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SUMMARY 47 

T cells activated by chronic antigen exposure in the setting of viral infections or cancer 48 

can adopt an exhausted T cell (Tex) state, characterized by reduced effector function 49 

and proliferative capacity, and the upregulation of inhibitory receptors. However, 50 

whether all antigen-specific T cell clones follow the same molecular and cellular Tex 51 

differentiation trajectory remains unclear. Here, we generate a single-cell multi-omic 52 

atlas of T cell exhaustion that redefines the phenotypic diversity and molecular 53 

regulation of Tex phenotypes. Longitudinal analysis during chronic viral infection 54 

identifies an early effector phenotype that is epigenetically primed for Tex differentiation 55 

and two late-stage Tex cell states with either a terminal exhaustion or a killer cell lectin-56 

like receptor (KLR)-expressing cytotoxic gene signature. We define clonal trajectories of 57 

antigen-specific T cells using paired single-cell RNA and T cell receptor sequencing and 58 

reveal distinct differentiation trajectories resulting in terminal Tex-biased, KLR Tex-59 

biased, or divergent clones that differentiate into both phenotypes. Comparison of Tex 60 

phenotypes among shared T cell clones that traffic to multiple organs reveals that clonal 61 

differentiation trajectories are maintained across tissues. Finally, we show that 62 

differences in clonal differentiation trajectory are driven by TCR signal strength, 63 

whereby high-affinity T cell clones preferentially adopt a terminal Tex fate, while low-64 

affinity clones adopt an effector-like KLR Tex fate that is detectable long-term but 65 

depleted in high antigen settings. These findings reveal clonal heterogeneity in the T 66 

cell response to chronic antigen and genomic programs that underlie Tex fates and 67 

persistence. 68 

 69 

Highlights 70 

● A single-cell atlas of T cell exhaustion identifies novel early effector and KLR Tex 71 

states. 72 

● Clonal T cell analysis defines divergent differentiation trajectories during chronic 73 

viral infection leading to terminal and KLR Tex fates. 74 

● The heterogeneity of the Tex pool arises from three primary differentiation 75 

patterns and are differentially persistent in the setting of high antigen. 76 

● Clonal Tex differentiation patterns are conserved across organ sites and driven 77 

by TCR signal strength.       78 

 79 
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 93 

Introduction 94 

Chronic antigen exposure during chronic viral infections and cancer leads to 95 

impaired CD8+ T cell responses, termed T cell exhaustion [1, 2]. Exhausted T cells 96 

(Tex) are characterized by reduced effector function, diminished proliferative capacity, 97 

and high expression of inhibitory receptors, including PD-1, LAG-3, and TIM3. However, 98 

Tex are able to maintain some effector functions and persist long-term, suggesting that 99 

T cell exhaustion may represent a mechanism to control pathogen burden while 100 

maintaining immune homeostasis [3, 4]. Recent studies have identified heterogeneity in 101 

Tex phenotypes, which are characterized by distinct surface receptors, functionality, 102 

proliferative capacity, and tissue localization during chronic viral infections and cancer 103 

[5-12]. Some of these studies have proposed a linear differentiation model, whereby 104 

progenitor Tex (Texprog; marked by expression of TCF1 and CXCR5) self-renew and 105 

maintain downstream Tex subsets, including CX3CR1+PD-1+ intermediate Tex (Texint) 106 

with proliferative, cytolytic and memory potential, and PD-1+ TIM3+ terminal Tex 107 

(Texterm; marked by high expression of inhibitory receptors, and limited effector or 108 

proliferative potential) [5-9, 13, 14, 60]. These subpopulations exhibit distinct epigenetic 109 

states and rely on distinct transcription factors (TFs). TCF1 (encoded by Tcf7) and 110 

BACH2 are indispensable for the formation of the Texprog phenotype, while the high 111 

mobility group TF, TOX, orchestrates the establishment and maintenance of the 112 

molecular program of exhaustion in all Tex states, including Texterm, and is required for 113 

their survival [4, 7, 15-19]. Finally, these Tex populations are further distinguished by 114 

their ability to respond to immune checkpoint blockade (ICB); Texterm possess a stable 115 

epigenetic program and cannot be efficiently reinvigorated by ICB, while Texprog can 116 

proliferate in response to ICB and may be important for the therapeutic responses [3, 6, 117 

