Title: Emergence of compensatory mutations reveal the importance of electrostatic interactions between HIV-1 integrase and genomic RNA

Short title: Molecular basis of HIV-1 integrase-gRNA interactions

Authors: Christian Shema Mugisha¹, Tung Dinh², Kasyap Tenneti¹, Jenna E. Eschbach¹,
Keanu Davis¹, Robert Gifford³, Mamuka Kvaratskhelia², Sebla B. Kutluay¹

¹ Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis,
MO 63110, USA

² Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO 80045

³ MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd., Bearsden,
Glasgow G61 1QH, UK.

Correspondence: kutluay@wustl.edu
ABSTRACT

Independent of its catalytic activity, HIV-1 integrase (IN) enzyme regulates proper particle maturation by binding to and packaging the viral RNA genome (gRNA) inside the mature capsid lattice. Allosteric integrase inhibitors (ALLINIs) and class II IN substitutions inhibit the binding of IN to the gRNA and cause the formation of non-infectious virions characterized by mislocalization of the viral ribonucleoprotein complexes between the translucent conical capsid lattice and the viral lipid envelope. To gain insight into the molecular nature of IN-gRNA interactions, we have isolated compensatory substitutions in the background of a class II IN (R269A/K273A) variant that directly inhibits IN binding to the gRNA. We found that additional D256N and D270N substitutions in the C-terminal domain (CTD) of IN restored its ability to bind gRNA and led to the formation of infectious particles with correctly matured morphology. Furthermore, reinstating the overall positive electrostatic potential of the CTD through individual D256R or D256K substitutions was sufficient to restore IN-RNA binding and infectivity for the R269A/K273A as well as the R262A/R263A class II IN mutants. The compensatory mutations did not impact functional IN oligomerization, suggesting that they directly contributed to IN binding to the gRNA. Interestingly, HIV-1 IN R269A/K273A, but not IN R262A/R263A, bearing compensatory mutations was more sensitive to ALLINIs providing key genetic evidence that specific IN residues required for RNA binding also influence ALLINI activity. Structural modeling provided further insight into the molecular nature of IN-gRNA interactions and ALLINI mechanism of action. Taken together, our findings highlight an essential role of IN-gRNA interactions for proper virion maturation and reveal the importance of electrostatic interactions between the IN CTD and the gRNA.
AUTHOR SUMMARY

In addition to its well-defined catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome and regulates proper virion maturation. Inhibition of IN binding to the HIV-1 genome through mutations of positively charged residues within the C-terminal domain (CTD, i.e. R269, K273) results in non-infectious particles in which the viral genomes are mislocalized in improperly matured virions. Here we have isolated compensatory mutations in the background of the class II IN (R269A/K273A) mutant virus that restored the ability of IN to bind RNA. We found that additional substitutions of nearby acidic residues (i.e. D256 and D270), which restored the overall positive charge of the CTD, rescued the ability of IN to bind RNA and thus resulted in formation of correctly matured, infectious virions. These compensatory substitutions also revealed the role of specific residues within the CTD that determine sensitivity to allosteric integrase inhibitors (ALLINIs), a class of compounds that indirectly target IN-RNA interactions. Taken together, our findings reveal the importance of the electrostatic interactions between the IN CTD and the gRNA and provide key genetic evidence for a crucial role of the CTD in antiviral activity of ALLINIs.
INTRODUCTION

A defining feature of retroviruses is the reverse transcription of the viral RNA genome (gRNA) and integration of the resultant linear viral DNA into a host chromosome, which establishes lifelong infection. The latter reaction is mediated by the viral integrase (IN) enzyme, which catalyzes 3' processing and DNA strand transfer reactions [1]. The catalytic activity of HIV-1 IN has been successfully targeted by several integrase strand-transfer inhibitors (INSTIs) [2-7] that have become key components of frontline anti-retroviral therapy regimens due to their high efficacy and tolerance profiles [8-11]. In addition, HIV-1 IN has an emerging non-catalytic function in virus replication [12-16]. Successful targeting of this second function can complement the existing antiviral regimens and substantially increase the barrier to INSTI resistance.

HIV-1 IN consists of three independently folded protein domains: the N-terminal domain (NTD) bears the conserved His and Cys residues (HHCC motif) that coordinate Zn$^{2+}$ binding for 3-helix bundle formation; the catalytic core domain (CCD) adopts an RNase H fold and harbors the enzyme active site composed of an invariant DDE motif, and C-terminal domain (CTD) which adopts an SH3 fold [17, 18]. Integration is facilitated by a cellular co-factor, lens epithelium-derived growth factor (LEDGF/p75), which binds tightly to a site within the CCD dimer interface [19, 20] and guides the preintegration complex to actively transcribed regions of the host chromosome [19-24]. A group of pleotropic IN substitutions distributed throughout IN, collectively known as class II mutations, disrupt viral assembly [13, 16, 25-36], morphogenesis [12, 16, 27, 32-34, 37, 38] and reverse transcription in target cells [12-14, 16, 29, 31, 32, 34, 36-54] often without obstructing the catalytic activity of IN in vitro [13, 27, 28, 31, 40, 41, 44, 46, 55-57]. A hallmark of class II IN mutant viruses is the mislocalization of the viral ribonucleoprotein complexes (vRNP) outside of the viral capsid (CA) lattice, a deformation which is often referred to as eccentric morphology [12, 15, 16, 27, 32-34, 37, 38, 58-60]. Although originally designed to inhibit integration through preventing the binding of IN to LEDGF/p75 [58, 61-65], allosteric
integrase inhibitors (ALLINIs) potently inhibit proper virion maturation [12, 37, 61] and lead to the formation of virions that display a similar eccentric morphology observed with class II IN mutations [12].

