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ABSTRACT 

Objective: Resting-state functional MRI is increasingly used in the clinical setting and is now included 

in some diagnostic guidelines for severe brain injury patients. However, to ensure high-quality data, 

one should mitigate fMRI-related noise typical of this population. Therefore, we aimed to evaluate the 

ability of different preprocessing strategies to mitigate noise-related signal (i.e., in-scanner movement 

and physiological noise) in functional connectivity of traumatic brain injury patients. 

Methods: We applied nine commonly used denoising strategies, combined into 17 pipelines, to 88 

traumatic brain injury patients from the Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy 

clinical trial (EpiBioS4Rx). Pipelines were evaluated by three quality control metrics across three 

exclusion regimes based on the participant's head movement profile.  

Results: While no pipeline eliminated noise effects on functional connectivity, some pipelines 

exhibited relatively high effectiveness depending on the exclusion regime. Once high-motion 

participants were excluded, the choice of denoising pipeline becomes secondary - although this strategy 

leads to substantial data loss. Pipelines combining spike regression with physiological regressors were 

the best performers, whereas pipelines that used automated data driven methods performed 

comparatively worse.  

Conclusion: In this study, we report the first large-scale evaluation of denoising pipelines aimed at 

reducing noise-related functional connectivity in a clinical population known to be highly susceptible 

to in-scanner motion and significant anatomical abnormalities. If resting-state functional magnetic 

resonance is to be a successful clinical technique, it is crucial that procedures mitigating the effect of 

noise be systematically evaluated in the most challenging populations, such as traumatic brain injury 

datasets. 

Keywords: TBI, physiological noise, motion correction, nuisance regression, head motion, 
artefact.  
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1. INTRODUCTION 

Over the last few decades, the assessment of spontaneous oscillations in the blood oxygenation level-

dependent (BOLD) measured by resting-state functional magnetic resonance (rsfMRI) has increasingly 

been used to aid diagnosis and prognosis in neurological disorders (Baker et al., 2014; de Vos et al., 

2018; Franzmeier et al., 2020; Wolters et al., 2019; Woodward et al., 2012). Yet, despite the appeal and 

wide adoption of this technique, it suffers from significant limitations for distinguishing oscillations 

associated with neural activity from those induced by non-neural sources (Birn, 2012; Murphy et al., 

2013; Power et al., 2017). In-scanner head motion can systematically generate artifactual correlations 

across brain regions and spurious functional connectivity (FC) results regardless of how they are 

assessed (e.g., seed-based analysis, graph theory, amplitude of low frequency fluctuations)(Power et al., 

2012; Satterthwaite et al., 2012; Van Dijk et al., 2012).  

In the context of severe brain injury and disorders of consciousness, some international guidelines 

(Kondziella et al., 2020) now suggest incorporating rsfMRI in the diagnostic process given its ability to 

complement bedside neurobehavioral assessments and provide prognostic information (Demertzi et al., 

2019; Madhavan et al., 2019; Silva et al., 2015; Vanhaudenhuyse et al., 2010). However, this patient 

group is well known to exhibit high incidence of in-scanner motion during data acquisitions (Hannawi 

et al., 2016; Monti et al., 2015), which can corrupt estimates of FC. While this issue could be mitigated 

with the use of sedative agents, these will affect any subsequent analysis of brain network function 

(Monti et al., 2013), thus making the development of analytical approaches to mitigating in-scanner 

motion a more desirable strategy. In this sense, a large number of analysis pipelines have been 

proposed to address the issue (Muschelli et al., 2014; Power et al., 2015). However, most of this work 

has been developed and evaluated in neurotypical individuals or clinical populations that do not usually 

present significant anatomical abnormalities (Burgess et al., 2016; Ciric et al., 2018; Parkes et al., 

2018; Power et al., 2020; Raval et al., 2020). No pipeline has ever been validated with respect to 

patients exhibiting the degree of in-scanner motion (Hannawi et al., 2016; Monti et al., 2015) and the 

extensive brain pathology (such as atrophy and trauma-induced deformations) known to lead to sub-

optimal and biased performance of conventional analysis software (Lutkenhoff et al., 2014). If rsfMRI 

is to be a successful technique used in routine clinical practice (Kondziella et al., 2020), it is crucial 

that procedures mitigating the effect of noise be systematically evaluated also in the most challenging 

populations. 

To address this gap, we extend a prior large-scale evaluation of different pipelines (Parkes et al., 2018) 

to the very challenging population of moderate-to-severe traumatic brain injury (TBI) to provide a 
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quantitative comparative assessment of different denoising strategies. Specifically, we applied nine 

commonly used denoising strategies, combined into 17 pipelines, to TBI patients from the Epilepsy 

Bioinformatics Study for Anti-epileptogenic Therapy clinical trial (EpiBioS4Rx) (Vespa et al., 2019) 

and evaluated the ability of each one to remove noise from the BOLD signal. We conclude by 

providing a framework for clinicians and translational scientists interested in using fMRI to select the 

pipeline that balances the ability to mitigate noise with the constraints and aims of their study. 

