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Table 1: Model parameters and variables

variable space description

α R>0 Concentration parameter for stick breaking process generating πc in (21). Prior
defined in (20).

a1,i R>0 Growth rate of taxa i for the dynamics in (2)-(3). Prior defined in (6).
a2,i R>0 Self limiting term of taxa i for the dynamics in (2)-(3). Prior defined in (9).
bci,cj R Interaction parameter for the strength of interaction from module cj on ci for

the dynamics in (2)-(3). Prior defined in (28).
b1,b, b2,b R>0 Shape hyperparameters for πb in (29). Values defined (35)-(36).
b1,γ , b2,γ R>0 Shape hyperparameters for πγ,p in (40). Values defined in (46)
ci Z+ Module assignment for taxa i. Prior defined in (22)
d0, d1 Offset and slope parameters for negative binomial dispersion, estimated from

sequencing replicates (see Appendix E).
∆s,k R>0 Time between samples k+ 1 and k in subject s defined as ∆s,k = ts,k+1 − ts,k
εs,i R>0 Dispersion parameter for sequencing read counts ys,i(k) in (50). Parameteri-

zation defined in (52)
γci,p R Perturbation strength parameter for perturbation p on module ci for the dy-

namics in (2)-(3). Prior defined in (39).
hs,p(k) {0, 1} Perturbation indicator for when perturbation p is active in subject s for the

dynamics in (2)-(3).
i, j Z+ Taxa indices.
k Z Discrete time index.
`,m Z>0 Used to index over modules.
µa1 R>0 Location parameter for a1,i in (6). Prior defined in (4).
µa2 R>0 Location parameter for a2,i in (9). Prior defined in (7).
µ0,a1 R>0 Location hyperparameter for µa1 in (4). Value defined in (10).
µ0,a2 R>0 Location hyperparameter for µa2 in (7). Value defined in (13).
µb R Location parameter for bci,cj in (28). Prior defined in (26).
µ0,b R Location hyperparameter for µb in (26). Value defined in (31).
µγ,p R Location parameter for γci,p in (39). Prior defined in (37).
µ0,γ R Location hyperparameter for µγ,p in (37). Value defined in (42).
πc ∆∞ Probabilities for ci in (22). Prior defined in (21).

πb (0, 1) Probability for z
(b)
ci,cj in (30). Prior distribution defined in (29)

πγ,p (0, 1) Probability for z
(γ)
ci,p in (41). Prior distribution defined in (40)

Qs,r(k) R>0 Replicate qPCR measurement r for subject s at time tk. Prior defined in (53).
Qdata
s,r (k) R>0 Instantiation of the random variable for replicate qPCR measurement r for

subject s at time tk with our data.
r Z+ As a subscript this variable is the index for qPCR replicates.
rs(k) Z Read depth for sample at time index k in subject s
σ2
a1

R>0 Squared scale parameter for a1,i in (6). Prior defined in (5).
σ2
a2

R>0 Squared scale parameter for a2,i in (9). Prior defined in (8).
σ2
0,a1

R>0 Squared scale hyperparameter for µa1 in (4). Value defined in (11).
σ2
0,a2

R>0 Squared scale hyperparameter for µa2 in (7). Value defined in (14).
σ2
b R>0 Squared scale parameter for a2,i in (9). Prior defined in (27).
σ2
0,b R>0 Squared scale hyperparameter for µa2 in (7). Value defined in (32).
σ2
γ,p R>0 Squared scale parameter for a2,i in (9). Prior defined in (38).
σ2
0,γ R>0 Squared scale hyperparameter for µγ,p in (37). Value defined in (43).
σ2
Qs(k)

R>0 Squared scale hyperparameter for Qs,r(k) in (53). Prior defined in (54).

σ2
w R>0 Process variance for the stochastic dynamics in (2)-(3). Prior defined in (47).
νa1 R>2 DOF hyperparameter for σ2

a1
in (5). Value defined in (16).

νa2 R>2 DOF hyperparameter for σ2
a2

in (8). Value defined in (17).
νb R>2 DOF hyperparameter for σ2

b in (27). Value defined in (33).
νγ R>2 DOF hyperparameter for σ2

γ in (38). Value defined in (44).
νw R>2 DOF hyperparameter for σ2

w in (47). Value defined in (48).
τ2a1

R>0 Scale hyperparameter for σ2
a1

in (5). Value defined in (18).

Table 1 – Continued on next page
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Table 1 – Continued from previous page

variable space description

τ2a2
R>0 Scale hyperparameter for σ2

a2
in (8). Value defined in (19).

τ2b R>0 Scale hyperparameter for σ2
b in (27). Value defined in (34).

τ2γ R>0 Scale hyperparameter for σ2
γ in (5). Value defined in (45).

τ2σ2
w

R>0 Scale hyperparameter for σ2
w in (47). Value defined in (49).

θα1 R>0 Shape hyperparameter for α in (20). Value defined in (24)
θα2 R>0 Scale hyperparameter for α in (20). Value defined in (25)
ts,k R Time of sample index k in subject s.
φs,i R>0 Location parameter for sequencing read counts ys,i(k) in (50). Parameteriza-

tion defined in (51)
xs,i(k) R>0 Latent abundance of taxa i at discrete time index k in time-series s for the

dynamics in (2)-(3)
ys,i(k) Z Sequencing reads for taxa i at discrete time index k in time-series s
ydatas,i (k) Z Instantiation of the random variable for sequencing reads associated with taxa

i at discrete time index k in time-series s using the data collected in our exper-
iments.

z
(b)
ci,cj {0, 1} Indicator variable for interaction from module cj to ci for the dynamics in

(2)-(3). Prior defined in (30).

z
(γ)
ci,p {0, 1} Indicator variable for perturbation p on module ci for the dynamics in (2)-(3).

Prior defined in (41).
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1 Description of Model

MDSINE2 is a Bayesian model for microbial dynamics based on generalized Lotka-Volterra (gLV)
equations. Key attributes and novel components of the model that make it robust and allow it
to scale to hundreds of taxa:

• It is fully Bayesian, explicitly modeling measurement error in amplicon sequencing and
qPCR data, and propagating that uncertainty throughout the model.

