations14. Fur-39

ther, there is increasing interest in understanding drivers of plant-pollinator interactions40

using trait-based approaches3,15 and trait-matching analyses16,17. However, despite41

the generalist nature of most plant-pollinator interactions18,19, reproductive traits have42

been overlooked beyond highly specialised pollination systems4. Overall, it is unclear43

how specific plant reproductive biology traits shape plant-pollinator interactions20,21.44

Species can optimise their fitness through various life-history traits, yet trade-offs45

among those traits constrain the range of potential strategies that a species can use.46

With the recent availability of large trait databases (e.g., TRY22 and COMPADRE23),47

plant ecological strategies are being increasingly examined, and are facilitating the48

identification of global patterns and constraints in plant form and function12,24–26.49

However, most studies have focused on vegetative traits such as leaf27, wood28, or50

root29 trade-offs with little or no attention given to reproductive traits5,30 which are51

critical to plant life strategies that shape interactions with pollinators and ultimately52

determine plant reproductive success. For instance, short lived versus perennial species53

tend to have low versus high levels of outcrossing, respectively,9,31 and outcrossing54

levels are positively correlated with flower size32. In addition, the presence of costly55

rewards (e.g., pollen or nectar) and showy flowers or floral displays can only be56

understood through consideration of plant species’ reliance upon animal pollination57

(pollinator dependence) and its role in attracting pollinators33,34. However, it is still58

unknown to what extent these different reproductive compromises determine plant-59

pollinator interactions.60

Several studies have identified links between plant traits and plant-pollinator network61

properties35–37. Moreover, plant traits can define species’ network roles (e.g., specialists62

vs generalists)20,38. For example, plant species that occupy reproductive trait space63

extremes are more likely to exhibit higher levels of specialisation and be more reliant64

on the trait-matching with pollinators39,40. Morphological matching between plant65

and floral visitors often determines plant-pollinator interactions, and can thus strongly66

influence interaction network structure16,41. Remarkably, the combination of traits67
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have shown to increase the predictive power of the network interactions42. Therefore,68

considering the different plant reproductive trade-offs which represent the species69

reproductive strategy within the network14 could progress our understanding of plant-70

pollinator interactions. Further, we know little if those patterns generally studied at the71

community level are representative of wider macroecological scales.72

Here, we aim to explore the potential trade-offs among reproductive traits and how73

these influence plant-pollinator interactions. First, we identify the major axes of repro-74

ductive trait variation and trade-offs that determine plant form and function. Second,75

we investigate how plant species’ position in trait-space influence interactions with76

floral visitors. Finally, we investigate how both the main axes of trait variation, and77

individual traits, influence plant species’ roles within networks using a set of comple-78

mentary interaction network metrics (i.e., interaction strength, normalized degree and79

specialization).80

RESULTS81

Plant strategies. The phylogenetically informed principal component analysis (pPCA)82

captured by the first two and three axes 51.8% and 70.97% of trait variation, respectively83

(Fig. 1 and Supplementary Fig. S5) and had a phylogenetic correlation (λ) of 0.76. The84

first principal component (PC1) represented 26.72% of the trait variation and indicated85

a trade-off between flower number and flower size. We refer to this axis as the ‘flower86

number - flower size trade-off’, as already described in previous studies43,44. Hence,87

one end of the spectrum comprised species with high investment in flower number and88

plant height but small flower size, short style length and low ovule number. The other89

end of this spectrum comprised species that were short in height and invested in large90

flowers, long styles, many ovules, but few flowers. The main contributing traits to PC191

were plant height, flower number, ovule number and flower size (loadings > |0.5|;92

Supplementary Table S3) but style length also contributed moderately to PC1 (loading =93

-0.33). The second principal component (PC2) represented 25.05% of the trait variation94

3

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471959
http://creativecommons.org/licenses/by/4.0/


and indicated a trade-off between low and high pollinator dependence. We refer to95

this axis as the ‘pollinator dependence trade-off’. The main driver of trait variation on96