 

2. METHODS 

2.1 Subjects 

This study included 88 patients from the EpiBioS4Rx dataset, a longitudinal study that aims to discover 

and validate observational biomarkers of epileptogenesis after TBI (Vespa et al., 2019). As described 

elsewhere, patients were enrolled across 12 sites within 72 hours following TBI involving frontal 

and/or temporal hemorrhagic contusion, according to criteria previously published (Vespa et al., 2019). 

Our sample consisted of 21 females and 67 males, with mean age 41.1 (7-84) years, level of 

consciousness after TBI measured by the Glasgow Coma Scale (Teasdale and Jennett, 1974) 7.8 (1-15), 

and time since injury 11 (0-36) days. Informed consent was obtained from a surrogate family member 

or legally authorized representative, using IRB-approved consent methods. 

2.2 Image Acquisition and Processing 

Data were acquired on 1.5 or 3T MR system, including an anatomical (T1-weighted) and functional 

(T2*-weighted echo planar images) acquisitions (See Suppl. Tables 1 and 2 for detailed parameter 

listing.) Data were processed using code adapted from (Parkes et al., 2018) 

(https://github.com/lindenmp/rs-fMRI). Before temporal and spatial filtering, preprocessed data were 

submitted to denoising strategies (see below).  

2.3 Denoising Strategies  

Denoising is achieved by removing variance attributable to head and respiration/cardiac -induced 

motion from the BOLD signal. What is debated is how to best measure, operationalize, and remove 

these sources of noise. Table 1 summarizes the denoising approaches used in our analysis. We 

combined these approaches into 17 pipelines, as done in prior work that used a different clinical sample 

(Parkes et al., 2018).  

2.4 Head Movement Estimation (in-scanner motion) 
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As shown in Table 1, some pipelines rely on the ability to pinpoint volumes corrupted by excessive 

motion. In general, motion in a volume is quantified by the Derivative of the root mean squares 

VARiance over voxelS (DVARS) (Power et al., 2012; Smyser et al., 2011) and Framewise 

Displacement (FD) (Jenkinson et al., 2002; Power et al., 2012), which were used here for spike 

regression and scrubbing approaches. In addition, we calculated in-scanner head movement for each 

patient, used to calculate quality control measures, and classify each patient under an exclusion regime. 

For that, we used the mean FDJenk (Jenkinson et al., 2002) across all volumes (hereafter, mFD). 

2.5 Quality Control (QC) Measures 

After image preprocessing, we used a template containing 333 cortical regions (ROIs) (Gordon et al., 

2016) to define the areas to extract gray matter (GM)-weighed denoised time-series for further analysis. 

We then calculated FC as Pearson's correlation coefficient between each pair of ROI time-series, then 

implemented a Fisher's r-to-z transformation. The FC matrices obtained following each denoising 

pipeline were then used to evaluate the ability of each pipeline to remove noise-induced correlations by 

the two quality control measures described below.  

2.5.1 QC-FC correlation. Represents the correlation between FC and in-scanner head motion (mFD) 

since non-neuronal fluctuations can increase the apparent FC between regions by introducing spurious 

common variance across time series. Here, we calculated Pearson's correlation coefficient between 

each pair of ROIs FC and the mFD across patients.  

2.5.2 QC-FC distance-dependence. Indicates whether the correlation between FC and in-scanner head 

motion (mFD) is spatially structured – a known feature of motion-induced artifacts (Power et al., 2012; 

Power et al., 2014; Satterthwaite et al., 2012; Van Dijk et al., 2012).  Here, we calculated the distance 

between ROIs as the Euclidean distance between the stereotaxic coordinates of the volumetric centers 

of ROI pairs. We quantified the relationship between this distance and the QC-FC correlation for each 

edge using Spearman's rank correlation coefficient (ρ) due to the non-linearity of some associations.  

In addition, we measured the ability of each pipeline to retain statistical power during the denoising 

process: 

2.5.3 loss of temporal degrees of freedom (tDOF-loss). Represents the amount of tDOF lost due to 

the removal of time points and/or to the number of regressors used to denoise the data (Suppl. Table 

3).  

2.6 Participant Exclusion Regimes 
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Finally, it is debated how to determine the threshold at which a subject contains excessive motion and 

thus should be discarded from any analysis. We compared the performance of all pipelines under three 

different participant exclusion regimes: (i) censoring-based, (ii) lenient, and (iii) stringent (Table 2 

shows criteria for subject exclusion in each regime). 