20]. Despite these advances, we lack a comprehensive view of Tex states, their clonal 118 

relationships, and the molecular programming underlying their differentiation, 119 

particularly in polyclonal T cell responses.  120 

Here, we generate a comprehensive atlas of Tex differentiation using single-cell 121 

chromatin accessibility, transcriptome, and T cell receptor (TCR) sequencing of antigen-122 

specific CD8+ T cells in the setting of chronic lymphocytic choriomeningitis virus (LCMV) 123 

infection. We discover previously unappreciated Tex subsets, including an early effector 124 

exhausted subset (Texeeff) in the early phase of infection that initiates the molecular 125 

program of exhaustion, and a killer cell lectin-like receptor-expressing Tex subset 126 

(TexKLR) as a late-stage phenotype concurrent with terminal Tex, which suggests a 127 

divergent developmental path during Tex differentiation. T cell clone tracing based on 128 

paired scRNA/TCR-seq nominates unexpected diversity in Tex differentiation 129 

trajectories; namely, chronic antigen-specific T cell clones can adopt Texterm-biased, 130 

TexKLR-biased, or divergent fates, comprising both cell types. Multi-organ clonal analysis 131 

reveals that Tex clones traffic to multiple organ sites and that their differentiation 132 

trajectories are conserved across tissues; however, TexKLR-biased clones are depleted 133 

in the liver, suggesting that Texterm cells may be phenotypically adapted for high-antigen 134 

tissue microenvironments. Finally, we show that clone behaviors are programmed by 135 

TCR affinity to cognate antigen; high-affinity TCR clones are biased towards a Texterm 136 

differentiation trajectory, while low-affinity TCR clones are biased towards a TexKLR 137 

trajectory. Overall, these results provide an in-depth view of the gene regulatory 138 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.472900
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Daniel, Yost et al., (SATPATHY) 

4 

 

programs and clonal dynamics of Tex states during chronic infection and suggest that a 139 

polyclonal T cell response to chronic antigen may balance T cell states that perform 140 

effector and memory functions.  141 

Results 142 

 143 

A multi-omic single-cell atlas of CD8+ T cell differentiation during acute and 144 

chronic viral infection. 145 

To profile CD8+ T cell differentiation during T cell exhaustion, we used mouse 146 

models of acute (LCMV Armstrong – Arm) or chronic (LCMV Clone 13 – Cl13) viral 147 

infection. These two viral strains only differ by two amino acids, and the 148 

immunodominant epitopes are identical, enabling direct comparisons of antigen-specific 149 

T cell responses in both models [21, 22]. We generated paired single-cell RNA- and T 150 

cell receptor (TCR)-sequencing (scRNA/TCR-seq) and single-cell assay for transposase 151 

accessible chromatin with sequencing (scATAC-seq) data from LCMV glycoprotein 33-152 

41 tetramer positive (gp33+) and tetramer negative (gp33-) splenic CD8+ T cells at two 153 

timepoints (Day 8 and Day 21 post-infection) for both infection models (Figure 1A-C). 154 

At Day 21 (D21) of Cl13 infection, we also generated scRNA/TCR-seq of gp33+ and 155 

gp33- populations from two additional organs with known differences in viral antigen 156 

load (lung and liver; Figure 1B and Figure S1A) [23, 24]. Finally, we sorted D21 Cl13 157 

splenic T cells using previously defined surface markers that identify Texprog (SLAMF6+), 158 

Texint (CX3CR1+), and Texterm (PD-1+, SLAMF6- and CX3CR1-) phenotypes and 159 

performed scRNA/TCR- and scATAC-seq (Figure S1B) [7-9, 13]. In total, we obtained 160 

96,750 scRNA-seq profiles that passed quality control filters based on the detected 161 

gene count (>200 genes/cell), mitochondrial content (<5% mitochondrial RNA 162 

content/cell), and predicted doublets (Figure 1D and S1C, Methods). Of scRNA-seq 163 

profiles passing quality control filters, we detected TCR alpha and beta sequences in 164 

88,696 T cells (91.7%) and 5,197 expanded T cell clones (clones >1 cell; Figure 1D). 165 

We obtained 62,731 scATAC-seq profiles that passed quality control filters based on the 166 

unique ATAC-seq fragment count (>1,000 fragments/cell), median read enrichment at 167 

transcription start sites (>4 TSS score), and predicted doublets (Figure 1E, S1D and 168 

S1E, Methods).  169 

After scRNA-seq quality control filtering, we performed uniform manifold 170 

approximation and projection (UMAP), followed by dimensionality reduction and 171 

identified 11 scRNA-seq clusters, which were annotated based on differentially 172 

expressed genes (DEGs; log2 FC >0.25, Bonferroni adjusted p-value <0.01). In Arm 173 

infection, we observed expected T cell phenotypes, including naïve T cells (Tnaive; Ccr7, 174 