PC2 was autonomous selfing (loading = 0.85) but the other traits (except ovule number)97

also made moderate contributions (loadings from 0.27 to 0.4; Supplementary Table S3).98

We found that high pollinator dependence was associated with larger and a higher99

number of flowers, greater plant height and longer styles. In contrast, species with high100

levels of autonomous selfing tended to have fewer and smaller flowers, had shorter101

styles and were shorter in height. Further, PC3 explained a considerable amount of trait102

variability (19.17%) and the main contributors to this axis were style length (loading103

= -0.66) and the degree of autonomous selfing (loading = -0.51). The remaining traits,104

apart from ovule number, were moderately correlated to changes on PC3 (loadings105

from -0.23 to -0.46; Supplementary Table S3). Thus, because style length was correlated106

with all traits on PC3 and was the main driver of trait variation, we refer to this axis107

as the ‘style length trade-off’. Further, the pPCA with the subset of species that had108

nectar and pollen quantity data showed that nectar quantity (microlitres of nectar per109

flower) was positively associated with flower size, style length and ovule number (PC1,110

23.40%); and pollen quantity (pollen grains per flower) was positively correlated with111

flower number and plant height and negatively associated with autonomous selfing112

(PC2, 21.67%; Supplementary Fig. S6). This pPCA explained similar variance with the113

first two principal components (45.07%) and similar associations of traits despite some114

variability in the loadings (Supplementary Table S4).115
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Fig. 1 | Plant life-history strategies. Phylogenetically informed principal component
analysis (pPCA) of 1,236 plant species from 28 plant-pollinator network studies. The
solid arrows indicate the direction of the different quantitative traits (flower number,
plant height, style length, flower size, ovule number and level of autonomous selfing)
across the two main axes of trait variation. The length of the arrows indicate the weight
of the variables on each principal component and the dashed lines show the opposed
direction of trait variation. The icons at both ends of arrows and dashed lines illustrate
the extreme form of the trait continuum.

We found that most categorical traits were statistically associated with the first two axes116

of trait variation (Fig. 2 and Supplementary Table S2). Flower symmetry, which was117

only associated with PC2 (Sum of squares = 8.51, F-value = 14.72, P < 0.01 ), and nectar118

provision, which was independent of PC1 and PC2 (PC1: Sum of squares = 0.37, F-value119
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= 0.29 , P = 0.59; PC2: Sum of squares = 0.83, F-value = 1.43, P = 0.23) showed lack of120

statistical association. In addition, we found (with a Tukey test) statistical differences121

between the different levels of categorical traits in the trait space (Supplementary Fig.122

S7). Regarding self compatibility, we found larger differences on PC2 (i.e., species123

with unisexual flowers that were self incompatible were statistically differentiated from124

species with partial or full self compatibility; Supplementary Fig. S7a and Fig. S7b). Life125

forms differed statistically across both axes of trait variation and followed a gradient126

of larger life forms (trees and shrubs) with higher pollinator dependence to smaller127

ones (herbs) with lower pollinator dependence (Supplementary Fig. S7c and Fig. S7d).128

Consequently, lifespan also followed this gradient but perennial and short lived species129

only differed statistically on PC2 (Supplementary Fig. S7e and Fig. S7f). Species with130

unisexual flowers (monoecious and dioecious) were clustered on both extremes of131

the first two principal components and had the highest pollinator dependence and132

highest number of flowers (Supplementary Fig. S7g and Fig. S7h). Moreover, we133

found that the campanulate and capitulum flower shapes were differentiated from tube,134

papilionaceous, open and brush shapes in the trait space. The former morphologies135

had larger flowers and greater pollinator dependence, while the latter had higher136

flower number and greater autonomous selfing (Supplementary Fig. S7i and Fig. S7j).137