We have recently shown that binding of IN to the gRNA in mature virions accounts for the non-catalytic function of IN in virus replication and is required for proper encapsidation of the viral ribonucleoproteins (vRNPs) inside the mature CA lattice [38]. Class II IN substitutions and ALLINIs block IN-gRNA binding, thus causing formation of virions with an eccentric morphology [15, 38]. IN binds to multiple distinct locations on the gRNA, including the TAR hairpin present within the 5' and 3'UTRs of the gRNA and constitutes a high affinity binding site [38]. IN preferentially binds to the gRNA in a tetrameric state, and many class II IN mutations block IN-gRNA binding by disrupting the functional oligomerization of IN [15]. Mutation of basic residues within IN-CTD (i.e. R262, R263, R269 and K273) inhibits IN-gRNA binding without altering functional IN oligomerization in virions and in vitro [15, 38], suggesting that these residues are directly involved in binding to the gRNA. On the other hand, the precise mechanism of how these residues mediate recognition of specific sequence elements on the gRNA remains unknown. For example, it is possible that the positively charged Lys and Arg residues interact with the negatively charged RNA phosphate backbone in a non-specific or semi-specific manner, depending on the folding and structure of the cognate RNA element, driven by electrostatic interactions [66-68]. Alternatively, these residues can mediate specific interactions with RNA targets through H-bonding and van der Waals contacts with individual nucleobases [66-68].

To gain insight into the mode of IN-gRNA interactions, the non-infectious IN R269A/K273A class II mutant virus was serially passaged in T-cells until the acquisition of compensatory mutations. We found that two compensatory mutations, D256N and D270N, within the IN-CTD restored virion infectivity, IN-RNA interactions and accurate virion morphogenesis. As the D-to-N mutations resulted in loss of two negative charges, possibly overcoming the loss of two positive charges...
with the R269A/K273A class II substitutions, we tested whether restoring the overall charge of CTD through other mutations would restore IN-gRNA binding and virion infectivity. Indeed, the D256R substitution alone restored virion infectivity and RNA binding for the IN R269A/K273A mutant. We further extended these findings to another class II mutant, R262A/R263A, which was similarly suppressed by the D256R as well as D256K substitutions. Compensatory mutations did not affect the ability of IN to multimerize in vitro or in virions, suggesting that they restored the RNA-binding ability of IN directly. Interestingly, the IN R269A/K273A, but not the IN R262A/R263A, mutant viruses bearing the compensatory mutations had increased sensitivity to ALLINIs, providing key genetic evidence that specific residues within the CTD, which are required for RNA binding, also contribute to ALLINI mechanism of action. Together, our findings strongly suggest that IN-RNA interactions are at least in part driven by electrostatic interactions between the basic residues within IN-CTD and phosphate backbone of the gRNA and highlight that ALLINIs engage CTD residues to inhibit RNA binding.

RESULTS

Compensatory IN D256N/D270N substitutions emerge in the background of the IN R269A/K273A class II mutant virus

The R269A/K273A class II IN substitutions obstruct IN-gRNA binding directly without interfering with IN multimerization and result in the formation of particles with eccentric morphology [15, 16]. To better understand the molecular basis of how R269 and K273 residues mediate IN-gRNA binding, viruses bearing the IN R269A/K273A mutations were serially passaged in MT-4 cells until the emergence of compensatory mutations at the end of passage 3, which completely restored virion infectivity (Fig. 1A). Deep sequencing of full-length gRNA isolated from virions across the three passages revealed that viruses retained the IN R269A/K273A substitutions while sequentially acquiring D256N and D270N mutations in IN (Fig. 1B). The D256N substitution
emerged at the end of passage 1 whereas the D270N mutation emerged later in passage 2 (Fig. 1B). Both mutations were fixed by the end of passage 2 and no other mutations were observed elsewhere on the viral genome.

The IN D256N and D270N mutations were introduced into the replication-competent pNL4-3 molecular clone bearing WT or R269A/K273A IN. Introduction of D256N and D270N substitutions in IN had no observable effect on Gag (Pr55) expression or processing in cells or particle release (Fig. 1C). Introduction of D256N and D270N mutations either individually or together (D2N) on the WT IN backbone did not affect viral titers (Fig. 1D). Remarkably, while the individual D256N and D270N mutations in the R269A/K273A IN backbone increased virus titers by 5-10-fold, the D2N substitutions increased virus titers by 100-fold (Fig. 1D). Overall, these results demonstrate that the combination of D256N and D270N mutations are sufficient to restore the replication competency of the R269A/K273A class II IN mutant virus.

D256N/D270N substitutions restore IN-gRNA binding for the R269A/K273A class II IN mutant viruses and lead to formation of correctly matured virions

We next assessed whether D256N and D270N substitutions rendered the R269A/K273A class II IN mutant virus replication competent by restoring IN-gRNA binding and proper virion maturation. To this end, IN-gRNA complexes were immunoprecipitated from UV-crosslinked virions and visualized per CLIP protocol as described previously [38, 69, 70]. Equivalent amounts of immunoprecipitated IN from WT and R269A/K273A IN viruses, or those additionally bearing the IN D256N and D270N substitutions, were analyzed for their ability to bind RNA. IN-RNA complexes were readily visible for WT viruses as well as D256N, D270N and D2N mutants (introduced on the WT backbone), but not from the R269A/K273A class-II IN mutant viruses (Fig. 2A). Introduction of the D256N substitution on R269A/K273A IN backbone modestly enhanced the ability of IN to bind RNA, whereas the D270N substitution had no observable impact (Fig. 2A).
In contrast, the D2N substitution substantially enhanced the ability of R269A/K273A IN to bind RNA (Fig. 2A). The virion morphology of WT and IN mutant viruses was assessed by transmission electron microscopy (TEM). As expected, more than 80% of WT particles had an electron-dense condensate that represents vRNPs inside the CA lattice, whereas the majority of R269A/K273A class II IN mutant virions (~68%) had a clear eccentric morphology (Fig. 2B). Consistent with effects on virus titers and RNA-binding, the introduction of D256N/D270N substitutions restored the ability of the R269A/K273A IN mutant to form properly mature virions (Fig. 2B). Cumulatively, these data show that D256N and D270N IN substitutions restore infectivity for the R269A/K273A class II IN mutant virus through reestablishing RNA binding and subsequently accurate virion maturation.

Electrostatic interactions are required for IN-gRNA binding.