 

3. RESULTS 

3.1 Head Movement and Participant Exclusion  

As shown in Fig. 1a, censoring-based, lenient, and stringent regimes resulted in the exclusion of 8, 11, 

and 32 patients (9 %, 12.5 %, and 36 %, respectively). As expected, participants under the stringent 

regime presented significantly smaller mFD compared to censoring-based and lenient regimes (Fig. 1b, 

Kruskal-Wallis test, H(2) = 9.791, p = 0.0075; mean rank mFD 116.45 for censoring-based, 113.18 for 

lenient and 85.00 for stringent. Pairwise comparisons Bonferroni-adjusted for multiplicity: stringent vs 

lenient, p = 0.028; stringent vs censoring-based, p = 0.01; lenient vs censoring-based, p = 1). In-scanner 

head movement did not correlate with Glasgow Coma Scale (Pearson r(84) = 0.080, p = 0.462), age 

(Pearson r(85) = 0.139, p = 0.201), nor time since injury (Pearson r(79) = 0.128, p = 0.253). A logistic 

regression was performed to ascertain the effects of age, gender, time since injury, and Glasgow Coma 

Scale on the likelihood that participants would fall into the Stringent regime. The logistic regression 

model was not statistically significant, χ2(4) = 6.051, p = .195. The model explained 10% (Nagelkerke 

R2) of the variance in Stringent regime and correctly classified 63% of cases. 

3.2 Quality Control Measures 

As shown in Fig. 2 and 3, consistent with prior work (Parkes et al., 2018), while no pipeline entirely 

eliminated noise-related effects on FC patterns, some pipelines exhibited relatively high effectiveness 

at mitigating it depending on the exclusion regime.  

3.2.1 QC-FC. Overall, no pipeline in any exclusion regime reduced the effect of noise to zero (Fig. 2). 

Nonetheless, our results show that some pipelines, under a given regime, perform better than others. 

First, the censoring-based and lenient regimes resulted in approximately 10-29 % and 13-55 % 

proportion of significant correlations and absolute r-values between 0.09-0.14and 0.10-0.24, 

respectively. 6HMP pipeline was an outlier with ~92 % proportion of QC-FC significant correlations 

and an absolute correlation between motion and FC of 0.38 in the lenient regime. In comparison, the 

stringent criterion resulted in lower QF-FC across all pipelines, reducing the correlations significantly 
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to less than 10 % and median r-value between motion and FC to 0.09-0.11 (with the sole exception of 

the 6HMP, with ~20 % significant correlations).  

Second, within each of the three exclusion regimes, different strategies exhibit different effectiveness at 

mitigating noise. Overall, in the (i) censoring-based regime, the best performance was obtained with 

different combinations of 24HMP, aCompCor, and spike regression. Conversely, the three worst 

performing pipelines all featured data-driven methods, including aCompCor50 and ICA-AROMA. The 

addition of GSR generally resulted in the worsening of pipeline performance. Under the (ii) lenient 

regime, a very different pattern of results was observed. Overall, the best performing pipelines under 

this regime were the two featuring aCompCor, spike regression, and GSR, with either 6 or 24 HMP. At 

the opposite end of performance, pipelines without GSR underperformed those with GSR, and the 

pipeline with 6HMP alone resulted in the slightest mitigation of noise-induced effects on FC. The 

inclusion of GSR improved pipeline performance for all pipelines, with the greatest benefit observed 

for the aCompCor/aCompCor50 pipelines. Overall, in the (iii) stringent regime, the pipelines 

performed similarly one to another (with the sole exception of the 6HMP), and all pipelines performed 

better under the stringent regime than censoring-based and lenient regimes, reducing significantly QC-

FC correlations. The inclusion of GSR barely changed any pipeline performance under this regime. 

3.2.2 QC-FC Distance-Dependence. As shown in Fig. 3, the proportion of statistically significant 

correlations between QC-FC and ROI distance for each denoising pipeline in each regime is 

comparable to prior validations (Parkes et al., 2018). Like QC-FC, the stringent regime reduced 

distance dependence on QC-FC the most (with an absolute average correlation of 0.06), followed by 

the lenient and the censoring-based criteria (absolute average correlation of 0.16 and 0.25, 

respectively).  

Specifically, in the (i) censoring-based regime, pairing aCompCor with spike regression resulted in the 

lowest correlations (i.e., best performance) between distance and QC-FC whether performed together 

with 6HMP, 24HMP, or GSR. Similarly, 24HMP with 2phys and spike regression also resulted in a 

low QF-FC distance dependence. Like QC-FC, the three worst pipelines all included data-driven 

methods (ICA-AROMA with 2phys; ICA-AROMA with 2phys and GSR; and 24HMP with 

aCompCor50, and GSR). Likewise, scrubbing (with 24HMP, 2phys, with or without GSR) resulted in 

poor performance under this exclusion regime. Overall, the inclusion of GSR worsened pipeline 

performance across the board. Under the (ii) lenient regime, the combination of aCompCor with spike 

regression, whether with 6 or 24HMP, resulted in very low correlations (i.e., good performance), only 

surpassed by the combination of ICA-AROMA with 2phys and 24HMP with 2phys and spike 
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regression. The addition of GSR also worsened performance across all pipelines under this regime. 

aCompCor50 (with GSR) was the worst performer, followed by scrubbing paired with 24HMP, 2phys, 

and GSR, and 24HMP paired with 2phys and GSR. Finally, under the (iii) stringent regime, the 

combination of aCompCor and spike regression, whether with 6 or 24HMP, resulted in the lowest 

correlations (i.e., best performance). The addition of GSR generally resulted in unchanged or worse 

performance, with 24HMP with aCompCor50 and GSR resulting in the most significant absolute 

correlation. 