Regarding flower symmetry, zygomorphic flowers were associated with lower levels of138

pollinator dependence, whereas actinomorphic flowers had higher levels of pollinator139

dependence (Supplementary Fig. S7k and Fig. S7l).140
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Fig. 2 | Location of the different qualitative traits on the trait space. The panel is composed by the traits that showed statistical
association with the first two axes of trait variation: compatibility system (a), life form (b), lifespan (c), breeding system (d), flower
shape (e) and flower symmetry (f).
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Phylogenetic signal of traits. We found a strong phylogenetic signal (P < 0.01) in141

all quantitative traits (Supplementary Table S5). The traits that showed the highest142

phylogenetic signal were ovule number (λ = 1), pollen grains per flower (λ = 1) and143

plant height (λ = 0.96), followed by flower length (λ = 0.75), flower width (λ = 0.73),144

number of flowers per plant (λ = 0.69) and nectar concentration (λ = 0.65). The traits145

that showed a moderate phylogenetic signal were inflorescence width (λ = 0.57), style146

length (λ = 0.49) and autonomous selfing (λ = 0.34). Finally, microliters of nectar per147

flower showed the lowest phylogenetic signal of all traits (λ = 0.14).148

Visitation patterns. The main axes of trait variation explained partly presence-absence149

interactions between plant and floral visitors (conditional R2 = 0.26; marginal R2 =150

0.20) but little of the overall visitation rates (conditional R2 = 0.31; marginal R2 = 0.06).151

However, we found relevant trends across the different floral visitor guilds on both152

presence-absence and visitation interactions (Fig. 3). On the pollinator dependence153

trade-off, all floral visitor guilds interacted more frequently with plant species with154

higher pollinator dependence (PC2; Fig. 3b and Fig. 3e). For presence-absence in-155

teractions we found that all Diptera, Coleoptera and non-bee-Hymenoptera guilds156

interacted more frequently with plants with high flower number and small flowers157

(flower number - flower size trade-off, PC1; Fig. 3a) but bees and Lepidoptera interacted158

slightly more frequently with plant species with low flower number but large flowers.159

For presence-absence interactions on PC3 (style length trade-off; Fig. 3c), we found160

that bees interacted clearly more with plant species with long styles and high selfing161

and the rest of the guilds interacted slightly more with plant species with short styles162

and low selfing. In addition, all guilds other than Syrphids and Lepidoptera (i.e., all163

Hymenoptera, non-syrphid-Diptera and Coleoptera) showed greater visitation rates on164

species with small numerous flowers (PC1; Fig. 3d). On the style length trade-off, bees,165

Lepidoptera and non-bee-Hymenoptera showed greater visitation rates on plant species166

with larger styles and higher levels of selfing; while syrphids, non-syrphid-Diptera167

and Coleoptera showed higher visitation rates on species with shorter styles and lower168

selfing (Fig. 3f).169

8

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.09.471959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.09.471959
http://creativecommons.org/licenses/by/4.0/


The additional model for both presence-absence of interactions (marginal R2 = 0.29;170

conditional R2 = 0.19) and visitation rate (marginal R2 = 0.30; conditional R2 = 0.03)171

for the most represented families of bees showed that the family Apidae was the main172

driver of the observed patterns. The contrasting differences between presence-absence173

and visitation rate for bees on PC1 (Fig. 3a and Fig. 3d) were driven by the family174

Andrenidae, which interacted more frequently on presence-absence interactions with175

plant species with low number of large flowers (Supplementary Fig. S8).176
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Fig. 3 | Interaction (yes/no) and visitation rates across the three main axes of trait variation per floral visitor guild. Fitted posterior
estimates of the presence/absence of interaction (a, b and c) and number of visits (d, e and f) made by the different floral visitors guilds
in relation to PC1, PC2 and PC3. PC1 represents the flower number - flower size trade-off, PC2 represents the pollinator dependence
trade-off and PC3, the style length trade-off. For visualization purposes, due to large differences between the visitation rates of bees
and the rest of guilds, the number of visits was log-transformed (Y-axis of lower panel).