IN-CTD is decorated with several acidic and basic amino acids resulting in a net charge of +3 (Fig. 3A). The D2N substitutions in effect restored the overall charge of the IN R269A/K273A CTD, suggesting that the net electrostatic charge of the IN-CTD may be a key parameter in gRNA binding. To test this hypothesis, we investigated whether restoring the overall charge of IN-CTD through other mutations would also restore RNA binding and infectivity for the R269A/K273A IN virus. We focused our analysis on D256 and D270 residues for the following reasons: i) these amino acids were amenable to substitutions during virus passaging experiments; ii) D256N and D270N substitutions in the context of WT HIV-1 yielded infectious virions, suggesting that these compensatory mutations do not significantly contribute to the catalytic activity of IN thus allowing us to specifically probe their roles for IN-RNA interactions and virion maturation. To extend these studies we introduced D256R, D270R and D256R/D270R (D2R) substitutions into the HIV-1_{NL4-3} IN R269A/K273A backbone and transfected HEK293T cells with the resulting plasmids. Cell lysates and cell-free virions were then analyzed for Gag processing, particle release, and infectivity. Overall,
D-to-R substitutions had no major effect on Gag (Pr55) expression or processing in cells (Fig. 3B).

Remarkably, the D256R substitution alone increased the titers of the R269A/K273A class II IN mutant virus by 100-fold and to a level comparable to that of WT viruses (Fig. 3C). In contrast, D270R substitution only had a modest impact on virus titers and the D2R substitution increased virion infectivity at a modestly lower level than that of D256R and D2N (Fig. 3C). Importantly, the D256R and the D2R substitutions completely restored IN-gRNA binding (Fig. 3D), demonstrating that the increase in viral titers with the D256R and D2R substitutions correlates well with enhancement of IN-gRNA binding. Further assessment of these substitutions with Vpr-IN transcomplementation assays revealed that none of the IN substitutions impacted the catalytic activity of IN, except for the D2R substitution (Fig. 3E), suggesting that the inability of the D270R mutation to restore infectivity may be due to its adverse effects on the catalytic activity of IN.

Taken together, these findings indicate that restoring the overall charge of IN-CTD through D256R mutation reestablishes virion infectivity and RNA binding for the IN R269A/K273A class II mutant.

D256R substitution fully restores virion infectivity and RNA binding for a separate class II IN (R262A/R263A) mutant

We have previously shown that mutation of other basic residues within the IN-CTD (i.e. R262A/R263A) also directly inhibit IN-gRNA binding without compromising functional oligomerization of IN [15, 38]. We next wanted to extend our observations and test how substitutions of D256 and D270 residues affect IN-gRNA binding and infectivity in the background of the IN R262A/R263A mutant virus. Introducing the D256N, D270N and D2N compensatory mutations on the IN R262A/R263A backbone did not affect Gag expression, processing, and virion release (Fig. 4A). While the D256N substitution increased virion infectivity by 10-fold, the D270N substitution had no impact and the D2N substitution had an intermediate phenotype (Fig.
demonstrating the context dependency of these compensatory mutations. The D256K and D256R substitutions introduced in the R262A/R263A IN backbone also had minimal effects on Gag expression, processing, and virion release (Fig. 4C). In contrast, the D256K substitution increased viral titers at a greater degree than D256N and the D256R substitution completely restored virion infectivity (Fig. 4D). In line with the titer data, D256K significantly increased RNA binding whereas the D256R completely restored it in the context of the IN R262A/R263A mutant virus (Fig 4E). D256N, D256K and D256R IN successfully transcomplemented a class I IN mutant, suggesting that they did not distort the catalytic activity of IN (Fig 4F). Taken together, these findings indicate that restoring the overall positive charge of IN-CTD through D256R or D256K mutations is sufficient to restore virion infectivity and RNA binding to class II IN mutants that directly inhibit RNA binding.

We next used reported X-ray structure [62] and molecular modelling to visualize how class II and compensatory IN mutations affect electrostatic potential of the CTD surface. Mutation of R269 and K273 residues expectedly resulted in a substantial loss of a basic patch in IN (Fig. 5A, B). Both the D256R and D256N substitutions resulted in more positively charged surface distal from the R269/K273A residues (Fig. 5C, D), suggesting that compensatory mutations likely created an additional interacting interface with gRNA binding. A similar outcome was observed when class II R262A/R263A and compensatory D256R changes were introduced in the CTD (Fig. 5E-G). While the D256R change is substantially distanced from R262/R263 and R269/K273 residues, we note the following. R262, R263, R269, and K273 are positioned within the same highly flexible C-terminal tail (aa 261-275), whereas D256 belongs to another, shorter (aa 252-257) loop (Fig. 5H). The highly pliable nature of the tail and the loop could be crucial for IN to optimally engage with cognate RNA as well as allow for emergence of compensatory mutations at alternative sites positioned in these IN segments.
Effects of the compensatory mutations on functional oligomerization of IN and IN-RNA interactions.

As functional IN oligomerization is a prerequisite for RNA binding [15], we next examined how the compensatory substitutions affected IN oligomerization. For in virion analysis, purified HIV-1_{NL4-3} virions were treated with ethylene glycol bis (succinimidy succinate) (EGS) to covalently crosslink IN in situ and virus lysates were analyzed by immunoblotting. As in WT virions, IN species that migrated at molecular weights consistent with those of monomers, dimers, trimers, and tetramers were readily distinguished in R269A/K273A or R262A/R263A viruses with additional compensatory mutations (D256N/D270N, D256R, D256K, and D256R/D270R) but not with the canonical class II IN mutant V165A that is unable to form functional oligomers (Fig 6A-C).

Complementary in vitro assessment of purified recombinant IN proteins by size exclusion chromatography (SEC) revealed that D2N and D256R substitutions in the background of R269A/K273A or the R262A/R263A class II mutants did not impact functional IN tetramerization (Fig. 6D-H).

We have previously shown that recombinant IN binds to TAR RNA with high affinity and provides a nucleation point to bridge and condense RNA [38]. We next examined the ability of class II mutant INs bearing compensatory mutations to bind and bridge TAR RNA. Consistent with findings from CLIP, the D2N and D256R substitutions also enhanced or restored the ability of R269A/K273 and R262A/R263A mutants to bridge between RNA molecules (Fig. 6I). Together, these data demonstrate that the compensatory mutations directly restore the ability of IN to bind RNA without altering functional IN oligomerization.