3.2.3 tDOF-Loss. As expected, the stringent regime resulted in the lowest average loss of tDOF (since 

the high-movement subjects were excluded), albeit at the detriment of group degrees of freedom – 

given the large loss of sample size. Scrubbing resulted in the most significant tDOF-loss across all 

regimes (Fig. 4). 

4. DISCUSSION 

In this study, we report the first large-scale evaluation of denoising pipelines aimed at reducing noise-

related FC in a clinical population known to be highly susceptible to in-scanner motion (Hannawi et al., 

2016; Monti et al., 2015) and to present considerable anatomical abnormalities. Overall, we report three 

main findings.  

First, one of the most critical aspects of successful denoising is selecting which subjects to retain for 

further analysis (Satterthwaite et al., 2013; Satterthwaite et al., 2012; Van Dijk et al., 2012). In this 

high-motion cohort, a stringent selection obviously resulted in equal or better performance in QC 

metrics across virtually all pipelines. In other words, once high-motion participants are removed from 

the sample, the choice of denoising pipeline becomes secondary (with the sole exception of the 6HMP 

approach). Nonetheless, while the quality of the data used for analysis benefits significantly from this 

approach, it is very costly in terms of data loss (37% in our sample). Consequently, it decreases the 

degrees of freedom for statistical inference across groups (such as performing group comparison 

between patients and volunteers or correlation analysis between behavioral scores on a test of interest 

and FC metrics).  

Second, different denoising approaches exhibit very distinct abilities to mitigate the negative effects of 

noise on FC (Parkes et al., 2018). Pipelines combining spike regression with 2phys and its extension, 

aCompCor, tend to be the best performers across exclusion regimes. Somewhat unexpectedly, pipelines 

using scrubbing, ICA-AROMA, and aCompCor50 performed comparatively worse. Overall, pipelines 

using scrubbing were generally either comparable or worse than the other ones, in addition to the cost 
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of two to three times greater loss of tDOF—up to 50% of the available data per subject—thus 

hampering the quality of the FC estimates. Pipelines containing data-driven techniques (i.e., ICA-

AROMA and aCompCor50), which can be very effective at removing noise-related artifacts (Pruim et 

al., 2015), were instead among the worst performers under most regimes. While it is hard to pinpoint 

the source of their poor performance, we could speculate that the structural features of our images pose 

too great an obstacle to be addressed by these denoising approaches. aCompCor50 and ICA-AROMA, 

for example, rely on the accurate segmentation of brain tissues to identify noise components. TBI 

patients constitute a very heterogeneous sample from which segmenting the brain into different tissues 

might be challenging, probably affecting the performance of denoising strategies that depend on this 

step. Indeed, ICA-AROMA at times could not find any "signal" components in some patients (i.e., all 

components were classified as noise, Suppl. Fig1), stressing that these methods should be used with 

care when dealing with datasets containing pathological brains (Heine et al., 2012).  

Third, we find the addition of GSR, a controversial step in fMRI data preprocessing, to give mixed 

results. On the one hand, it did improve the QC-FC metric under the lenient and stringent regimes 

(albeit only very marginally in the latter). On the other hand, it worsened the distance-dependent QC 

metric for virtually all pipelines, under all regimes—consistent with prior reports (Ciric et al., 2017).  

Given these results, we offer three recommendations. First, where possible, use a stringent exclusion 

regime. This approach essentially reduces the analyzed sample to low-motion subjects, thus ensuring 

that systematic spurious correlations do not affect FC estimates. While the data loss can be sizeable 

(37% in our sample), this approach leads to the most significant mitigation of the negative effects of 

noise on FC. In addition, this strategy also gives the researcher freedom to choose among almost any 

pipeline, according to which procedure is best for the study's goals. However, this approach has the 

potential for biased data loss. For example, some patients might be more motion-prone, resulting in 

greater exclusion rates and thus hampering group analyses.  