10

.
C

C
-B

Y
 4.0 International license

perpetuity. It is m
ade available under a

preprint (w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in 

T
he copyright holder for this

this version posted D
ecem

ber 10, 2021. 
; 

https://doi.org/10.1101/2021.12.09.471959
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2021.12.09.471959
http://creativecommons.org/licenses/by/4.0/


Plant species functional roles. The variance of the different plant species-level network177

metrics was poorly explained by the three main axes of trait variation (Supplementary178

Fig. S9; interaction frequency ~ PCs, conditional R2 = 0.11, marginal R2 = 0.02; normal-179

ized degree ~ PCs, conditional R2 = 0.24, marginal R2 = 0.02; and, specialization ~ PCs,180

conditional R2 = 0.37, marginalR2 = 0.03). Overall, the most notable trends were found181

on PC1 and PC3 for interaction frequency and specialization. On the flower number182

- flower size trade-off (PC1), interaction frequency was higher for plant species with183

more flowers but was lower for plant species with larger flowers (Supplementary Fig.184

S9a). On PC1, specialization showed the opposite trend (Supplementary Fig. S9g). On185

the style length trade-off (PC3), interaction frequency was lower for plants with shorter186

styles and lower autonomous selfing and higher for species with longer styles and187

higher autonomous selfing (Supplementary Fig. S9c). Again, specialization showed the188

opposite trend to interaction frequency (Supplementary Fig. S9i).189

When we further investigated the combination of traits that drive plant network roles,190

we found that the regression tree for visitation frequency was best explained by plant191

height, nectar concentration and style length (Fig. 4a). Specifically, species taller than192

3.9m had the highest interaction frequency, while species that were shorter than 3.9m193

and had a nectar concentration lower than 16% had the lowest interaction frequency.194

Normalized degree was best explained by nectar concentration, pollen grains per195

flower, plant height, flower width and autonomous selfing (Fig. 4b). Species with a196

nectar concentration over 49% had the highest levels of normalized degree, whereas197

species with nectar concentration lower than 49%, more than 21,000 pollen grains198

per flower and height less than 0.78m had the lowest normalized degree. Finally,199

specialization was best explained by plant height, ovule number, pollen grains per200

flower and autonomous selfing (Fig. 4c). Overall, plant species with the highest201

specialization were shorter than 1.3m, had more than 14,000 pollen grains per flower202

and autonomously self-pollinated less than 11% of their fruits. In contrast, species203

taller or equal than 5.1m and with lower than 14 ovules per flower had the lowest204

specialization values.205
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Fig. 4 | Contribution of traits in plant’s network roles. Regression tree analysis of interaction frequency (log-transformed), normalized
degree and specialization for the subset of species with quantitative data for pollen and nectar traits. The superior value inside the
node indicates the mean value of the different species-level metric and the lower value, the percentage of species that are considered in
each node. Thus, the top node has the mean value of the named trait for the 100% of species. Each node has a yes/no question and
when the condition is fulfilled, the branch turns to the ‘yes’ direction and when not, to the ‘no’ direction. This rationale is followed in
all the regression trees as indicated in the first branch division of the topmost node of each tree.
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DISCUSSION206

This study demonstrates that plant species exhibit clear trade-offs among their vegeta-207

tive and reproductive traits and that these trade-offs determine interactions with floral208

visitors. These trade-offs are differentiated along three axes of trait variation: (i) flower209

number - flower size, (ii) pollinator dependence and (iii) style length. These reproduc-210

tive trade-offs helped partly explain the presence of floral visitor interactions, but not211

their visitation rates. However, floral visitor guilds formed distinct relationships with212

the main axes of trait variation. Moreover, we found that the plant species functional213

roles within pollination networks were best explained by plant size and floral reward214

related traits.215

Over half of all plant trait variation was captured by the flower number - flower size and216

pollinator dependence trade-offs. Trait variation on these two axes was associated with217

the ‘fast-slow continuum’ in plant12 and animal45 life-history strategies, as indicated218

by the different floral and reproductive biology traits associated with plant height,219

life form and lifespan. The ‘slow’ part of this continuum (i.e., tall trees and shrubs)220

included plant species with many flowers, few ovules, higher pollinator dependence,221