Sell, and Lef1, 248 DEGs), effector T cells (Teff; Klrg1 and Ly6c2, 143 DEGs), effector 175 

memory T cells (Tem; Klrb1c, Klrd1 and S1pr1, 193 DEGs), and memory T cells (Tmem; 176 

Il7r, Arl4c and Il18r1, 35 DEGs; Figure 1F, Table S1). In Cl13 infection, we observed 177 

Texprog (Tcf7, Slamf6 and Id3, 117 DEGs), Texint (Lgals3, S100a4 and Mki67, 113 178 

DEGs), and Texterm (Gzma, Bcl2, Cd101 and Entpd1; n=138), as expected (Figure 1D 179 

and 1F). In addition, we also observed early effector exhausted cells (Texeeff; Xcl1, 180 

Top2a and Mif, 1,059 DEGs; a predominant population on D8 of C13 infection), killer 181 

cell lectin-like receptor (KLR)-expressing exhausted cells (TexKLR; S1pr5, Cx3cr1, Klrc1 182 

and Zeb2, 260 DEGs; emerging specifically late in C13), lung terminal exhausted cells 183 

primarily detected in the lung (Texlung; Lag3, Ifng, Ccl3 and Ccl4, 247 DEGs), and 184 
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interferon signature gene (ISG) exhausted T cells (TexISG; Isg15, Ifit1, Ifit3 and Isg20, 185 

273 DEGs; Figure 1D and F).  186 

We observed 8 analogous T cell populations in the scATAC-seq data and 187 

annotated each cluster based on differential chromatin accessibility at marker gene loci 188 

identified in scRNA-seq clusters (i.e., Gene Score, log2 FC > 0.5, FDR < 0.01; Figure 189 

1G) and integration with scRNA-seq data (Figure S1F, Methods). Since our primary 190 

goal was to analyze Tex differentiation, we did not perform scATAC-seq at D21 in Arm 191 

infection, or in lung or liver T cells in Cl13 infection; thus, scATAC-seq clusters did not 192 

include Tem, Tmem, or Texlung subsets. However, scATAC-seq clusters did reveal 193 

additional heterogeneity in the early effector subsets, including three early 194 

activated/effector populations from the D8 time point in the two infection models. These 195 

subsets did not co-cluster with D21 Tex populations, and included two effector 196 

populations (Teff and Teff2) - mainly derived from the Arm condition - and an early 197 

effector exhausted population from the Cl13 condition (Texeeff; Figure 1E and G, Table 198 

S2).  199 

scATAC-seq profiles were analyzed at the level of: (1) chromatin accessibility of 200 

cis-elements (open chromatin regions; OCRs), (2) gene activity scores, computed from 201 

the accessibility of enhancers linked to a single gene promoter based on proximity and 202 

co-accessibility, and (3) transcription factor (TF) activity, computed from the enrichment 203 

of TF binding sites in OCRs or the accessibility of TF binding sites genome-wide in each 204 

single cell [25, 26]. Analysis of cis-elements identified cell type-specific OCRs (Tnaive - 205 

12,444; Teff - 331; Teff2 - 4,070; and Texeff - 1,463; Texprog - 4,532; Texint - 448; Texterm - 206 

2,264; TexKLR - 668; Figure 1H, Table S2), and accessibility was correlated with gene 207 

expression at marker gene loci that define Tex subsets, including Tcf7 (Tnaive, Texprog), 208 

Pdcd1 (Texprog, Texint, and Texterm), and Tox (Texprog, Texint, and Texterm; Figure 1I, 209 

Methods). TF motif enrichment analysis at cell type-specific OCRs identified TF motifs 210 

enriched in specific T cell subsets. As expected, Tnaive-specific OCRs were enriched for 211 

the TCF/LEF motifs, which were also enriched in Texprog, along with other known Texprog 212 

TFs (e.g., BATF, AP-1 and BACH), and two with undescribed functions (HIVEP and 213 

NFKB) [14, 17, 27, 28]. Texeeff showed NFAT motif enrichment, while KLF motifs were 214 

specifically enriched in the Texint, Teff
, and TexKLR populations. Finally, Texterm-specific 215 

OCRs exhibited strong enrichment for NR4A, RUNX and NFAT TF motifs (Figure S1G, 216 