Second, when choosing between pipelines, we find combinations of 2phys, spike regression and 

aCompCor to perform best in general. Scrubbing, in turn, performed relatively poorly under most 

circumstances and led to a high loss in tDOF. Likewise, ICA-AROMA—which has been shown to 

perform very well in healthy volunteers (Pruim et al., 2015)—underperformed many pipelines in our 

clinical sample. While the reason why this approach was not very effective remains unsolved, we 

speculate that the segmentation of tissue compartments can be very problematic in the presence of 

significant brain shape deformation (e.g., due to primary impact damage, ventricular enlargement, 
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among others). Finally, given the mixed results and the controversial nature of this step, we do not 

recommend using GSR.  

There are several limitations to the current work that should be acknowledged. First, our results are 

limited to the combination of approaches we chose for each pipeline. While some pipelines 

outperformed others, we should bear in mind that different combinations could yield divergent results 

(e.g., adding quadratic and derivative terms of physiological or global signal). Likewise, our results 

reflect the performance of pipelines for our particular image acquisition parameters. Testing these 

pipelines in images with shorter or longer TRs and other parameters should be addressed in future 

work. Second, the participants excluded from censoring pipelines (i.e., participants with < 4 min of 

data based on spike regression or scrubbing) were also excluded from the other pipelines. While we 

thought it was crucial to compare pipelines maintaining the number of subjects constant across them, it 

also precluded us from evaluating how non-censoring pipelines would perform without this criterion. 

Future work should focus on assessing, for example, how data-driven approaches perform when 

including these participants. Lastly, our QC measures focused on a specific way of calculating FC (i.e., 

a model-based method using Pearson's correlation between ROIs time series). We recognize that other 

metrics of FC (see (Li et al., 2009)) could result in different findings. 

Taken together, our findings stress the heterogeneous performance of denoising pipelines, emphasizing 

that different strategies may be appropriate in the context of specific goals, according to the question 

and study design. Researchers should be familiar with their samples regarding head movement profile 

and clinical features and be aware of each approach's strengths and weaknesses to find the pipeline that 

best matches their goals. 
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FIGURE LEGENDS 

Fig1: (a) Number of participants excluded in each regime; (b) Box plots of the mFD values for each 

regime.  

Fig2: QC-FC correlations under the three regimes of participant exclusion. On the left of each panel, 

results are shown as the proportion of significant FCs that correlated with the patient's head movement 

(mFD), p < 0.05. On the right of each panel, results are shown as the full distribution of QC-FC, and 

the corresponding median value. Better denoising pipelines result in fewer correlations between FC and 

head movement, giving values closer to 0. 

Fig3: QC-FC distance-dependence under the three participant exclusion regimes. Results are presented 

as Spearman's ρ correlation coefficient. Better denoising pipelines result in fewer correlations between 

FC and head movement, giving values closer to 0.  

Fig4: Temporal degrees of freedom loss (tDOF-loss) under the three regimes of participant exclusion. 

Results are presented as mean ± standard deviation. Ideally, good denoising pipelines should use fewer 

regressors in the model, losing fewer degrees of freedom and resulting in values closer to 0.  

Suppl. Fig1: Box plot showing the percentage of components classified as noise by ICA-AROMA for 

each patient. When 100, it means that all components were classified as noise by the classifier. 
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Table 1: Denoising strategies. 

Head 
displacement  

Head Motion Parameters (HMP): Six parameters (3 rotations and 3 translations about/along the 
X-, Y-, and Z-axes) included as noise regressors (6HMP)36. Additional regressors derived from the 
six parameters (e.g., temporal and quadratic terms of each parameter, as well as their difference) 
are often included to account for delayed and nonlinear motion-induced spin history effects 
(24HMP)31. 

Spike Regression31: For each volume containing excessive motion, a separate regressor is 
generated containing a value of 1 at that volume, and 0 at all others. Volumes are considered 
contaminated if FDJenk

28 > 0.25 mm. FDJenk represents the root mean squared of the 6 motion 
parameters28. 

Scrubbing29: Each volume containing excessive motion is removed from the time-series if 
FDPower

9 > 0.2 mm or DVARS9,27 > 2 %. After removal, uncontaminated segments of BOLD data 
lasting fewer than 5 contiguous volumes are also removed. FDPower represents the sum of the 
absolute values of the differentiated realignment estimates (by backward differences) at every 
time-point9. 

Physiology-
related   

Physiological Regressors (2phys): Regression of the average signal from WM and CSF, tissues 
not expected to exhibit BOLD oscillations tied to neural activity.  

Anatomical Component Based Correction (aCompCor37/aCompCor5038): This approach 
involves extracting orthogonal components of temporal variance from voxel-wise time series for 
the WM and CSF masks separately. Then, either the five components with greater eigenvalue for 
each tissue are included in the denoising regression (aCompCor), or as many components as 
needed to cumulatively explain at least 50% of the variance in each tissue (aCompCor50). 

Mixed 
approaches 

Global Signal Regression (GSR): Regression of the average signal across all the voxels of the 
brain. 

ICA-based Automatic Removal Of Motion Artifacts (ICA-AROMA39): Automated data-driven 
method to identify and remove via regression motion-related independent components.  