frequent occurrence of self-incompatibility and more complex breeding systems (e.g.,222

monoecious and dioecious species). In contrast, plant species that employed the ‘fast’223

strategy (i.e., short herbs), had fewer flowers, more ovules, frequent occurrence of self-224

compatibility and lower pollinator dependence. Further, on the first two axes of trait225

variation, we found additional support for the previously described positive association226

between higher outcrossing rate and larger floral display32. The positive correlation227

between larger floral display and higher pollinator dependence in our dataset further228

confirmed this trend (see Supplementary Fig. S10).229

Despite the low predictive power of the main trait variation axes for broad-level230

interaction patterns (presence-absence of interactions and visitation rate), we found231

changes in the interaction patterns among and within floral visitor guilds across these232
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axes that suggest plant life-history strategies influence plant-pollinator interactions. For233

example, all floral visitor guilds visited plant species with higher pollinator dependence234

more frequently, and high pollinator dependence was associated with large floral235

displays and greater pollen quantities (Fig. 1 and Supplementary Fig. S6). This trend236

is consistent with previous studies that show plant species with higher reproductive237

investment tend to be visited by pollinators more frequently38,46,47. In regard to the238

flower number - flower size and style length trade-offs, different pollinator guilds239

showed contrasting visitation rates across the continuum of trait variation, which could240

be associated with different pollination syndromes at a macroecological scale. For241

instance, bees and syrphid flies were clearly associated with opposing life-strategies242

on PC1 and PC3 (Fig. 3) suggesting possible niche partitioning48,49 between these243

two guilds. However, despite floral rewards not being included in the main analysis244

because there was insufficient data available, floral reward related traits were among245

the best at characterising species functional roles (Fig. 4). More detailed exploration of246

reproductive trade-offs in conjunction with floral rewards is needed to help elucidate247

plant-pollinator associations. In any case, it is worth noting that other local factors such248

as species relative abundances, surely explain part of the observed variability17,50,51
249

that reproductive trade-offs do not.250

To conclude, we provide the first description of plant reproductive trade-offs using a251

large global dataset of plant traits. We identified the major reproductive strategies of252

flowering plants and how these strategies influence interactions with different floral253

visitor guilds. Although the explained variation that we found in the first two axes254

is lower than previous studies of vegetative traits24,26 it is consistent with the largest255

and most recent study that has characterised plant life strategies with vegetative and256

reproductive traits12. Future work needs to integrate the reproductive compromises257

that we have identified with vegetative and physiological trade-offs to create a more258

comprehensive spectrum of plant trait variation. Further, the varying level of phyloge-259

netic signal among traits deserves further attention to understand evolutionary changes260

on mating and flower morphology in response to pollinators52,53. Finally, including261
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plant-pollinator networks from unrepresented areas of the world and a more complete262

description of plant reproductive trade-offs is essential for a better understanding of263

the global patterns in plant-pollinator interactions.264

MATERIALS AND METHODS265

Plant-pollinator network studies. We selected 28 studies from 18 different countries266

that constituted a total of 64 plant-pollinator networks. These studies recorded plant-267

pollinator interactions in natural systems and were selected so that we had broad268

geographical representation. Although these studies differ in sampling effort and269

methodology, all studies provided information about plant-pollinator interactions270

(weighted and non-weighted), which we used to build a database of plant species that271

are likely to be animal pollinated. Many of these networks are freely available either272

as published studies54–56 or available in online archives (e.g., The Web of Life55 and273