• The model groups microbial taxa into interaction modules, or groups of taxa that share
common responses to perturbations and interaction structure.

• The model includes indicator variables for both the perturbation affects and module-module
interactions, which allows for structural learning and the computation of Bayes factors.

• Key posterior distributions (where feasible) utilize collapsed Gibbs sampling, decreasing
mixing time in MCMC inference.

In the following subsections all model components are described in detail. To aid in the descrip-
tion the model, two versions of plate models are given in Figure 1 with all model parameters
described in Table 1.

Figure 1: Graphical Model

1.1 Model of dynamics

Let xs,i(k) ∈ R≥0 denote the latent concentration of taxa i at time-point ts,k for subject s (e.g.,
individual mouse or human subject). We model xs,i(k) by discretizing the following continuous
time (t) stochastic differential equation (stochastic gLV dynamics):

dxs,i(t) =

[
a1,i

(
1 +

P∑
p=1

γci,pz
(γ)
ci,phs,p(t)

)
xs,i(t)− a2,i(xs,i(t))

2

+
∑

j:cj 6=ci

bci,cjz
(b)
ci,cjxs,i(t)xs,j(t)

dt+ xs,i(t)dws,i(t) (1)

We discretize the above equation using a first-order approximation (see Appendix B for deriva-
tion) resulting in the following discrete time stochastic dynamics:

log(xs,i(k + 1)) | x(k),a,b, γ, z, σ2
w ∼ Normal

(
log(µs,i(k + 1)),∆s,kσ

2
w

)
(2)
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where

log(µs,i(k + 1)) , log(xs,i(k))

+ ∆s,k

a1,i

(
1 +

P∑
p=1

γci,pz
(γ)
ci,phs,p(k)

)
− a2,ixs,i(k) +

∑
j:cj 6=ci

bci,cjz
(b)
ci,cjxs,j(k)

 (3)

Starting from left to right in Equation (3) we have the step size in time ∆s,k = ts,k+1 − ts,k
between two adjacent measurements k and k + 1 with corresponding times ts,k and ts,k+1 in
subject s. The next group of variables models the rate at which the taxa abundance increases
over time with the unperturbed growth rate of taxa i denoted as a1,i. During the course of the
time series experiments, P perturbations are introduced, which we model with a multiplicative
effect on the growth rate. The strength of perturbation p on taxa i is denoted by γci,p along with

a corresponding indicator variable z
(γ)
ci,p, and hp(k), which is equal to one while the perturbation

is active (zero otherwise). Note that the perturbation variables are indexed by ci the module
assignment for taxa i (as described in detail below). The next variable appearing in the dynamics
is the self interaction term a2,i. A classic logistic growth model would only have the growth rate
term a1,i (the slope on a log abundance plot over time) and the self interaction term a2,i, which
together determine the steady state carrying capacity of the population being modeled (see
Figure 2). The next set of parameters in the model capture the pairwise microbial interactions.

The parameter bci,cj captures the strength of the interaction from taxa j on taxa i with z
(b)
ci,cj the

corresponding indicator variable for that interaction. Note once again the interaction variables
are indexed by the interaction module assignments ci just as the perturbations were. With
this model, the taxa in an interaction module share their response to perturbations and their
module-module interaction strengths. Note that there are no interactions between taxa within
the same module.

1.2 Growth and self-limiting variables

We assume that each taxon has a positive growth rate a1,i > 0, as we seek to model colonizing
taxa and not those that simply wash out. We also assume that each taxon has a positive
carrying capacity

a1,i

a2,i
, and thus, a2,i > 0 as well (see Figure 2). We place hierarchical positively

truncated Normal prior distributions on the growth rate and self interaction terms, respectively,

slope = a1,i

steady state =
a1,i

a2,i

time

lo
g

ab
u

n
d

an
ce

Figure 2: A simple logistic growth curve with growth rate a1,i and limiting coefficient
a2,i.
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with their corresponding priors as follows:

µa1 ∼ TruncNormal(0,∞)(µ0,a1 , σ
2
0,a1

) (4)

σ2
a1
∼ Scale-Inv-χ2(νa1 , τ

2
a1

) (5)

a1,i | µa1
, σ2

a1
∼ TruncNormal(0,∞)(µa1

, σ2
a1

) (6)

and

µa2
∼ TruncNormal(0,∞)(µ0,a2

, σ2
0,a2

) (7)

σ2
a2
∼ Scale-Inv-χ2(νa2

, τ2
a2

) (8)

a2,i | µa2
, σ2

a2
∼ TruncNormal(0,∞)(µa2

, σ2
a2

). (9)

The settings for the hyperparameters µ0,a1
, σ2

0,a1
, νa1

, τ2
a1

, µ0,a2
, σ2

0,a2
, νa2

, τ2
a2

are given in
the following subsection.

1.2.1 Growth and self-limiting hyperparameters

The location and squared scale hyperparameters for the prior on µa1
in Equation (4) are set as

follows:

µ0,a1
, 1 (10)

σ2
0,a1

, 104 · median(â1)2 (11)

where â1,i is estimated from the deterministic logistic growth dynamics:

log(xs,i(k + 1)) = log(xs,i(k)) + (a1,i − a2,ixs,i(k))∆s,k

which has the following least squares solution:

[â1,i, â2,i] = arg min
[a1,i, a2,i]

∑
s,k

‖log(xs,i(k + 1))− log(xs,i(k)) + (a1,i − a2,ixs,i(k))∆s,k‖2. (12)

With µ0,a1 set to 1, this corresponds to a mean microbial doubling time of approximately 0.7
days and with the inflated variance in Equation (11) approximately 67% (assuming median(â1)
is approximately unity) of the support for µa1

includes doubling times from 30 minutes to several
days. This results in a relatively diffuse prior for µa1

that reflects feasible doubling times for
bacteria. The hyperparameters for µa2 are set in a similar fashion with:

µ0,a2 , median(ǎ2) (13)

σ2
0,a2

, 104 · median(ǎ2)2 (14)

where ǎ2,i is inferred from the deterministic logistic growth dynamics:

log(xs,i(k + 1)) = log(xs,i(k)) + (|â1,i| − a2,ixs,i(k))∆s,k

which has the following least squares solution:

ǎ2,i = arg min
a2,i

∑
s,k

‖log(xs,i(k + 1))− log(xs,i(k)) + (|â1,i| − a2,ixs,i(k))∆s,k‖2. (15)

This also results in a diffuse prior for µa2
, given that the squared scale is proportional to 104

(scale is thus two orders of magnitude).
The hyperparameters for the prior on σ2

a1
in Equation (5) and σ2

a2
in Equation (8) are:

νa1
, 2.5 (16)

νa2
, 2.5 (17)

τ2
a1

, 104 · median(â1)2 = σ2
0,a1

(18)

τ2
a2

, 104 · median(ǎ2)2 = σ2
0,a2

. (19)

The degrees of freedom parameter for both is chosen as 2.5, because the scaled inverse χ2

distribution has an undefined first moment when the DOF is ≤ 2.
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1.3 Dirichlet process prior on interaction modules

MDSINE2 automatically learns groups of taxa that share common interactions and perturbation
effects, which we term interaction modules. The interaction module associated with each taxon
i is denoted ci. To model interaction modules, we use a Dirichlet Process (DP)-based prior
probability distribution [17, 18].

The module assignment ci for each taxon i are generated can be viewed as being generated
via the following stick-breaking process:

α ∼ Gamma(θα1, θα2) (20)

πc | α ∼ Stick(α) (21)

ci | πc ∼ Multinomial(πc) (22)

where α is the concentration parameter, which implicitly controls the number of modules, πc is
an infinite dimensional vector where

∑∞
k=1 πc,k = 1 and πc,k is the probability that the ci = k

(taxa i is in module k). An explicit construction for Stick is given in Appendix C.
The number of modules in our model scales with how many taxa are present in the data and

the concentration parameter α. Specifically, the expected number of modules scales as: [1]:

Expected number of modules ≈ α log

(
NO + α

α

)
(23)

where NO is the number of taxa.

1.3.1 Concentration parameter hyperparameters

The shape and scale for the prior distribution on α in Equation (20) are defined as follows:

θα1 , 10−5 (24)

θα2 , 105. (25)

These parameters result in a diffuse prior on α with a mean of 1 and a variance of 105, and are
consistent with our previous work on nonparametric models for microbial dynamics [5, 8]. With
the diffuse prior for α in Equation (20), our model is not biased towards any particular number
of modules (other than the log scaling with the data) and jointly learns the number of modules
along with the rest of the model parameters.

1.3.2 Connections between interaction modules and prior work

DPs have been widely used as priors in Bayesian clustering approaches, i.e., infinite mixture
models [18]. Our model also has connections to Stochastic Block Models, Dependent Dirich-
let Processes, and Topic Models [11, 14, 20, 16], which also can account for complex latent
dependencies, similar in spirit to our model [9].

1.4 Interaction variables

The variable bci,cj represents the interaction strength from interaction module cj to interaction
module ci, which can be a positive or negative value. We place a hierarchical Normal prior on
the interaction strengths:

µb ∼ Normal(µ0,b, σ
2
0,b) (26)

σ2
b ∼ Scale-Inv-χ2(νb, τ

2
b) (27)

bci,cj | µb, σ
2
b ∼ Normal(µb, σ

2
b). (28)

The variable z
(b)
ci,cj represents a binary indicator/selector, which determines whether or not there

exists an interaction from interaction module cj to interaction module ci. This variable effectively
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learns the underlying module interaction network topology. The hierarchical prior on z
(b)
ci,cj is as

follows

πb ∼ Beta(b1,b, b2,b) (29)

z(b)
ci,cj | πb ∼ Bernoulli(πb). (30)

As previously stated, with this construction interactions only exist between modules. Taxa within
the same module do not have pairwise ecological interactions. The hyperparameters µ0,b, σ2

0,b,

νb, τ2
b, b1,b, and b2,b are defined in the following subsection.

1.4.1 Interaction hyperparameters

The hyperparameters for µb in Equation (26) are:

µ0,b , 0 (31)

σ2
0,b , 104 · median(ǎ2)2 = σ2

0,a2
(32)

The location parameter µ0,b is chose to be 0 so that we are not biasing µb to be positive or
negative. The squared scale parameter σ2

0,b is set to be identical to the squared scale parameter

σ2
0,a2

. We set the hyperparameters for σ2
b in Equation (27) to be the same as their counterpart

hyperparameters for σ2
a2

in Equation (8) which were originally defined in Equations (17) and (19)
and are as follows

νb , 2.5 (33)

τ2
b , 104 · median(ǎ2)2 = τ2

a2
. (34)

The hyperparameters for the prior on πb are selected to bias the model towards a sparse topology,
analogous to our previous MDSINE model [3], and are defined as follows

b1,b , 0.5 (35)

b2,b , Nb (Nb − 1). (36)

Here, Nb is the expected number of clusters for a Dirichlet Process with concentration α and
number of taxa NO as defined in Equation (23). Note that Nb(Nb − 1) is the total number
of ordered pairs (directed edges) of a network with Nb modules. Thus, the prior distribution
yields an expected number of interactions of 0.5 (i.e., less than one expected interaction [3]),
constituting a “strong” prior probability of no interactions in the interaction module network.

1.5 Perturbation effects

The variable γci,p captures the multiplicative effect of the p-th perturbation on the growth rate
of taxa in module ci through the expression (1 + γci,p) in Equation (1). We place hierarchical,
normal prior probability distributions on γci,p (analogous to the priors we used on the interactions)

µγ,p ∼ Normal(µ0,γ , σ
2
0,γ) (37)

σ2
γ,p ∼ Scale-Inv-χ2(νγ , τ

2
γ ) (38)

γci,p | µγ,p, σ2
γ,p ∼ Normal(µγ,p, σ

2
γ,p) (39)

The variable z
(γ)
ci,p is a binary indicator/selector (analogous to z

(b)
ci,cj , the interaction selector

variable), which determines whether or not there exists an effect of perturbation p on module

ci. The hierarchical prior on z
(γ)
ci,p is as follows:

πγ,p ∼ Beta(b1,γ , b2,γ) (40)

z(γ)
ci,p | πγ,p ∼ Bernoulli(πγ,p). (41)
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1.5.1 Perturbation hyperparameters

The hyperparameters for the prior on µγ,p in Equation (37) is centered around 0 and is set to
be diffuse as for our previous priors:

µ0,γ , 0 (42)

σ2
0,γ , 104 (43)

Similarly, the prior for σ2
γ,p in Equation (38) is diffuse with the scale chosen so that under the

prior E
[
σ2
γ,p

]
= 104,

νγ , 2.5 (44)

τ2
γ , 104 · νγ − 2

νγ
. (45)

The hyperparameters in (40) for πγ,p are selected so that the prior is diffuse and unbiased with
regards to whether a perturbation impacts a module or not with:

b1,γ , 0.5 and b2,γ , 0.5 (46)

which results in E[πγ,p] = 0.5 under the prior.