Table S3) [29-32]. Together, these datasets describe the landscape of transcriptional 217 

and epigenetic CD8+ T cell states, including previously unidentified Tex populations, 218 

that emerge in response to chronic LCMV infection.  219 

 220 

CX3CR1+ exhausted T cells comprise three distinct Tex subsets. 221 

 We first examined heterogeneity within CX3CR1+ Tex cells, since these cells 222 

have recently been described as a highly proliferative and multi-functional intermediate 223 

cell state between Texprog and Texterm [8, 9, 13]. scRNA-seq of sorted CX3CR1+ T cells 224 

from D21 of Cl13 infection revealed substantial heterogeneity that primarily spanned 225 

three distinct phenotypes (Texeeff, abundant at D8, and Texint and TexKLR, abundant at 226 

D21; Figure 2A, Figure S2A). To better understand the temporal gene expression 227 

programs of Texeeff and Texint, we performed DEG analysis (log2 FC > 0.25, Bonferroni 228 

adjusted p-value < 0.01) and identified 382 genes with significantly higher expression in 229 

Texeeff (e.g., Rplp0, Rpsa, Gapdh and Cenpa) and 286 genes with significantly higher 230 
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expression in Texint (e.g., Ccl5, Cd3e, Lcp2 and Nfatc1; Figure S2A, Table S4). 231 

Ingenuity pathway analysis linked protein translation (EIF2 Signaling), cell cycle 232 

(Kinetochore Metaphase Signaling Pathway), and glycolysis (Glycolysis I.) to the D8 233 

population, indicative of a highly proliferative, activated T cell subset. In contrast, the 234 

transcriptional program of Texint at D21 was related to TCR stimulation and downstream 235 

signaling (Figure S2A). These results suggest that the Texeeff subset possesses higher 236 

cycling and glycolytic activities, while the Texint subset is more differentiated and 237 

expresses genes related to TCR signaling, which seeds downstream Tex populations. 238 

To similarly determine the transcriptional programs that distinguish Texint cells 239 

from TexKLR cells, we performed DEG analysis and found 97 TexKLR-biased genes and 240 

340 Texint-biased genes (Figure 2B, Table S5). Pathway analysis of TexKLR and Texint 241 

genes demonstrated the enrichment of cell cycle- and T cell exhaustion-related 242 

biological terms in the Texint population, while linking T cell activation signaling and T 243 

cell motility-related functions to the TexKLR subset (Figure 2B). Notably, many markers 244 

of terminal effector and effector memory T cells, such as the killer cell lectin-like 245 

receptor (KLR) family members (e.g., Klrd1, Klrk1, Klrc1, Klre1 and Klrg1), the TF, 246 

Zeb2, and its target gene, S1pr5 (a marker of tissue emigrating antigen-experienced T 247 

cells), showed a highly specific expression pattern in the TexKLR subset [33, 34]. In 248 

contrast, Texint cells expressed canonical exhaustion markers, such as Tox, Tox2, 249 

Ctla4, Pdcd1, and Lag3, along with cell cycle genes (e.g., Cdk6), and TCR signaling 250 

genes (e.g., Coro1a, Tapbpl and Sh2d2a; Figure 2B) [35-37]. We focused on the 251 

TexKLR subset and assessed the expression of the gene signature of terminal effector 252 

memory T cells (T-Tem), a recently described subset of Tem identified during acute LCMV 253 

infection, which express effector T cell markers, including KLRs (e.g., Cx3cr1, Zeb2, 254 

S1pr5, and Klre1) [38]. The T-Tem gene signature was highly expressed in the TexKLR 255 

cells and was also observed at the single cell level by scoring the cells based on the 256 

expression of this gene panel; thus, cells we term ‘KLR-expressing Tex’ (TexKLR) may 257 

represent a parallel differentiation path to T-Tem with strong effector function and the 258 

potential for memory formation (Figure 2C-E) [13]. In summary, the CX3CR1+ T cell 259 

pool contains additional T cell subsets with distinct functionalities and dynamics during 260 

the course of chronic infection, which may explain the multitude of effector- and 261 

exhaustion-related functions that have previously been linked to this population [8, 9, 262 