Mangal57). In total, our network dataset (see Supplementary Table S1) constituted 60274

weighted (interaction frequency) and 4 unweighted (presence/absence of the interac-275

tion) networks, each sampled at a unique location and year, as well as eight meta-webs276

where interactions were pooled across several locations and multiple years.277

Taxonomy of plants and pollinators. All species names, genera, families and orders278

were retrieved and standardized from the taxonomy data sources NCBI (https://279

www.ncbi.nlm.nih.gov/taxonomy) for plants and ITIS (https://www.itis.gov/)280

for pollinators, using the R package taxize58 version 0.9.99. We filled the ‘not found’281

searches manually using http://www.theplantlist.org/ and http://www.mobot.org/282

for plants and http://www.catalogueoflife.org/ for floral visitors.283

Functional traits. We selected 20 different functional traits based on their relevance to284

plant reproduction and data availability (Table 1). These included twelve quantitative285

and eight categorical traits belonging to three broader trait groupings (13 floral, 4286

reproductive biology and 3 vegetative, Supplementary Information). For each plant287

species, we undertook an extensive literature and online search across a wide range of288
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Table 1 | Quantitative and categorical traits used in this study.

Quantitative traits Categorical traits

Type Traits Type Traits Categories

Vegetative Plant height (m) Vegetative Lifepan Short-lived
Perennial

Floral Flower width (mm) Vegetative Life form
Herb
Shrub
Tree

Floral Flower length (mm) Floral Flower shape

Brush
Campanulate
Capitulum
Open
Papilionaceous
Tube

Floral Inflorescence width (mm) Floral Flower symmetry Actinomorphic
Zygomorphic

Floral Style length (mm) Floral Nectar Presence
Absence

Floral Ovules per flower Reproductive
biology Autonomous selfing

None
Low
Medium
High

Floral Flowers per plant Reproductive
biology Compatibility system

Self-incomp.
Part. self-comp.
Self-comp.

Floral Nectar (µl) Reproductive
biology Breeding system

Hermaphrodite
Monoecious
Dioecious

Floral Nectar (mg)

Floral Nectar concentration (%)

Floral Pollen grains per flower

Reproductive
biology Autonomous selfing (fruit set)

resources (plant databases, online floras, books, journals and images). From a total of289

30,120 cells (20 columns × 1,506 species) we were able to fill 24,341 cells (80.8% of the290

dataset, see Supplementary Fig. S1 for missing values information for each trait).291

Phylogenetic Distance. We calculated the phylogenetic distance between different292

plant species using the function get_tree from the package rtrees (https://github.c293

om/daijiang/rtrees), which downloads phylogenetic distances from the extended R294

implementation of the Open Tree of Life59,60.295
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Data Imputation. Trait missing values were imputed with the function missForest61
296

which allows imputation of data sets with continuous and categorical variables. We297

accounted for the phylogenetic distance among species on the imputation process298

by including the eigenvectors of a principal component analysis of the phylogenetic299

distance (PCoA) which has been shown to improve the performance of missForest62.300

To extract the eigenvectors, we used the function PVRdecomp from the package PVR63
301

based on a previous conceptual framework that considers phylogenetic eigenvectors64.302

Although the variable of autonomous selfing had a high percentage of missing values303

(68%), we were able to solve this by back transforming the qualitative column of304

autonomous selfing to numerical. The categories of ‘none’, ‘low’, ‘medium’ and ‘high’305

were converted to representative percentages of each category 0%, 13%, 50.5% and 88%306

respectively. This reduced the percentage of missing values for this column from 68% to307

35% and allowed the imputation of this variable. However, we were unable to include308

nectar and pollen traits on the imputation process because of the high percentage of309

missing values (Supplementary Fig. S1). Hence, the imputed dataset had 1,506 species,310

seven categorical and eight numerical variables and 5.79% of missing values. Further,311

we conducted an additional imputation process on the subset of species with data for312

pollen per flower and microliters of nectar. This subset comprised 755 species, 8.01%313

missing values and all traits but milligrams of nectar (~50% of missing values) were314

included in the imputation process.315

Plant strategies. We explored the trade-offs between different quantitative plant func-316

tional traits with a phylogenetically informed Principal Component Analysis (pPCA).317