1.6 Process variance

The process variance σ2
w has the following prior:

σ2
w ∼ Scale-Inv-χ2(νw, τ

2
σ2
w

). (47)

1.6.1 Process variance hyperparameters

The hyperparameters νw and τ2
σ2
w

are defined as follows

νw , 2.5 (48)

τ2
σ2
w
, 0.22 · νw − 2

νw
, (49)

where the prior is diffuse with a low degree of freedom and the scale parameter is chosen so that
under the prior E[σ2

w] = .22 which corresponds to 20% variation for the multiplicative process
variance in our model.

1.7 Measurement error model

The observed data consist of sequencing counts ys,i(k) and qPCR measurements Qs,r(k), for
subject s, taxon i, time-point tk and qPCR replicate r. We assume that observed data are
generated by the underlying latent taxa concentrations xs(k). As in our previous MDSINE
model [3], and other sequencing data error models [15, 13], we model sequencing counts ys,i(k)
using a negative binomial distribution parameterized by its mean, φsi, and dispersion parameter
εsi(·):

ys,i(k) | xs(k) ∼ NegBin
(
φs,i(xs(k), rs(k)), εs,i(xs(k), d0, d1)

)
. (50)

The mean φs,i is proportional to the relative abundance of the taxon:

φs,i(xs(k), rs(k)) , rs(k)
xs,i(k)∑
i xs,i(k)

(51)
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where rs(k) is the total number of reads at time tk for subject s. The dispersion parameter εs,i
is defined as follows:

εs,i(xs(k), d0, d1) ,
d0

xs,i(k)/
∑
i xs,i(k)

+ d1 (52)

where d0 and d1 are parameters pre-trained on replicates before inference is performed on the
model (see Appendix E).

We place a log-Normal prior distribution on the qPCR measurements, Qs,r(k), with the
mean of the distribution parametrized by the total latent concentration of taxa for the given
sample being modeled:

log(Qs,r(k)) | xs(k) ∼ Normal
(

log
(∑

i

xs,i(k)
)
, σ2

Qs(k)

)
(53)

where
σ2
Qs(k) , Ṽ3

r=1

[
logQdata

s,r (k)
]

(54)

is the empirical variance for the log of the qPCR replicate measurement values, Qdata
s,r (k), for

subject s at time-point k over the r replicates.

2 Model inference

We employ Markov Chain Monte-Carlo sampling with Gibbs and collapsed Gibbs sampling when
possible and Metropolis-Hastings (MH) when direct sampling from the posterior is not possible.
The order in which the parameters of the model are inferred is as follows:

1. Sample cluster interaction indicators z(b), then their probabilities πb (Section 2.4).

2. Sample perturbation indicators z
(γ)
p , then their probabilities πγ,p (Section 2.4).

3. Sample interaction magnitudes bci,cj and perturbation magnitudes γci,p jointly (Sec-
tion 2.1).

4. Sample growth rates a1 and self-interactions a2 (Section 2.2).

5. Sample prior means µb and µγ,p (Section 2.1).

6. Sample prior means µa1 and µa2 (Section 2.2).

7. Sample prior variances σ2
a1

and σ2
a2

(Section 2.2).

8. Sample prior variances σ2
b and σ2

γ (Section 2.1).

9. Sample process variance σ2
w (Section 2.3).

10. Sample latent trajectories xs,i(k) (Section 2.5).

11. Sample cluster assignments ci (Section 2.6).

12. Sample concentration parameter α (Section 2.6).

Notation

We let Ω denote the set of all model parameters and the \ symbol is used to subtract from that
set. For instance Ω\b is all model parameters except for the interaction strengths. To denote a
partial vector of variables, we use the symbol. For example c i indicates all cluster assignments
except for that for taxon i. When referring to specific Gibbs samples we will use a superscript
[·] to denote which one (e.g. b[g] for the g-th sample of all the interaction strengths between
modules) with (·)[0] denoting initial conditions.

11



2.1 Sampling perturbation and interaction strengths and their priors

The joint conditional distribution for b and γ is:

p(b, γ | Ω \ (b, γ)) =
∏
s,i,k

Normal
(
log(xs,i(k)) | log(µs,i(k)),∆s,kσ

2
w

)
×
∏
`,m

Normal
(
b`,m | µb, σ

2
b

)
×
∏
`,p

Normal
(
γ`,p | µγ,p, σ2

γ,p

)
The posterior can be written in closed form and sampled from directly (see Appendix D).

We initialize all interactions and perturbations to be zero, b[0] = 0 and γ[0] = 0.
The parameters µb and σ2

b have conjugate priors with posteriors:

p(µb | b) =
∏
`,m

Normal(b`,m | µb, σ
2
b) · Normal(µb;µ0,b, σ

2
0,b)

and
p(σ2

b | b) =
∏
`,m

Normal(b`,m | µb, σ
2
b) · Scale-Inv-χ2(σ2

b; νb, τ
2
b)

from which posteriors can be written in closed form and sampled from directly [7]. The param-
eters µγ,p and σ2

γ,p have conjugate priors of identical structure with corresponding posteriors of
identical form that can be sampled from directly as well.

The location parameters are initialized as µ
[0]
b = 0 and µ

[0]
γ,p = 0 with the squared scale

parameters initialized as
(
σ2
b

)[0]
= σ2

0,b with σ2
0,b defined in Equation (32) and

(
σ2
γ,p

)[0]
= σ2

0,γ

with σ2
0,γ defined in Equation (43).