13]. 263 

  264 

Tex acquire organ-specific terminal exhaustion signatures. 265 

 Next, we asked whether chronic viral infection leads to similar T cell states in 266 

different tissues. We re-clustered scRNA-seq profiles from animal-matched gp33+ and 267 

gp33- CD8+ T cell fractions from the spleen, lung, and liver at D21 of Cl13 infection. We 268 

annotated CD8+ T cell subsets based on the previously-defined markers and examined 269 

their distribution across organs (Figure 2F). Relative to splenic T cells, cells in the lung 270 

exhibited an alternative terminal exhausted phenotype (Texlung) and a reduced Texprog 271 

population, while the proportions of TexKLR and Texint populations were similar to the 272 

spleen (Figure 2F and G). Strikingly, T cells in the liver almost exclusively adopted the 273 

Texterm phenotype, with dramatically reduced numbers of other Tex phenotypes, as 274 

previously described (6.1% of the total; Figure 2F and G) [60]. We further examined 275 

tissue-specific differences in the exhaustion signature by pairwise differential gene 276 
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expression analyses (log2 FC > 0.25, Bonferroni adjusted p-value < 0.01). Compared to 277 

splenic Texterm cells, liver-derived Texterm cells possessed a strong tissue-resident 278 

memory T cell signature, including the expression of Cd69, Cxcr6, Ccl3 and Ccl4, and 279 

heightened mTOR and glycolytic activity (Figure 2H, Table S6). Similarly, lung-derived 280 

Texterm cells also exhibited typical markers of lung-resident memory T cells, including 281 

Cxcr6, Cd44 and several integrin genes (Itga4, Itgad, Itgab7 and Itgab1; Figure 2H, 282 

Table S7). Furthermore, both liver- and lung-derived Texterm cells expressed higher 283 

levels of pro-survival genes than splenic Texterm cells, including, Bcl2, Bcl2a1b, and 284 

Bcl2a1d (Figure 2H, Table S8). These results suggest that Texterm cells can obtain 285 

tissue residency signatures and persist in tissues in the setting of chronic antigen.  286 

Despite tissue specific differences in gene expression of Texterm, we observed a 287 

common Texterm gene signature across all organs. This signature (n=35 genes) 288 

contained previously described exhaustion-related genes, such as immune checkpoint 289 

inhibitory receptors, Pdcd1, Lag3, and Tigit, and the key TF, Tox, which imprints the 290 

transcriptional and epigenetic signature of T cell exhaustion (Figure 2I). Finally, we 291 

constructed an exhaustion gene signature based on previously defined CXCR5+ and 292 

CXCR5- T cells subsets and scored the severity of exhaustion among Texterm cells from 293 

each organ [6]. We observed that liver-derived Texterm cells scored the highest for the 294 

exhaustion signature, followed by splenic and lung-derived Texterm cells (Figure 2J). We 295 

also scored Texterm and Texint cells based on cell cycle activity, which ranked liver-296 

derived cells as the least proliferative, followed by the lung and spleen, inversely 297 

correlating with the severity of exhaustion (Figure S2B). These results demonstrate that 298 

T cell exhaustion develops across multiple organs with a common gene expression 299 

signature but microenvironment-specific effects; namely, exhaustion is most 300 

pronounced in the liver niche, which is perhaps driven by higher antigen burden or 301 

anatomical differences [39].   302 

 303 

Regulatory programs underlying Tex subsets and early fate commitment to the 304 

Tex lineage.  305 

 The chromatin state of Tex subsets is dynamically regulated and represents a 306 

major point of epigenetic imprinting [20] [40]. Two open questions are: (1) the earliest 307 

cell cell stage of Tex epigenetic priming, and (2) the temporal regulation of the Tex 308 

epigenetic program. To address these questions, we focused our analysis on scATAC-309 

seq data from Cl13 infection and analyzed gp33+ and gp33- T cells from two time points 310 

(D8 and D21) that encompassed previously-defined and our newly-defined Tex subsets 311 

(Figure 3A and B). Next, we defined differential OCRs for each Tex subset, including 312 

Texeeff (3,567 OCRs), Texprog (4,818 OCRs), Texint (235 OCRs), TexKLR (1,223 OCRs), 313 

and Texterm (1,594 OCRs; Figure 3C). Cl13-focused scATAC-seq analysis identified a 314 

second, more effector-like Texeeff2 population at D8 that exhibited higher accessibility at 315 