Abbreviations:  FD = framewise displacement; DVARS = derivative of the root mean squares variance over voxels; BOLD 
= blood oxygenation level-dependent; WM = white matter; CSF = cerebrospinal fluid; ICA = independent component 
analysis. 
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Table 2: Participant exclusion regimes and their criteria for exclusion: 
 
Regime Exclusion criteria 

Censoring-
based(Satterthwaite et 
al., 2013; Van Dijk et 
al., 2012) 

Excluded subjects when less than 4 minutes of non-contaminated volumes remained 
after volume censoring (< 4 minutes of data). 

Lenient(Satterthwaite 
et al., 2012) 

Excluded subjects if: 
(i) < 4 minutes of data; or 
(ii) high levels of head gross motion, defined as mFD > 0.55mm. 

Stringent(Satterthwait
e et al., 2013) 

Excluded subjects if: 
(i) < 4 minutes of data; 
(ii) mFD > 0.25 mm; 
(iii) more than 20% of the volumes presented FDJenk > 0.2 mm; or 
(iv) any volume presented FDJenk > 5mm. 

Abbreviations: FD = framewise displacement; mFD = mean framewise displacement. 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 13, 2021. ; https://doi.org/10.1101/2021.12.10.472139doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.10.472139


Suppl. Table 1: Detailed T1 image acquisition parameters: 

Subj Mag 
Field  

Software Model Matrix Voxel Size 
 

Slice 
Thickness 

Slices TR 
(ms) 

TE 
(ms) 

Flip 
Angle 

1 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

2 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

3 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

4 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

5 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

6 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

7 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

8 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

9 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

10 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

11 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

12 3T Philips Ingenia 256 256 1 1 1 256 8.196 3.753 8 

13 3T Philips Ingenia 256 256 1 1 1 256 8.247 3.776 8 

14 3T Philips Ingenia 256 256 1 1 1 256 8.142 3.721 8 

15 3T Philips Ingenia 280 220 0.49 0.49 0.9 512 9.01 4.124 8 

16 3T Philips Ingenia 256 256 1 1 1 256 8.233 3.771 8 

17 3T Philips Ingenia 256 256 1 1 1 256 8.397 3.86 8 

18 3T GE Signa 256 256 1 1 1 256 8.856 3.488 15 

19 3T GE Signa 256 256 1 1 1 256 9.088 3.624 15 

20 3T GE Signa 256 256 1 1 1 256 8.824 3.488 15 

21 3T GE Signa 256 256 1 1 1 256 8.86 3.488 15 

22 3T GE Signa 256 256 1 1 1 256 8.868 3.488 15 

23 3T GE Signa 256 256 1 1 1 256 9.148 3.624 15 

24 3T GE Signa 256 256 1 1 1 256 11.28 4.848 20 

25 3T GE Signa 256 256 1 1 1 256 8.836 3.488 15 

26 3T GE Signa 256 256 1 1 1 256 9.116 3.524 15 

27 3T GE Signa 256 256 1 1 1 256 9.128 3.624 15 

28 3T GE Signa 256 256 1 1 1 256 9.136 3.624 15 

29 3T GE Signa 256 256 1 1 1 256 9.148 3.624 15 

30 3T GE Signa 256 256 1 1 1 256 9.076 3.624 15 

31 3T GE Signa 256 256 1 1 1 256 9.128 3.624 15 

32 3T GE Signa 256 256 1 1 1 256 9.148 3.616 15 

33 3T GE Signa 256 256 1 1 1 256 9.12 3.624 15 

34 3T GE Signa 256 256 1 1 1 256 9.096 3.624 15 

35 3T GE Signa 256 256 1 1 1 256 9.048 3.616 15 

36 3T GE Signa 256 256 1 1 1 256 9.096 3.616 15 

37 3T GE Signa 256 256 1 1 1 256 9.096 3.616 15 

38 3T GE Signa 256 256 1 1 1 256 9.148 3.616 15 

39 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

40 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

41 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

42 3T SIEMENS TrioTim 256 256 1 1 1 159 1900 3.43 9 

43 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 
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44 3T SIEMENS TrioTim 256 256 1 1 1 154 1900 3.43 9 