2.2 Sampling growth rates, self-interaction strengths and parameters of
their priors

The growth a1 and self-interactions a2 both have truncated Normal priors. We sample these
parameters consecutively (but in a random order at each Gibbs step):

1. Sample a1 | Ω \ a1

2. Sample a2 | Ω \ a2

Under this conditioning, the posterior of a1,i is a scalar truncated Normal distribution:

p(a1,i | Ω \ a1,i) ∝
∏
s,k

Normal
(
log(xs,i(k)) | log(µs,i(k)),∆s,kσ

2
w

)
× TruncNormal(0,∞)(a1,i | µa1 , σ

2
a1

)

which can be sampled from directly; the posterior for a2,i has an identical structure.
The growth and self interaction parameters are initialized using the regression results from

Section 1.2.1, where a
[0]
1 = |â1| in (12) and a

[0]
2 = |ǎ2| in (15).

The location parameter µa1 posterior is:

p(µa1
| a1) ∝

∏
i

TruncNormal(0,∞)

(
a1,i;µa1

, σ2
a1

)
· TruncNormal(0,∞)

(
µa1

;µ0,a1
, σ2

0,a1

)
which cannot be sampled from directly in closed form. Thus we use the MH algorithm [7] for
sampling µa1 with the following proposal distribution:

µ[∗]
a1
∼ TruncNormal(0,∞)(µ

[g−1]
a1

, σ2
1,prop).
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The proposal variance is initialized to σ2
1,prop = µ2

0,a1
and is tuned during the first half of burn-in

to adjust the acceptance rate to 0.44 (an empirically optimized rate for a MH step on a scalar
variable [7]). For the details on how this tuning is done, see Appendix F. The location parameter
µa2

is updated analogously, using the MH algorithm with a similar proposal distribution that is
centered on the previous Gibbs sample.

The location parameters are initialized as µ
[0]
a1 = µ0,a1

and µ
[0]
a2 = µ0,a2

, where µ0,a1
and

µ0,a2
are defined in Equations (10) and (13).

The squared scale parameters σ2
a1

and σ2
a2

both have a Scale-Inv-χ2 prior. However, these
priors are not conjugate to the truncated normal distributions of a1 and a2. We use an MH
update for these parameters as well. With σ2

a1
as an example (the equations for σ2

a2
are exactly

analogous), the posterior for σ2
a1

is:

p(σ2
a1
| a1) = Scale-Inv-χ2(σ2

a1
; νa1

, τ2
a1

)
∏
i

TruncNormal(0,∞)

(
a1,i;µa` , σ

2
a`

)
.

The proposal distribution for σ2
a1

is a scaled inverse χ2 distribution (approximately) centered at
the previous value. More precisely,

(σ2
a1

)
[∗] ∼ Scale-Inv-χ2

(
ν1,prop, (σ

2
a1

)[g−1]
)
.

The parameter ν1,prop is initialized to 15 (which results in an initial proposal variance of 0.24 ·
(σ2

a1
)[g−1]), and is tuned during the first half of burn-in to adjust the acceptance rate to 0.44

(see Appendix F for details).

The squared scale parameters are initialized as
(
σ2
a1

)[0]
= σ2

0,a1
and

(
σ2
a2

)[0]
= σ2

0,a2
, where

σ2
0,a1

and σ2
0,a2

are defined in Equations (11) and (14).

2.3 Sampling process variance

The process variance σ2
w’s prior in (47) is conjugate to the distribution for the latent trajectory

dynamics in (2). Its posterior can be sampled from directly with Gibbs updates being drawn
from:

σ2
w | Ω¬σ2

w
∼ Scale-Inv-χ2

(
νw +Nw,

νwτ
2
σ2
w

+NwS
2
w

νw +Nw

)
where Nw is the a product of the number of subjects, the number of OTUs and one less the
number of time points for the samples. Here, S2

w = Ṽi,s,k[logxs,i(k) − logxs,i(k − 1)], which
is the empirical variance of the differences in log-abundances. The process variance is initialized

to the mean of its prior, Equation (47), as
(
σ2
w

)[0]
= 0.22.

2.4 Sampling indicators variables and their priors

We update the interaction indicators z
(b)
`,m between modules m and ` in a random order at each

Gibbs step. For efficiency, we perform collapsed Gibbs sampling with marginalization over the
interaction variables:

P
(
z

(b)
`,m = u | Ω \ (b, z

(b)
`,m)

)
=

∫
p
(
z

(b)
`,m = u,b | Ω \ (b, z

(b)
`,m)

)
db (55)

= Bernoulli(u;πb)

∫ ∏
s,i,k

Normal
(
logxs,i(k); logµs,i(k),∆s,kσ

2
w

)
×
∏

¯̀,m̄ : m̄6=¯̀

Normal(b¯̀,m̄;µb, σ
2
b)db

The prior probability for an interaction πb has a conjugate beta prior and its posterior

πb | z(b) ∼ Beta

b1,b +
∑

`,m :m6=`

z
(b)
`,m , b2,b +

∑
`,m :m 6=`

(
1− z

(b)
`,m

) (56)
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can be sampled from directly. The corresponding variables πγ,p and z
(γ)
ci,p have posteriors of

identical form that can be sampled from directly.
The indicators for both the interactions and the perturbations are initialized to zero,(

z
(b)
`,m

)[0]

= 0 and
(
z(γ)
ci,p

)[0]

= 0.

The prior probabilities are initialized to the mean of their corresponding priors in Equations (29)

and (40) as π
[0]
b = 0.5

0.5+Nb(Nb−1) and π
[0]
γ,p = 0.5.

2.5 Sampling latent trajectories

The latent state xs,i(k) has a posterior:

p(xs,i(k) | Ω \ xs,i(k)) = NegBin(ys,i(k);φs,i, εs,i)

×
∏
r

Normal

(
log(Qr,s(k)); log

(∑
i

xs,i(k)

)
, σ2

Qs(k)

)
× Normal

(
log(xs,i(k)); log(µs,i(k)),∆s,kσ

2
w

)
× Normal

(
log(xs,i(k + 1)); log(µs,i(k + 1)),∆s,k+1σ

2
w

)
which is nonlinear in the latent state and does not have a closed form that can be sampled from.
We use an MH step for xs,i(k) with a proposal distribution centered at the previous MCMC
state:

log(x
[∗]
s,i(k)) ∼ Normal

(
log
(
x

[g−1]
s,i (k)

)
, σ2

x,s,prop

)
where the proposal variance σ2

x,s,prop is optimized for each subject s independently. The proposal
variance is tuned to achieve the acceptance rate of 0.44 (see Appendix F).