Sensitivity to ALLINIs is determined by distinct residues within the CTD

ALLINIs potently disrupt proper virion maturation through inducing aberrant IN multimerization and consequently inhibiting IN-gRNA binding [12, 38]. Recent structural studies have shown that
the ALLINI, GSK-1264, can directly engage residues within the IN-CTD through its tert-butoxy and carboxylic acid moieties and induce open polymers [62]. These findings are in line with previous biochemical and modeling studies that also showed the involvement of the IN-CTD, in particular residues K264 and K266, in ALLINI-induced aberrant IN multimerization [71, 72]. Based on these prior findings, we wanted to test how adjacently positioned IN R262A/R263A and R269A/K273A substitutions and the compensatory mutations affected ALLINI activities.

To this end, we examined effects of representative quinoline-based ALLINIs, BI-D or BI-B2, on the viruses bearing the class II and compensatory mutations. While the titers of WT viruses only decreased at ALLINI concentrations greater than 1 μM, the titers of IN R269A/K273A viruses bearing D2N, D256R and D2R substitutions were significantly reduced by ALLINIs at concentrations as low as 0.1 μM (Fig. 7A, B). In contrast, viruses bearing the R262A/R263A/D256R IN were less sensitive to low concentrations of ALLINIs (Fig. 7D, E), suggesting that the R269A and/or K273A mutations underlie the increased sensitivity to ALLINIs. The increased sensitivity to ALLINIs correlated well with inhibition of RNA binding. While 0.1 μM of the ALLINI, BI-D, did affect the level of IN-gRNA binding in WT viruses, it significantly reduced IN-gRNA binding in viruses with class II compensatory mutations on the R269A/K273A but not R262A/R263A backbone (Fig. 7C,F). Taken together, our findings provide key genetic and virological evidence that specific CTD residues required for RNA binding are also crucial for the ALLINI mechanism of action.

Characterization of IN mutations present in latently infected cells

Persistence of HIV-1 in memory CD4+ T-cells as latent proviruses constitutes a major barrier to HIV-1 cure. Although the majority of HIV-1 proviruses in these cells are defective [73], recent evidence suggests that defective proviruses can be transcribed into RNAs that are spliced, translated and can be recognized by HIV-1-specific cytotoxic T lymphocytes [74]. We decided to
characterize IN mutations isolated from latently infected cells, given the possibility that class II IN mutations existing in latently infected cells can result in the formation of defective particles that may subsequently modulate immune responses. Though relatively uncommon, we found the presence of R224Q, S230N, E246K and G272R substitutions in IN-CTD (Fig. 8A). Of note, only the R224Q substitution resulted in loss of a positive charge, whereas the E246K and G273R substitutions resulted in gain of positive charge. These mutations were introduced into the NL4-3 proviral backbone with minimal effects on Gag expression and particle release (Fig. 8B). Although the E246K virus was significantly less infectious (Fig. 8C), we did not find any evidence for inhibition of IN-gRNA binding (Fig. 8D), suggesting that this mutant likely displays a class I phenotype. Thus, we conclude that the class II mutant viruses are rarely present in the latently infected cells and therefore unlikely to contribute to chronic immune activation.

DISCUSSION

Class II IN mutations impair virion particle maturation by blocking IN-gRNA binding in virions and those within the CTD, including R269A/K273A and R262A/R263A, impede IN-gRNA binding without affecting functional oligomerization of IN [15, 38]. During serial passaging experiments to identify compensatory mutations of the R269A/K273A class II IN mutant, viruses acquired D256N and D270N IN mutations sequentially. We initially anticipated that mutations outside of IN, such as CA and NC, could also arise, given that the IN R269A/K273A mutant is still catalytically active and a compensatory mutation in CA or NC could presumably allow the proper packaging of the gRNA within virions. On the other hand, we did not observe any such substitutions showcasing the distinct role of IN:gRNA binding in proper virion maturation. Notably, D256N and D270N substitutions each arose through a single mutation (D256N: GAC → AAC, D270N: GAU → AAU) and thus likely provided an easier pathway for suppression than reverting back to R269 and K273, each of which would require two mutations. Though other mutations in IN could in principle restore
the ability of IN to bind RNA, rise of such mutations was likely constrained in part by the necessity to maintain a catalytically active IN.

IN CTD has a net positive charge of +3. While R269A/K273A class II mutations reduced the net charge to +1, the introduction of D2N substitutions restored the overall charge back to a +3. This observation suggested that the net electrostatic charge of the IN-CTD may be a key parameter for IN-gRNA binding. Consistent with this hypothesis, the charge reversal by the D256R substitution was sufficient to restore IN-gRNA binding for the R269A/K273A IN mutant. Though these findings point to an electrostatic component of IN-RNA interactions, we cannot exclude the possibility that the Asn and Arg residues also mediate H-bonding and van der Waals contacts with distinct nucleobases in the cognate RNA molecules. Inspection of the available X-ray structure [62] indicates that all IN residues implicated in RNA binding by the present study are positioned either in the highly flexible C-terminal tail (aa 261-275) or the 252-257 loop (Fig. 5H). The pliable nature of these CTD regions could be essential for allowing IN to optimally bind to cognate gRNA.