45 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

46 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

47 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

48 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

49 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

50 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

51 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

52 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

53 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

54 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

55 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

56 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

57 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

58 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

59 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

60 3T SIEMENS TrioTim 256 256 1 1 1 160 1900 3.43 9 

61 1.5T SIEMENS Aera 256 256 1 1 1 160 2000 3.13 15 

62 1.5T SIEMENS Aera 256 256 1 1 1 192 2000 3.13 15 

63 1.5T SIEMENS Aera 256 256 1 1 1 160 2000 3.13 15 

64 1.5T SIEMENS Aera 256 256 1 1 1 144 2000 3.13 15 

65 1.5T SIEMENS Aera 256 256 1 1 1 160 2000 3.13 15 

66 1.5T SIEMENS Aera 256 256 1 1 1 128 2000 3.13 15 

67 1.5T SIEMENS Aera 256 256 1 1 1 144 2000 3.13 15 

68 1.5T SIEMENS Aera 256 256 1 1 1 176 2000 3.13 15 

69 1.5T SIEMENS Aera 256 256 1 1 1 176 2000 3.13 15 

70 1.5T SIEMENS Aera 256 256 1 1 1 128 2000 3.13 15 

71 1.5T SIEMENS Aera 256 256 1 1 1 160 2000 3.13 15 

72 1.5T SIEMENS Aera 256 256 1 1 1 176 2000 3.13 15 

73 1.5T SIEMENS Aera 256 256 1 1 1 128 2000 3.13 15 

74 1.5T SIEMENS Aera 256 256 1 1 1 192 2000 3.13 15 

75 1.5T SIEMENS Aera 256 256 1 1 1 144 2000 3.13 15 

76 1.5T SIEMENS Aera 256 256 1 1 1 144 2000 3.13 15 

77 1.5T SIEMENS Aera 256 256 1 1 1 144 2000 3.13 15 

78 3T SIEMENS Verio 256 256 1 1 1 160 1900 2.93 9 

79 3T SIEMENS Verio 256 256 1 1 1 160 1900 2.93 9 

80 3T SIEMENS Verio 256 256 1 1 1 176 1900 2.93 9 

81 3T SIEMENS Verio 256 256 1 1 1 160 1900 2.93 9 

82 3T SIEMENS Verio 256 256 1 1 1 176 1900 2.93 9 

83 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

84 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

85 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

86 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

87 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 

88 3T SIEMENS Skyra 256 256 1 1 1 256 2300 2.26 8 
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Suppl. Table 2: Detailed T2*-weighted echo planar images acquisition parameters: 

Subj Mag 
Field  

Software Model Matrix Voxel Size Slice 
Thickness 

Slices TR 
(ms) 

TE 
(ms) 

Flip 
Angle 

Volume

1 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

2 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

3 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

4 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

5 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 38 2000 25.000 78 300 

6 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

7 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

8 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

9 3T SIEMENS Skyra 64 64 3.9063 3.9063 4.25 42 2290 25.000 78 300 

10 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

11 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

12 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

13 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

14 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

15 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

16 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

17 3T Philips Ingenia 80 80 2.75 2.75 3.65 37 2000 25.001 78 300 

18 3T GE Signa 64 64 3.75 3.75 3.70 40 2000 25.000 90 300 

19 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 90 300 

20 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 90 300 

21 3T GE Signa 64 64 3.75 3.75 3.70 40 2100 25.000 90 300 

22 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 90 300 

23 3T GE Signa 64 64 3.75 3.75 3.70 40 2000 25.000 90 300 

24 3T GE Signa 64 64 3.4375 3.4375 3.70 38 2000 25.000 78 300 

25 3T GE Signa 64 64 3.4375 3.4375 3.70 44 2200 25.000 78 300 

26 3T GE Signa 64 64 3.4375 3.4375 3.70 46 2300 25.000 78 300 

27 3T GE Signa 64 64 3.4375 3.4375 3.70 39 2000 25.000 78 300 

28 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 78 300 

29 3T GE Signa 64 64 3.4375 3.4375 3.70 42 2100 25.000 78 300 

30 3T GE Signa 64 64 3.4375 3.4375 3.70 42 2138 25.000 78 300 

31 3T GE Signa 64 64 3.4375 3.4375 3.70 45 2297 25.000 78 300 

32 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 78 300 

33 3T GE Signa 64 64 3.4375 3.4375 3.70 43 2150 25.000 78 300 

34 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 78 300 

35 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2113 25.000 78 300 

36 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 78 300 

37 3T GE Signa 64 64 3.4375 3.4375 3.70 40 2000 25.000 78 300 

38 3T GE Signa 64 64 3.4375 3.4375 3.70 44 2200 25.000 78 300 

39 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

40 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

41 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

42 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

43 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 
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44 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