We initialize the latent trajectory for each subject s and taxa i using a random truncated
normal centered around a LOESS interpolation from the data. More specifically, for each subject
s, we take

x
[0]
s,i(k) ∼ TruncNormal(0,∞)

(
x̂loesss,i (k), σ2

x̂,loess

)
where x̂loesss,i (k) is the degree-1 LOESS interpolation over each time series s, using as input
bacterial abundances obtained by multiplying the relative abundance of each OTU i from the
sequencing reads for subject s at time index k, ys,i(k), by the geometric mean of the qPCR
measurements vector, Qs(k), that is:

x̂loesss , LOESS(x̂datas )

x̂datas,i (k) ,
ys,i(k)∑
i ys,i(k)

· geometricmean(Qs(k))).

The squared scale parameter σ2
x̂,init is defined as

σ2
x̂,init , 10−4

(
x̂loesss,i (k)

)2
+ 10−4

so that the sampled values for the initialization are close to the LOESS interpolation.

2.6 Sampling module assignments and DP priors

We sample the module assignement for each taxon in a random order at each Gibbs step. For
efficiency, we perform collapsed Gibbs sampling, integrating out the interaction and perturbation
strength parameters. Let c i denote the current clustering assignments of all taxa except for
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taxon i. The likelihood of the latent trajectory for taxon i, given that the taxon has been
assigned to module m, is:

P (x | ci = m, z, c i, σ
2
w) =

∫
γ,b

∏
s,i,k

Normal
(
log(xs,i(k)); log(µs,i(k)),∆s,kσ

2
w

)
Using Algorithm 8 in [17], the posterior probability for taxon i being assigned to module m is:

P (ci = m | x, z, c i, σ2
w) ∝

{
n¬i,m · P (x | ci = m, z, c i, σ

2
w) if n i,m > 0

α · P (x | ci = m, z, c i, σ
2
w) if n i,m = 0

where n i,m are the number of taxa in module m excluding taxon i (equal to the size of module
m minus 1 if it previously contained i, and zero if it’s a new module).

The module assignments are initialized by performing agglomerative clustering (stopped at
30 clusters) using Spearman rank correlation as the linkage measure on the taxa trajectories
estimated from data. We sample the concentration parameter α using an auxiliary variable
method as reported in [6, §6 Eqs. (13) and (14)]

3 Subsection

We assess MCMC mixing using the metric R̂ defined in [2], Equation 1.1:

R̂ =

√(
N − 1

N
+
M + 1

MN

B

W

)
d+ 3

d+ 1

where M is the number of independent markov chains, N is the length of each chain, d is the
method-of-moments estimator for the degrees of freedom as in [2], B is the between-sequence
variance (sample variance of the mean value of each chain), and W is the within-sequence
variance (the mean of the sample variance of each chain).

4 Agglomerating ASVs into OTUs

DADA2 was used to process the raw reads produced from amplicon sequencing and convert
them into a table of read abundance per Amplicon Sequence Variant (ASV) for each sample [4].
During the analysis of individual ASV trajectories, we noticed that reads seemed to be alternately
assigned to almost entirely to one of two closely related ASVs at adjacent time-points, creating
artifacts in the ASV abundance trajectories over time. For this reason, we agglomerated ASVs
into OTUs until the average linkage was a Hamming distance of 3 base pairs within each
agglomeration (resulting in approximately 98.8% sequence similarity). For an example of this
artifact in ASV abundances over time, see Figure 3 where we have plotted OTU3’s trajectory
over time in mouse 2 and 5. We have highlighted the regions of interest with a maroon box. In
mouse 2, just after day 3,0 notice that ASV3 increases by almost two orders of magnitude with
a corresponding drop in the abundance of ASV5 at the same time. In Mouse 5 before day 25,
we see complete disappearance of ASV5, which has a relative abundance of approximately 0.4
in the adjacent time point, with a corresponding increase of ASV3 by two orders of magnitude.
Agglomeration of ASVs into OTUs removed these artifacts. Plots showing the abundances of
the the corresponding ASVs that were agglomerated into each OTU can be found via the zenodo
link provided at the end of the main text in the section on data availability.

5 Stability

One of the necessary conditions for the global stability of the dynamics in Equation (1) is that the

interaction matrix A, whose elements are defined as [A]i,j , bci,cjz
(b)
ci,cj , is Diagonally Stable
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(D-stable), see [11, Supplementary Text §4.2 Theorem 5] and the original proof by Goh in [10].
A matrix is said to be diagonally stable if there exist a positive definite and diagonal matrix D
such that ATD +DA < 0. Necessary and sufficient conditions for a matrix being D-stable are
non-trivial to check. However, one condition that is only necessary for D-stability is that all the
eigenvalues of A have real parts less than zero. This is equivalent to the relaxed condition satisfied
by the Lyapunov equation, that there exists a positive definite P (not necessarily diagonal) such
that ATP+PA < 0. We chose to analyze this necessary condition in the stability analysis of our
inferred dynamics because it is computationally efficient to check and necessary for D-stability.

Mouse 2

Mouse 5

Figure 3: OTU 3 relative abundance computed directly from raw reads in mouse 2 and
5, Healthy-cohort.
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A Probability density functions

To resolve any ambiguity in the parameterization of standard probability distributions, we list
their density functions here.

• The Scale-Inv-χ2distribution is parametrized with degrees of freedom ν and scale τ2,
and has density

Scale-Inv-χ2(x; ν, τ2) =
(τ2ν/2)−ν/2

Γ(ν/2)
x(−ν/2)−1 exp

(
− ντ2

2x

)
.

• The gamma distribution is parameterized with shape k and scale θ, and has density

Gamma(x; k, θ) =
1

Γ(k)θk
xk−1 exp

(
− x

θ

)
.