These observations extended to another class II mutant, R262A/R263A, whereby the D256R and to a lesser extent the D256K substitutions restored RNA binding. In contrast, the D2N substitutions did not enhance RNA-binding or infectivity in this setting, demonstrating a degree of context dependency. It is possible that the proximity of the D270N to R269A/K273A residues may explain why it was more effective in restoring RNA binding for this class II mutant but not for IN R262A/R263A. The role of Arg and Lys residues in RNA-binding proteins has been noted [67, 75-78]. Interestingly, Arg residues are overall more heavily involved in interactions with all bases, contributing with 16%-20% of all contacts while Lys residues only provide 3%-9%, which may explain why the D256R substitution restored RNA binding to a greater extent [79]. Altogether, our findings suggest that IN-gRNA binding is mediated in part by electrostatic interactions between the basic residues in IN CTD and the negatively charged RNA backbone.
Though the electrostatic component of IN-RNA interactions imply a level of non-specificity, IN bound to distinct locations on the gRNA and displays high binding affinity to structured elements, such as the HIV-1 TAR element [38]. Thus, it is likely that IN-gRNA interactions are mediated by both the non-specific interactions of the basic residues with the RNA phosphate backbone and specific interactions with the cognate RNA. For example, recognition of the TAR loop by Tat and the super elongation complex is based on a complex set of interactions that results primarily in the readout of the structure as opposed to the sequence by SEC, and additional interaction of the Tat arginine rich motif (ARM) with the TAR bulge and the major groove through electrostatic interactions with the RNA phosphates, H-bonding with specific bases, as well as multiple van der Waals contacts of Cyclin T with the flipped-out G32 TAR base to strengthen the TAR complex [80, 81]. Structural studies of IN in complex with cognate RNA molecules are needed to tease apart the specificity determinants for IN-RNA interactions.

RNA binding proteins commonly encode modular RNA-binding domains (i.e. RRMs and KH domains), which form specific contacts with short degenerate sequences [82-84]. Utilization of multiple RRMs/KH domains is thought to create a much larger binding interface, which allows recognition of longer sequences on and enhanced affinity and specificity for target RNAs [82, 83, 85]. IN tetramerization is required for RNA binding in vitro [15] and may serve a similar purpose through generation of a larger RNA-binding surface possibly for recognition of shape, RNA-backbone and base-specific interactions as discussed above.

IN-gRNA binding is essential for HIV-1 virion morphological maturation and infectivity, thus an excellent target for novel antiretroviral compounds. Clinically used HIV-1 IN inhibitors target the catalytic activity of IN by blocking the strand transfer step of integration [2-7]. Despite high barriers to resistance with the second-generation INSTIs, treatment continues to select for drug resistant HIV-1 variants [86-91]. ALLINI-mediated inhibition of the non-catalytic function of IN can complement existing INSTI-based therapies and increase the barrier to drug resistance.
substantially. Although some ALLINIs displayed toxicity in animals, a highly potent and safe pyrrolopyridine-based ALLINI, STP0404, has advanced to a human trial [65].

ALLINIs potently disrupt virion maturation indirectly through inducing aberrant IN multimerization resulting in inhibition of IN-gRNA binding [12, 38]. Recent findings have shown that the ALLINI, GSK-1264, is buried between the CTD of one IN dimer and the CCD of another dimer resulting in the formation of open, inactive IN polymers [62]. Mutation of Y226, W235, K264 and K266 residues within the CTD prevents ALLINI-induced aberrant multimerization of IN [62, 71, 72]. However, the role of these residues in ALLINI-mediated inhibition cannot be easily assessed in relevant infection settings given that their mutation alters the catalytic activity as well as RNA binding properties of IN [62, 92, 93]. Our findings fill this gap and provide key genetic evidence that ALLINI mechanism of action indeed involves the CTD. In particular, introducing the same D256R change in the background of different class II substitutions similarly restored their infectivity and thus enabled us to compare effects of R262/R263 vs R269A/K273A IN substitutions on ALLINI activities. While HIV-1\textsubscript{IN(R262A/R263A/D256R)} and WT viruses were similarly susceptible to ALLINIs (Fig. 7A,B), HIV-1\textsubscript{IN(R269A/K273A/D256R)} was substantially more sensitive to these inhibitors (Fig. 7D,E). The X-ray structure of GSK-1264 induced IN polymers [62] reveals that R262, R263, K273A as well as D256 are distanced from the inhibitor binding pocket, whereas the side chain of R269 points toward the inhibitor bound at the CTD-CCD dimer interface (Fig. 7G). The guanidine group of R269 engages with Q168 of the CCD from another IN subunit and is positioned within 3 Å of GSK-1264. Yet, there is no interaction between R269 and the inhibitor as the positively charged guanidine group faces a hydrophobic part of the benzodihydropyran moiety of GSK-1264 (Fig. 7G). Conversely, the R269A substitution could provide more favorable hydrophobic environment for the CTD-ALLINI-CCD interactions that may explain its increased sensitivity to ALLINIs.
Overall, our studies reveal that electrostatic interactions play an important role in mediating IN-gRNA interactions and demonstrate that CTD is a key determinant of ALLINI sensitivity. Structural characterization of IN-gRNA complexes will be crucial to determine the precise mechanism of IN-gRNA interactions. Such studies will also help better understand the ALLINI mechanism of action and aid in the development of therapeutics that directly target IN-gRNA interactions.

MATERIALS AND METHODS

Plasmids

IN mutations were introduced into the HIV-1 NL4-3 full-length proviral plasmid (pNL4-3) by overlap extension PCR. Forward and reverse primers containing IN mutations were used in PCR reactions with anti-sense (with EcoRI restriction endonuclease site) and sense (with AgeI restriction site) outer primers. The resulting fragments containing the desired mutations were mixed at a 1:1 ratio and overlapped subsequently using the sense and antisense primer pairs. The overlap fragments were digested with Age-I and EcoR-I before cloning into pNL4-3 plasmids. The pLR2P-vprIN plasmid expressing a Vpr-IN fusion protein has been previously described [94].

IN mutations were introduced in the pLR2P-VprIN plasmid using the QuikChange Site-Directed Mutagenesis kit (Agilent Technologies). The presence of the desired mutations and the absence of unwanted secondary changes was assessed by Sanger sequencing.

Cell lines

All cell lines were obtained from the American Type Culture Collection and NIH AIDS Reagents where STR profiling was performed. MT-4 cells were further STR profiled at Washington University School of Medicine Genome Engineering and iPSC center. The cell lines are consistently inspected for mycoplasma contamination using MycoAlert mycoplasma detection kit (Lonza) and checked for being free of any other contaminations. HEK293T cells (ATCC CRL-
11268) and Hela-derived TZM-bl cells (NIH AIDS Reagent Program) were cultured in Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum. MT-4 cells were cultured
in RPMI 1640 medium supplemented with 10% fetal bovine serum.