45 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

46 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

47 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

48 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

49 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

50 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

51 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 90 300 

52 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

53 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

54 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

55 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

56 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

57 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

58 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

59 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

60 3T SIEMENS TrioTim 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

61 1.5T SIEMENS Aera 64 64 3.4375 3.4375 4.48 34 2000 25.000 78 300 

62 1.5T SIEMENS Aera 64 64 3.4375 3.4375 4.48 34 2000 25.000 78 300 

63 1.5T SIEMENS Aera 64 64 3.75 3.75 4.48 34 2000 25.000 78 300 

64 1.5T SIEMENS Aera 64 64 3.4375 3.4375 4.48 34 2070 25.000 78 300 

65 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 41 2500 25.000 78 300 

66 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

67 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

68 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

69 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 41 2370 25.000 78 300 

70 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

71 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

72 1.5T SIEMENS Aera 64 64 3.5938 3.5938 3.81 38 2200 25.000 78 300 

73 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

74 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 45 2600 25.000 78 300 

75 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 37 2140 25.000 78 300 

76 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

77 1.5T SIEMENS Aera 64 64 3.4375 3.4375 3.81 34 2000 25.000 78 300 

78 3T SIEMENS Verio 64 64 3.4375 3.4375 3.91 36 2000 25.000 78 300 

79 3T SIEMENS Verio 64 64 3.4375 3.4375 3.91 34 2000 25.000 78 300 

80 3T SIEMENS Verio 64 64 3.4375 3.4375 3.91 34 2000 25.000 78 300 

81 3T SIEMENS Verio 64 64 3.4375 3.4375 3.91 34 2000 25.000 78 300 

82 3T SIEMENS Verio 64 64 3.4375 3.4375 3.91 40 2000 25.000 78 300 

83 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

84 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

85 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

86 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

87 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 

88 3T SIEMENS Skyra 64 64 3.4375 3.4375 4.25 37 2000 25.000 78 300 
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Suppl. Table 3: Denoising pipelines and the total number of regressors used in each of them. 

Denoising Pipeline nr. of 
regressors 

6HMP 6 

24HMP + 2Phys 26 

24HMP + 2Phys + GSR 27 

24HMP + aCompCor 34 

24HMP + aCompCor + GSR 35 

24HMP + aCompCor50 24 + k 

24HMP + aCompCor50 + GSR 25 + k 

2Phys + ICA-AROMA  2 + k 

2Phys + ICA-AROMA + GSR 3 + k 

24HMP + 2Phys + SpikeReg 26 + k 

24HMP + 2Phys + SpikeReg + GSR 27 + k 

24HMP + 2Phys + Scrubbing 26 + k 

24HMP + 2Phys + Scrubbing + GSR 27 + k 

6HMP + aCompCor + SpikeReg 16 + k 

6HMP + aCompCor + SpikeReg + GSR 17 + k 

24HMP + aCompCor + SpikeReg 34 + k 

24HMP + aCompCor +SpikeReg + GSR 35 + k 

Abbreviations: HMP = Head Motion Parameters; Phys = physiological regressors (white matter (WM) and cerebrospinal 
fluid (CSF) average time-series); GSR = Global Signal Regression; aCompCor = anatomical Component Correction; 
SpikeReg = Spike regression.  
k = variable that represents the number of additional regressors estimated by the denoising method, which varies from 
subject to subject. For aCompCor50, k is the number of components that explain 50% of the variance in each WM and CSF 
compartments; for ICA-AROMA, k represents the total number of components classified as noise; for SpikeReg and 
Scrubbing, k represents the number of contaminated volumes. Ideally, good denoising pipelines should use fewer regressors 
in the model, losing fewer degrees of freedom. 
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Suppl. Table 4: EpiBioS4Rx’s Principal Investigators and affiliated institutions. 
 

Principal Investigator/Author Affiliated Institutions 

Alaa Kamnaksh Uniformed Services University, United States 

Alicia Au University of Pittsburgh, United States 

Andrew Morokoff Royal Melbourne Hospital, United States 

Arthur Toga University of Southern California, United States 

Ben Ellingson David Geffen School of Medicine at UCLA, United States 

Brandon Foreman University of Cincinnati, United States 

Courtney L. Robertson Johns Hopkins University, United States 

Courtney Real David Geffen School of Medicine at UCLA, United States 

David McArthur David Geffen School of Medicine at UCLA, United States 

Denes Agoston Uniformed Services University, United States 

Elisa Yam David Geffen School of Medicine at UCLA, United States 

Emily J. Gilmore Yale University, United States 

Eric Rosenthal Harvard University/Massachusetts General Hospital, United States 

Jan Claassen Columbia University, United States 

Lara Zimmermann University of California, Davis, United States 

Lawrence Hirsch Yale University, United States 

Manuel Buitrago Blanco David Geffen School of Medicine at UCLA, United States 

Michael J. Bell Children's National Health System, United States 

Ramon Diaz-Arrastia University of Pennsylvania, United States 

Richard Staba David Geffen School of Medicine at UCLA, United States 

Susana Martinez David Geffen School of Medicine at UCLA, United States 

Terrence O'Brien Royal Melbourne Hospital, United States 

Dominique Duncan University of Southern California, United States 

Frederick A. Willyerd Phoenix Children's Hospital, United States 

Jerome Engel Jr. David Geffen School of Medicine at UCLA, United States 

Kristine O'Phelan University of Miami, United States 

Martin Hunn The Alfred Hospital Melbourne, Australia 

Nicholas Abend University of Pennsylvania, United States 

Thomas P. Bleck Rush University, United States 

Vikesh Shrestha David Geffen School of Medicine at UCLA, United States 
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