• The negative binomial distribution is parametrized with mean φ and dispersion ε. Its
density is

NegBin(y;φ, ε) =
Γ(r + y)

y!Γ(r)

( φ

r + φ

)y( r

r + φ

)r
where r = 1/ε.

• The uniform distribution (over an interval) is parametrized with support [a, b] as

Uniform(x; a, b) =

{
1
b−a for x ∈ [a, b]

0 otherwise.

• The beta distribution is parametrized by two scale parameters α, β > 0

Beta(x;α, β) = xα−1(1− x)β−1 Γ(α+ β)

Γ(α)Γ(β)
.

• The truncated Normal distribution is parametrized with location µ, scale squared σ2, and
support (v1, v2) as

TruncNormal(v1,v2)(x;µ, σ2) =
1

(2π)1/2σ

1

Φ
(
v2−µ
σ

)
− Φ

(
v1−µ
σ

) exp

(
−(x− µ)2

2σ2

)

where Φ(·) is the the cumulative distribution function of a standard normal distribution.

• The log-normal distribution is parametrized with center µ and scale σ2 as:

Lognormal(x;µ, σ2) =
1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
At various points throughout this document, we use the following notation. Given x1, x2, . . . , xn ∈
R, we write Ẽni=1[xi] and Ṽni=1[xi] to denote their empirical mean and variances:

Ẽni=1[xi] =
1

n

n∑
i=1

xi

Ṽni=1[xi] =
1

n

n∑
i=1

(xi − Ẽni=1[xi])
2
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B Discretizing GLV dynamics

In this section we demonstrate how our model in Equation (2) is derived from Equation (1).
Equation (1) can be written in the following form:

dxs,i(t) = xs,i(t)[f(xs(t))dt+ dws,i(t)].

where the factor xs,i(t) has been pulled out. Dividing both sides by xs,i(t) results in:

dxs,i(t)

xs,i(t)
= f(xs(t))dt+ dws,i(t).

Integrating from time ts,k to ts,k+1 where the lefthand side can be computed explicitly and
approximating the the right hand side by the Euler-Maruyama method [12]:

logxs,i(ts,k+1)− logxs,i(ts,k) = f(xs(ts,k))(ts,k+1 − ts,k) + ws,i(ts,k+1)− ws,i(ts,k).

With ws,i(ts,k+1)− ws,i(ts,k) a Wiener process with variance ∆s,kσ
2
w we have that

ws,i(ts,k+1)− ws,i(ts,k) ∼ Normal(0,∆s,kσ
2
w)

Taken together these dynamics can be described as follows:

logxs,i(ts,k+1) ∼ Normal(logxs,i(ts,k) + f(xs(ts,k))∆s,k,∆s,kσ
2
w)

which gives us Equation (2).

C Stick-breaking process

Sethuraman describes a “stick-breaking” construction [19] for the DP. In this formulation, the
vector of probabilities πc,1, πc,2... is generated as:

βj ∼ Beta(1, α)

πc,k = βk

k−1∏
j=1

(1− βj)

By construction,
∑∞
i=1 πc,i = 1.

D Bayesian regression: posterior and marginalization

In this section we review Bayesian regression and parameter marginalization with the following
model:

y | w ∼ Normal(Xw,Σ1) and w ∼ Normal(µ2,Σ2),

where X is an n×d matrix. We assume that X,µ2,Σ1,Σ2 are known. The goal of the following
calculations is to compute the posterior w | y and the marginal of y. Let

py|w , Normal(y;Xw,Σ1) and pw , Normal(w;µ2,Σ2),
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The joint density of y and w is:

py,w = py|wpw =
1

(2π)n/2|Σ1|1/2
1

(2π)d/2|Σ2|1/2

× exp

(
−1

2
(y −Xw)TΣ−1

1 (y −Xw)− 1

2
(w − µ2)TΣ−1

1 (w − µ2)

)
=

1

(2π)n/2|Σ1|1/2
1

(2π)d/2|Σ2|1/2

× exp

(
−1

2
(wT(XTΣ−1

1 X + Σ−1
2 )w − (yTΣ−1

1 X + µT
2 Σ−1

2 )w)

)
× exp

(
−1

2
(−wT(XTΣ−1

1 y + Σ−1
2 µ2) + µT

2 Σ−1
2 µ2 + yTΣ−1

1 y)

)
To simplify the expression above, we introduce the following definitions:

Σ−1
3 = XTΣ−1

1 X + Σ−1
2

µ3 = Σ3(XTΣ−1
1 y + Σ−1

2 µ2)

which results in:

py|wpw =
1

(2π)n/2|Σ1|1/2
1

(2π)d/2|Σ2|1/2
exp

(
− 1

2
(wTΣ−1

3 w − µT
3 Σ−1

3 w − wTΣ−1
3 µ3)

)
· exp

(
− 1

2
(µT

2 Σ−1
2 µ2 + yTΣ−1y)

)
.

Completing the square of the quadratic term in the first exponential gives:

py|wpw =
1

(2π)n/2|Σ1|1/2
1

(2π)d/2|Σ2|1/2
exp

(
− 1

2
(w − µ3)TΣ−1

3 (w − µ3)
)

· exp
(
− 1

2
(−µT

3 Σ−1
3 µ3 + µT

2 Σ−1
2 µ2 + yTΣ−1

1 y)
)
. (57)

Since pw|y ∝ py|wpw from Equation (57) it follows that

pw|y ∝ exp

(
−1

2
(w − µ3)TΣ−1

3 (w − µ3)

)
.

The posterior distribution for w is then w | y ∼ Normal(µ3,Σ3). We now discuss the marginal-
ization of w from the joint distribution in Equation (57). We begin by multiplying and dividing
by |Σ3|1/2 resulting in:

py|wpw =
1

(2π)n/2|Σ1|1/2
|Σ3|1/2

|Σ2|1/2
1

(2π)d/2|Σ3|1/2
exp

(
− 1

2
(w − µ3)TΣ−1

3 (w − µ3)
)

· exp
(
− 1

2
(−µT

3 Σ−1
3 µ3 + µT

2 Σ−1
2 µ2 + yTΣ−1

1 y)
)
.