Analysis of compensatory mutations

Compensatory mutations of the R269A/K273A class-II IN mutation were isolated by serial
passaging. In this experiment, MT4 T-cells that express GFP under the control of HIV-1 LTR
(MT4-LTR-GFP), were infected with HIV-1pNL4-3 carrying the R269A/K273A class II IN mutation.
One million cells were infected at an MOI of 2 by WT cells, input of mutant virus was normalized
relative to particle numbers using a reverse transcriptase (RT) activity assay [95]. Infections were
monitored by FACS. At the end of each passage, virions were collected and wielded to infect cells
in the next passage while normalizing virus input before each infection. Aliquots of infected and
viral particles in the cell culture supernatants were collected over the duration of each passage.
Virions collected over the three passages were concentrated and gRNA was isolated from virions
using Trizol per manufacturer’s instructions. Extracted RNA was prepared for deep sequencing
using the Illumina® TruSeq® Stranded Total RNA library prep workflow kit omitting the rRNA
depletion step. Resulting libraries were sequenced by an Illumina HiSeq 2000 platform.

Immunoblotting

Viral and cell lysates were resuspended in sodium dodecyl sulfate (SDS) sample buffer,
separated by electrophoresis on Bolt 4-12% Bis-Tris Plus gels (Life Technologies) and transferred
to nitrocellulose membranes. The membranes were then probed overnight at 4°C with a mouse
monoclonal anti-HIV p24 antibody (183-H12-5C, NIH AIDS reagents) or a mouse monoclonal
anti-HIV integrase antibody [96] in Odyssey Blocking Buffer (LI-COR). Membranes were probed
with fluorophore-conjugated secondary antibodies (LI-COR) and scanned using an LI-COR
Odyssey system. IN and CA levels in virions were quantified using Image Studio software (LI-COR).

Vpr-IN trans-complementation experiments

Viruses bearing the class I IN mutation D116N were trans-complemented with class II mutant proteins as previously described [94]; two-hundred thousand HEK293T cells were co-transfected with a derivative of pNL4-3-derived plasmid bearing the IN D116N mutation, VSV-G, and derivatives of the pLR2P-VprIN plasmids bearing class II IN mutations (or the compensatory mutations thereof) at a ratio of 6:1:3. Cell-free virions were collected from cell culture two days post-transfection. MT-4 cells were infected by the virions and the integration proficiency of trans-complemented class II IN mutants was measured by the yield of progeny virions in cell culture supernatants over a 6-day period as described before [94]. Briefly, MT-4 cells were incubated with virus inoculum in 96 V-bottom well plates for 4hr at 37°C before washing away the inoculum and replacing it with fresh media. Right after the addition of fresh media and over the ensuing 6 days, the number of virions in culture supernatant was quantified by measuring RT activity using a Q-PCR-based assay [95].

CLIP experiments

CLIP experiments were conducted as previously described [15, 69, 70, 97, 98]. In short, cells in 15 cm cell culture plates were transfected with 30 μg full-length proviral plasmid (pNL4-3) DNA containing the WT sequence or indicated IN mutations. 4-thiouridine (4SU) was added to the cell culture media for 16hr before virus harvest. Cell culture supernatants were filtered through 0.22 μm filters and pelleted by ultracentrifugation through a 20% sucrose cushion using a Beckman SW32-Ti rotor at 28,000rpm for 1.5hr at 4°C. The virus pellets were resuspended in phosphate-buffered saline (PBS) and UV-crosslinked. Following lysis in 1X RIPA buffer, IN-RNA complexes were immunoprecipitated using a mouse monoclonal anti-IN antibody [96]. Bound RNA was end-
labeled with γ^{32}P-ATP and T4 polynucleotide kinase. The isolated protein-RNA complexes were separated by SDS-PAGE, transferred to nitrocellulose membranes, and exposed to autoradiography films to visualize IN-RNA complexes. Lysates and immunoprecipitates were also analyzed by immunoblotting using antibodies against IN.

IN multimerization in virions

In 10 cm dishes, HEK293T cells were transfected with 10 μg pNL4-3 plasmid DNA containing the WT sequence or indicated pol mutations within IN coding sequence. Two days post-transfection, cell-free virions in cell culture supernatants were pelleted through a 20% sucrose gradient using a Beckman SW41-Ti rotor at 28,000 rpm for 1.5hr at 4°C. Pelleted virions were resuspended in 1xPBS and treated with a membrane-permeable crosslinker, EGS (ThermoFisher Scientific), at a concentration of 1mM for 30 min at room temperature. Crosslinking was stopped by the addition of SDS sample buffer. The cross-linked samples were then separated on 3-8% Tris-acetate gels and analyzed by immunoblotting using a mouse monoclonal anti-IN antibody [96].

Virus production and transmission electron microscopy

HEK293T cells in a 15 cm plate were transfected with 30 μg full-length proviral plasmid (pNL4-3) DNA containing the WT sequence or indicated pol mutations within IN coding sequence. Two days post transfection, cell culture supernatants were filtered through 0.22 μm filters, and pelleted by ultracentrifugation using a Beckman SW32-Ti rotor at 28,000 rpm for 1.5 hr at 4°C. Fixative (2% paraformaldehyde/2.5% glutaraldehyde (Polysciences Inc., Warrington, PA) in 100 mM sodium cacodylate buffer, pH 7.2) was gently added to resulting pellets, and samples were incubated overnight at 4°C. Samples were washed in sodium cacodylate buffer and postfixed in 1% osmium tetroxide (Polysciences Inc.) for 1 hr. Samples were then rinsed extensively in dH$_2$O prior to en bloc staining with 1% aqueous uranyl acetate (Ted Pella Inc., Redding, CA) for 1 hr. After several rinses in dH$_2$O, samples were dehydrated in a graded series of ethanol and
embedded in Eponate 12 resin (Ted Pella Inc.). Sections of 95 nm were cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc., Bannockburn, IL), stained with uranyl acetate and lead citrate, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL USA Inc., Peabody, MA) equipped with an AMT 8 megapixel digital camera and AMT Image Capture Engine V602 software (Advanced Microscopy Techniques, Woburn, MA).