We did not include the quantitative variables of flower length and inflorescence width318

because they were highly and moderately correlated to flower width respectively (Pear-319

son’s correlation = 0.72, P < 0.01 and Pearson’s correlation = 0.36, P < 0.01), and thus320

we avoided overemphasizing flower size on the spectrum of trait variation. Although321

qualitative traits were not included in the dimensionality reduction analysis, we also322

investigated the association of the different qualitative traits with the main axes of trait323

variation. Prior to the analyses, we excluded outliers and standardized the data. Due to324
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the high sensitivity of dimensionality reduction to outliers, we excluded values within325

the 2.5th–97.5th percentile range65, and thus our final dataset had 1,236 species. Then,326

we log transformed the variables to reduce the influence of outliers and z-transformed327

(X= 0, SD=1) so that all variables were within the same numerical range. We performed328

the pPCA using the function phyl.pca from the package phytools66 (version 0.7-70) with329

the method lambda (λ) that calculates the phylogenetic correlation between 0 (phylo-330

genetic independence) and 1 (shared evolutionary history) and we implemented the331

mode covariance because values for each variables were on the same scale following332

transformation67. Moreover, to corroborate that our imputation of missing values did333

not affect our results, we conducted a pPCA on the full dataset without missing values334

(see Supplementary Fig. S2). We found little difference between the explained variance335

with the imputed dataset (51.08%) and the dataset without missing values (52.87%).336

In addition, the loadings on each principal component had a similar contribution and337

correlation patterns, with the exception of plant height which showed slight variations338

between the imputed and non-imputed dataset. Finally, we conducted an additional339

phylogenetic informed principal component analysis for the subset of species with340

pollen and nectar quantity. For this, we included all quantitative traits considered in341

the main pPCA plus pollen grains and microlitres of nectar per flower.342

Phylogenetic signal of traits. We calculated the phylogenetic signal of the different343

quantitative traits on the imputed dataset with the full set of species (N = 1,506) with344

the package phytools66 version 0.7-70 and we used Pagel’s λ as a measurement of the345

phylogenetic signal. However, for pollen and nectar traits, phylogenetic signal was346

calculated only on the subset of species that had quantitative information for these347

traits (N = 755).348

Network analyses. Analyses were conducted on the subset of 60 weighted networks349

sampled in a unique flowering season and site, which included 556 plant and 1,126350

pollinator species. These networks were analysed in their qualitative (presence-absence)351

and quantitative (interaction frequency) form. First, we analysed the binary version of352

these weighted networks with presence-absence information that assumes equal weight353
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across interactions. Second, we analysed the untransformed weighted networks with354

interaction frequency that accounts for the intensity of the interaction. Although floral355

visitors are not always pollinators and interaction frequency does not consider each356

pollinator species efficiency68, interaction frequency can provide valuable information357

of the contribution of floral visitors to pollination69,70. In total, our network dataset358

(excluding meta-webs and non-weighted networks) included 2,256 interactions of bees359

with plants, 1,768 non-syrphid-Diptera interactions, 845 syrphids interactions, 437360

Lepidoptera interactions, 432 Coleoptera interactions and 362 non-bee-Hymenoptera361

interactions. Sampling methods varied across networks but this was accounted for362

in analyses by considering them in the random effects of the modelling process. All363

analyses were conducted in R version 4.0.3.364

Visitation patterns. We used Bayesian modelling (see below for details) to explore365

the effect of floral visitor groups and the main axes of trait variation (pPCA with im-366

puted dataset) on both qualitative (presence/absence) and quantitative (visitation rate)367

floral interactions per plant species. For this, we divided floral visitors into six main368

guilds that differ in life form, behaviour and are likely to play a similar ecological369

role: (i) bees (Hymenoptera-Anthophila), (ii) non-bee-Hymenoptera (Hymenoptera-370

non-Anthophila), (iii) syrphids (Diptera-Syrphidae), (iv) non-syrphid-Diptera (Diptera-371

non-Syrphidae), (v) Lepidoptera and (vi) Coleoptera. Moreover, because the guild of372

bees was the most represented group with 2,256 records and had the highest frequency373

of visits of all groups, we also explored the presence-absence of interaction and visi-374

tation rate of the main bee families (Andrenidae, Apidae, Colletidae, Halictidae and375