Noting that ∫
1

(2π)d/2|Σ3|1/2
exp

(
− 1

2
(w − µ3)TΣ−1

3 (w − µ3)
)
dw

we arrrive at the marginal distribution

py =

∫
py|wpw dw

=
1

(2π)n/2|Σ1|1/2
|Σ3|1/2

|Σ2|1/2
exp

(
− 1

2
(µT

2 Σ−1
2 µ2 + yTΣ−1

1 y − µT
3 Σ−1

3 µ3)
)
.
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E Estimating negative binomial dispersion parameters from
data

The negative binomial dispersion parameters d0 and d1 are estimated offline before we learn
the other parameters of the model (once learned, d0 and d1 are fixed for the remainder of the
main model inference). Inference of d0 and d1 is done using Metropolis-Hastings (MH) steps
with a modified dynamics model. The change is that we model the latent trajectory x as being
generated directly from the replicate data. This model is completely stand alone from the other
model and so as to not cause confusion all model parameters here have an over bar (i.e. x̄ ).

Model details

We assume that the abundance of the latent state is generated from a normal distribution

x̄κ,i ∼ Normal
(
µx̄,κ,i, 100 · σ2

x̄,κ,i

)
where

x̄dataκ,ρ,i ,
ȳκ,ρ,i∑
i ȳκ,ρ,i

exp

(
1

3

3∑
r=1

log Q̄κ,r

)
µx̄,κ,i , Ẽ6

ρ=1

[
x̄dataκ,ρ,i

]
σ2
x̄,κ,i , Ṽi[µx̄,κ,i]

Here, ȳκ,ρ,i are the sequencing reads associated with taxon i in sample κ for sequencing replicate
ρ, and Q̄κ,r represents the bacterial concentration in CFU/g in sample κ for qPCR replicate r.
As before we assume that the reads ys,i are negative-binomially distributed:

ȳκ,ρ,i | x̄κ, d̄0, d̄1 ∼ NegBin
(
φ(x̄κ, r̄κ), ε(x̄κ, d̄0, d̄1)

)
(58)

where φ and ε are defined in Equations (51) and (52), r̄κ,ρ is the read depth for sample κ and
sequencing replicate ρ. We assume that d̄0 and d̄1 have uniform priors [3]:

d̄0 ∼ Uniform(0, 105) (59)

d̄1 ∼ Uniform(0, 105) (60)

We assume that the log of the qPCR measurements are log normally distributed as before:

log(Q̄κ,r) ∼ Normal

(
log

(∑
i

x̄κ,i

)
, 100 · σ2

Q̄κ

)
(61)

where σ2
Q̄κ

, Ṽr
[
log Q̄κ,r

]
We set σ2

Qs
to be the empirical variance of the triplicates (as in

Section 1.7) but multiplied by 100 to make this a less informative prior.

Inference

For this offline procedure we learn xs,i, d0, and d1 in the following order:

1. Sample negative binomial dispersion parameters d0, and d1.

2. Sample latent trajectory xs,i.

We use MH steps with an adaptive proposal to update the values d0 and d1. Since the inference
scheme is the same for both d0, and d1 we only give the details for d0. The proposal for the
gth MH step is a positively truncated normal distribution centered around the previous value

d̄
[∗]
0 ∼ TruncNormal(0,∞)(d̄

[g−1]
0 , σ2

d̄,0) (62)
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The target distribution is proportional to Equation (58). The proposal variance σ2
d̄,0

is initialized
as:

σ2
d̄,0 =

1

100

(
d̄

[0]
0

)2

(63)

where d̄
[0]
0 is defined below. During the first half of the burn-in period, σ2

d̄,0
is tuned to adjust

the acceptance rate towards 0.44, the optimal value of a scalar MH step [7] (see Appendix F).
After tuning is finished, σ2

d̄,0
is fixed for the rest of inference. We initialize the negative binomial

dispersion parameters as:

d̄
[0]
0 = 0.001 (64)

d̄
[0]
1 = 0.05 (65)

this is the same initialization that was used in our prior work [3], and the latent state is initialized
as

x̄
[0]
κ,i ∼ TruncNormal(0,∞)(µx̄,κ,i, 10−4). (66)

F Metropolis-Hastings Proposal Tuning

To encourage optimal mixing behavior of the Metropolis-Hastings steps we targeted an ac-
ceptance rate of 0.44 as suggested in [7]. To accomplish this, our burn-in iterations have an
additional tuning-step built into the sampling step, applied once every 50 iterations. This tuning-
step is applied immediately after the MH step is applied for that iteration. If the acceptance
rate over the last 50 iterations is smaller than 0.44, we encourage a more localized search by
shrinking the proposal variance. If instead, the acceptance rate is larger than 0.44, we encourage
a more broad search by increasing the proposal variance. If the proposal distribution is a Normal
distribution, then we shrink the variance by dividing the proposal’s σ2 by 1.5, or increase it by
multiplying by 1.5. If the proposal distribution is a scaled inverse χ2 distribution then we shrink
the variance by multiplying the degrees of freedom parameter ν by 1.5, or increase the variance
by dividing the degrees of freedom by 1.5.

G Bayes Factor Computation

In this section we let D to denote the observed data (qPCR measurements and sequencing read
counts). With fixed module memberships the Bayes factor for an interaction from module ` to
m is

Pr(z
(b)
`,m = 1 | D)/Pr(z

(b)
`,m = 1)

Pr(z
(b)
`,m = 0 | D)/Pr(z

(b)
`,m = 0)

where the posteriors Pr(· | D) are estimated from MCMC samples and the prior contributions
are obtained by marginalizing out πb:

Pr(z
(b)
`,m = 1) =

1

B(b1,b, b2,b)

∫ 1

0

π
b1,b−1
b (1− πb)b2,b−1dπb

=
B(1 + b1,b, b2,b)

B(b1,b, b2,b)

Pr(z
(b)
`,m = 0) =

1

B(b1,b, b2,b)

∫ 1

0

(1− πb)b1,b−1π
b2,b−1
b dπb

=
B(b1,b, 1 + b2,b)

B(b1,b, b2,b)

where B is the beta function. The Bayes factors for each perturbations effect on a module is
computed in the same manner.
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