Size exclusion chromatography (SEC)

All of the indicated mutations were introduced into a plasmid backbone expressing His$_6$ tagged pNL4-3-derived IN by QuikChange site directed mutagenesis kit (Agilent) [99]. His$_6$ tagged recombinant pNL4-3 WT and mutant Ins were expressed in BL21 (DE3) *E. coli* cells followed by nickel and heparin column purification as described previously [99, 100]. Recombinant WT and mutant Ins were analyzed on Superdex 200 10/300 GL column (GE Healthcare) with running buffer containing 20 mM HEPES (pH 7.5), 1 M NaCl, 10% glycerol and 5 mM BME at 0.3 mL/min flow rate. The proteins were diluted to 10 µM with the running buffer and incubated for 1 h at 4°C followed by centrifugation at 10,000g for 10 min. Multimeric form determination was based on the standards including bovine thyroglobulin (670,000 Da), bovine gamma-globulin (158,000 Da), chicken ovalbumin (44,000 Da), horse myoglobin (17,000 Da) and vitamin B12 (1,350 Da). Retention volumes for different oligomeric forms of IN were as follows: tetramer ~12.5 mL, dimer ~14 mL, monomer ~15-16 mL.

Analysis of IN-RNA binding in vitro

To monitor IN-RNA interactions we utilized AlphaScreen-based assay [38], which allows to monitor the ability of IN to bind and bridge between two TAR RNAs. Briefly, equal concentrations (1 nM) of two synthetic TAR RNA oligonucleotides labeled either with biotin or DIG were mixed and then streptavidin donor and anti-DIG acceptor beads at 0.02 mg/mL concentration were supplied in a buffer containing 100 mM NaCl, 1 mM MgCl$_2$, 1 mM DTT, 1 mg/mL BSA, and 25
mM Tris (pH 7.4). After 2 hr incubation at 4°C, 320 nM IN was added to the reaction mixture and incubated further for 1.5 hr at 4°C. AlphaScreen signals were recorded with a PerkinElmer Life Sciences Enspire multimode plate reader.

Structural modeling of IN

Electrostatic potential maps of WT and mutant IN CTDs were created by Adaptive Poisson-Boltzmann Solver (APBS) program [101] with macromolecular electrostatic calculations performed in PyMOL. The published crystal structure [62] (PDB ID: 5HOT) was used as a template. The calculation results are displayed as an electrostatic potential molecular surface. The low, mid, and high range values are -5, 0, and 5, respectively.

Analysis of IN mutations from latently infected cells

Sequences identified from latently infected CD4+ T-cells [73] were downloaded from NCBI GenBank based on their accession numbers (KF526120-KF526339). Sequences were imported into the GLUE software framework [102, 103] and aligned. Multiple sequence alignments (MSAs) containing subtype B and subtype C sequences were constructed using MUSCLE, manually inspected in AliView [104] and imported into a GLUE project database. Within GLUE, MSAs were constrained to the pNL4-3 reference to establish a standardized coordinate space for the gene being analyzed. Amino acid frequencies at each alignment position were summarized using GLUE’s amino-acid frequency calculation algorithm, which accounts for contingencies such as missing data and incomplete codons.

ACKNOWLEDGEMENTS

This work was supported by NIH grants AI150497 (SBK), AI1508470 (U54 Center for HIV RNA Studies, SBK, RG), R01 AI143649 (MK) and Milton Schlesinger Student Fellowship (CSM). We thank all members of the Kutluay lab for critical suggestions and feedback.
REFERENCES

56. Lutzke RA, Plasterk RH. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein

FIGURE LEGENDS:

Figure 1. D256N and D270N substitutions in HIV-1 IN suppresses the replication defect of R269A/K273A class-II IN mutant virus. (A) MT4-LTR-GFP cells were infected with equal particle numbers of either WT or R269A/K273A IN mutant HIV-1 (NL4-3). The R269A/K273A IN viruses were serially passaged for three times until the emergence of compensatory mutations. The graphs represent the percentage of GFP positive cells as assessed by FACS over three passages at the indicated days post-infection (dpi). (B) HIV-1 genomic RNA was isolated from viruses collected from cell culture supernatants over the three passages (i.e. P1, P2, P3) and at the indicated days post-infection (i.e. D29, D40, etc.). Whole-genome deep sequencing revealed the acquisition of D256N and D270N compensatory mutations. Heatmap shows the percentage of mutations at the indicated passages and days post-infection (dpi). (C) HEK293T cells were transfected with full-length pNL4-3 expression plasmids carrying the D256N, D270N and D256N/D270N (D2N) IN mutations introduced on the WT IN and IN R269A/K273A backbones. Cell lysates and virions were purified two days post transfection and analyzed by immunoblotting for CA and IN. The image is representative of five independent experiments. (D) HEK293T cells were transfected as in C and cell culture supernatants containing viruses were titered on TZM-bl indicator cells. The titers are presented relative to WT (set to 1). The columns represent the average of five independent experiments and the error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparison test).

Figure 2. D256N and D270N substitutions restore IN-gRNA binding and accurate virion maturation for the R269A/K273A class II IN mutant virus. (A) Autoradiogram of IN-RNA adducts immunoprecipitated from virions bearing the indicated substitutions in IN. Immunoblots below show the amount of IP’ed IN or CA protein in lysates. Data shown are representative of at least three independent experiments. (B) Examination of virion maturation in WT and mutant IN viruses by thin section electron microscopy (TEM). The graph quantifies virion morphologies;
each column is the average of two independent experiments and error bars represent the SEM (****p<0.0001, by repeated measures one-way ANOVA).