Megachilidae) on the trait space. In addition, we found that Apis mellifera was the floral376

visitor with the largest proportion of records counted (7.55% of the total). This finding377

is consistent with previous research showing that A. mellifera was the most frequent378

floral visitor in a similar dataset of 80 plant-pollinator networks in natural ecosystems71.379

Hence, to control for the effect of A. mellifera on the observed visitation patterns of380

bees, we conducted an analogous analysis with presence-absence of interaction and381

visitation rate excluding A. mellifera. We found that A. mellifera, was partly driving382
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some of the observed trends on PC1 (Supplementary Fig. S3). However, we did not383

detect major differences on PC2 and PC3.384

We implemented Bayesian generalized linear mixed models using the R package brms72
385

(version 2.14.6). We modelled the frequency of visits as a function of the main axes of386

plant trait variation and their interactions with floral visitor functional groups (Visits ~387

PC1 x FGs + PC2 x FGs + PC3 x FGs). Because we were interested in possible differences388

in the visitation patterns among floral visitors groups to plants with different strategies,389

we included interactions between the main axes of trait variation (PC1, PC2 and PC3)390

and the floral visitor guilds. In this model, we added a nested random effect of networks391

nested within the study system to capture the variation in networks among studies392

and within networks. Moreover, we included the phylogenetic covariance matrix as a393

random factor due to the possible shared evolutionary histories of species and therefore394

lack of independence across them. We specified this model with a zero inflated negative395

binomial distribution and weakly informative priors from the brms function. We run396

this model for 3,000 iterations and with previous 1,000 warm up iterations. We set delta397

(∆) to 0.99 to avoid divergent transitions and visualized the posterior predictive checks398

with the function pp_check using the bayesplot package73 (version 1.7.2).399

Plant species functional roles. We investigated whether different quantitative traits400

determined plant species functional roles using Bayesian modelling and regression401

trees. For this, we selected simple and complementary species-level network metrics402

commonly applied in bipartite network studies74 with a straightforward ecological403

interpretation relevant to our research goals. The different plant species-level metrics404

were: (i) sum of visits per plant species; (ii) normalized degree, calculated as the number405

of links per plant species divided by the total possible number of partners; and (iii)406

specialization (d’)75, which measures the deviation of an expected random choice of the407

available interaction partners and ranges between 0 (maximum generalization) and 1408

(maximum specialization). Normalized degree and specialization were calculated with409

the specieslevel function from the R package bipartite74 (version 2.15).410
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First, we modelled the distinct plant species metrics (sum of visits, normalized degree411

and plant specialization) as a function of the three main axes of trait variation (plant412

species level metric ~ PC1 + PC2 + PC3). For each response variable (i.e., each plant413

species level metric), we used different distribution families (zero inflated negative414

binomial for the sum of visits, weibull for normalized degree and zero one inflated415

beta for specialization). Finally, we used the same random factors, model settings and416

conducted the same posterior predictive checks for each model as detailed above in the417

‘visitation patterns section’.418

Second, to better understand these complex trait relationships, we used regression419

trees. Regression trees are recursive algorithms which can detect complex relationships420

among predictors and allow identification of the relevance of specific trait combinations421

on species functional roles. We focused exclusively on quantitative traits because almost422

all categorical traits were statistically associated with the first two axes of trait variation423

(Supplementary Table S2). We conducted this analysis using the rpart package76 version424

4.1-15 with method ‘anova’ with a minimum of 50 observations per terminal node and425

we used the rpart.plot package77 version 3.0.9 to plot the regression trees. We considered426

the species level indices as response variables (interaction frequency, normalized degree427

and specialization) and we performed one regression tree per metric using the different428

quantitative traits as predictors. We calculated two regression trees per plant species-429

level metric, one for the full set of species and another for the subset of species for430

which we had pollen and nectar traits. We focused on regression trees that included431

floral rewards because they consistently showed pollen and nectar traits as being the432

best for explaining the different species-level metrics (see Supplementary Fig. S4).433
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