Figure 3. Restoring the net charge of IN-CTD restores RNA binding and infectivity for the R269A/K273A class II mutant. (A) Schematic diagram of IN and sequence of CTD residues with basic and acidic amino acids highlighted in blue and red, respectively. (B, C) HEK293T cells were transfected with full-length proviral HIV-1_{NL4-3} expression plasmids carrying pol mutations encoding for the indicated IN substitutions. (B) Cell lysates and purified virions were harvested two days post transfection and analyzed by immunoblotting for CA and IN. Representative image of one of five independent experiments is shown. (C) Infectious titers of WT or IN mutant HIV-1_{NL4-3} viruses in cell culture supernatants were determined on TZM-bl indicator cells and normalized relative to particle number based on RT activity. Titer values are expressed relative to WT (set to 1). The columns represent the average of four independent experiments and the error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett's multiple comparison test). (D) Autoradiogram of IN-RNA adducts IP'ed from WT or IN mutant HIV-1_{NL4-3} virions. The amount of immunoprecipitated IN protein was assessed by the immunoblot below. Results are representative of four independent replicates. (E) A representative growth curve of HIV-1_{NL4-3 IN (D116N)} viruses that were trans-complemented with the indicated Vpr-IN mutant proteins in cell culture. Y-axis indicates fold increase in virion yield over day 0 as measured by RT activity in culture supernatants. Error bars show SEM from 3 independent many replicates.

Figure 4. D256R and D256K substitutions restore IN-RNA binding and infectivity for the HIV-1_{NL4-3 IN(R262A/R263A)} virus. (A-E) HEK293T cells were transfected with proviral HIV-1_{NL4-3} expression plasmids carrying pol mutations for the indicated IN substitutions. (A, C) Cell lysates and virions were purified two days post transfection and analyzed by immunoblotting for CA and IN. (B, D) WT or IN mutant HIV-1_{NL4-3} viruses in cell culture supernatants were titered on TZM-bl indicator cells. The titer values are presented relative to WT (set to 1). The columns represent the
average of two-three independent experiments, and the error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparisons). (E) Autoradiogram of IN-RNA adducts immunoprecipitated from WT or IN mutant HIV-1_{NL4-3} virions. The amount of immunoprecipitated IN was assessed by the immunoblot shown below. Immunoblots and CLIP autoradiographs are representative of four independent replicates. (F) A representative growth curve of HIV-1_{NL4-3 IN (D116N)} viruses that were trans-complemented with the indicated IN mutant proteins in cell culture. Y-axis indicates fold increase in virion yield over day 0 as measured by RT activity in culture supernatants. Error bars show SEM from 3 independent many replicates.

Figure 5. Electrostatic potential maps of HIV-1 IN bearing class II and compensatory mutations. (A-G) Electrostatic potential maps of the indicated HIV-1 IN mutants derived from the crystal structure of Gupta et al. [62] is depicted. Calculation results are displayed as an electrostatic potential molecular surface. The low, mid, and high range values are -5, 0, and 5, respectively. (H) A cartoon view of the CTD structure [62] is shown with the C-terminal tail (aa 261-275) and the loop (aa 252-257) colored in cyan and orange, respectively. Side chains of indicated residues are shown.

Figure 6. Assessing multimerization properties of IN in mutant viruses. (A) Purified WT or IN mutant HIV-1_{NL4-3} virions were treated with 1 mM EGS, and virus lysates analyzed by immunoblotting using antibodies against IN following separation on 6% Tris-acetate gels. The position of monomers (M), dimers (D), and tetramers (T) are indicated by arrows in a representative western blot. (B,C) Quantification of IN multimerization in virions from experiments conducted as in A. Error bars show the SEM from three independent experiments. (D-I) Biochemical analysis of IN mutants multimerization and their interactions with HIV-1 TAR RNA. (D-H) Representative SEC traces for indicated recombinant IN proteins. The X-axis indicates elution volume (mL) and Y-axis indicates the intensity of absorbance (mAU). Tetramers (T), dimers (D), and monomers (M) are indicated. (I) Summary of mutant INs bridging TAR RNA
compared to WT IN. Alpha screen counts at 320 nM for each protein is shown. The graphs show average values of three independent experiments and the error bars indicate standard deviation.

Figure 7. Secondary site suppressors of the IN R269A/K273A mutant increase susceptibility to ALLINIs. (A, B, D, E) Titers of viruses bearing the indicated substitutions in IN produced from HEK293T cells at different concentrations of ALLINIs, BI-B2 or BI-D. WT or IN mutant HIV-1$_{NL4-3}$ in cell culture supernatants were titered on TZM-bl indicator cells. The titer values are represented relative to the mock control of each mutant (set to 1). Data are from two independent biological replicates. (C, F) Autoradiogram of IN-RNA adducts immunoprecipitated from WT or IN mutant HIV-1$_{NL4-3}$ virions produced from HEK293T cells in the presence of 0.1 μM of BI-D. The amount of immunoprecipitated IN protein was visualized by the immunoblot shown below. Immunoblots and CLIP autoradiographs results are a representative of three independent replicates. (G) The GSK-1264 binding pocket between CCD-CCD (brown) and CTD (light blue) from different IN subunits is shown [62] (PDB ID: 5HOT). GSK-1264 is in green with nitrogen and oxygen atoms colored blue and red, respectively. The side chain of R269 is shown with nitrogen atoms colored in dark blue. Interactions between CTD R269 and CCD Q168 are indicated by dashed lines.

Figure 8. Characterization of IN mutations present in latently infected CD4+ T-cells. (A) Alignment from Gifford- (B) HEK293T cells were transfected with proviral HIV-1$_{NL4-3}$ expression plasmids carrying the R224Q, S230N, E246K, and G272R IN mutations. Cell lysates and virions were purified two days post transfection and analyzed by immunoblotting for CA and IN. The image is representative of two independent experiments. (C) WT or IN mutant HIV-1L4-3 viruses in cell culture supernatants were titered on TZM-bl indicator cells. The titers are presented relative to WT (set to 1). The columns represent the average of three independent experiments and the error bars represent SEM (****p<0.0001, by one-way ANOVA with Dunnett’s multiple comparison
(D) Autoradiogram of IN-RNA adducts immunoprecipitated from virions bearing the indicated substitutions in IN. Immunoblots below show the amount of immunoprecipitated IN.
Figure 1
Figure 2
Figure 4
Figure 6
Figure 7
Figure 8