Klrc1 and Gzmm genes (2,296 OCRs). In addition to the previously described Tex 316 

subset-specific motif enrichments (Figure S1G), the Cl13-focused analysis allowed us 317 

to observe potential relatedness of the subsets based on their chromatin features and 318 

enriched TF motifs (Figure 3C). Namely, we observed that: (1) the open chromatin 319 

landscape of Texprog and Texeeff partially overlap, indicative of developmental 320 

relatedness, and (2) the Texint subset exhibits an intermediate chromatin state between 321 

the Texterm and TexKLR subsets, with very few unique OCRs, suggesting that this cell 322 
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state is an intermediate cell stage and a potential bifurcation point of Tex differentiation, 323 

supported by our observation of Texint at D8 and the emergence of Texterm and TexKLR 324 

by D21 (Figure 1B).   325 

Next, we focused on the early programming of exhaustion by comparing D8 326 

scATAC-seq phenotypes in Arm and Cl13 infection (Figure S3A). As previously 327 

described, memory precursor cells (Tmp) are present at D8 in Arm infection and cluster 328 

with an early Texprog population present at D8 in Cl13 infection that expresses Tox and 329 

Tcf7 (herein referred to as precursor exhausted - Texprec), but these subsets were 330 

relatively infrequent compared to the effector populations in both infection models (1.4% 331 

of D8 cells in Arm infection, 3.3% of cells at D8 in Cl13 infection) [14, 41]. We first 332 

compared the gene expression and chromatin state programs of Tmp and Texprec 333 

subsets, which revealed strong exhaustion- and interferon-induced programs in Texprec, 334 

as expected (Figure S3B, S3C and S3D, Table S9). Second, we analyzed DEGs of 335 

effector cells in Arm and Cl13 infection, which revealed a strong Tex signature in the 336 

Texeeff subset compared to Teff; Teff showed a bona fide effector program (e.g., Gzma, 337 

Klrd1, Ccr2, and Cx3cr1, 371 DEGs), while Texeeff expressed high levels of exhaustion 338 

marker genes (e.g., Tox, Lag3, Pdcd1, Havcr2, Ctla4, and Tigit, 618 DEGs; Figure 3D). 339 

These observations were also supported by the chromatin state programs of these 340 

subsets (Teff - 7,066 OCRs vs. Texeeff - 5,211 OCRs) that were associated with Teff-341 

specific (ETS and RUNX) and Texeeff-specific (NFAT and BATF) TF motifs (Figure 3D, 342 

Table S10). Altogether, these results support recent studies demonstrating the 343 

formation of Texprec early during chronic infection that exhibit molecular signatures of 344 

exhaustion, distinct from Tmp [14, 41]. However, we find that the exhaustion program, 345 

including Tox expression, is present in an earlier Texeeff stage and driven by NFAT and 346 

BATF, which may prime the chromatin state of TCF1- cells for exhaustion, supporting a 347 

model in which an initial wave of effector cells undergoes contraction and gives rise to 348 

Texprog cells that seed additional Tex subsets. 349 

 Although Tex differentiation downstream of Texprog is currently thought to follow a 350 

linear path, our identification of a TexKLR subset, which emerges late in infection 351 

alongside Texterm, suggests that the Texint population may represent a potential 352 

bifurcation point between TexKLR
 and Texterm

 phenotypes (Figure 1D, 2A and 3A) [3]. 353 

We compared scATAC-seq profiles of TexKLR and Texterm subsets to Texint cells and 354 

identified 405 Texterm-specific, 364 TexKLR-specific OCRs, and only 4 common OCRs, 355 

suggesting that these two cell states are epigenetically divergent (Figure 3E). 356 

Accordingly, TF motif enrichment analysis showed increased accessibility of NFAT, IRF, 357 

STAT, and NR4A TF motifs in Texterm and increased accessibility of RUNX, MGA, KLF, 358 

TBET/EOMES and ETS TF motifs in TexKLR (Figure 3F). Differential gene expression 359 

analysis (log2 FC > 0.25, Bonferroni adjusted p-value < 0.01) identified 97 TexKLR- 360 

biased genes (e.g., Klrg1, Arl4c and Zeb2) and 340 Texterm-biased genes (e.g., Tox, 361 

Tox2, Lag3 and Pdcd1; Figure S3E, Table S11). These results indicate that TexKLR and 362 

Texterm cells exhibit distinct chromatin and gene expression programs, supporting the 363 

idea that these phenotypes represent late stages of a divergent differentiation trajectory 364 

of exhaustion that bifurcates at the Texint stage. 365 

Finally, we analyzed 15,809 variable OCRs for TF motif enrichments across 366 

three differentiation trajectories nominated by longitudinal timepoint data and/or 367 

chromatin state similarities: (1) Texprog trajectory (Texeeff � Texprec
 � Texprog), (2) 368 
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Texterm trajectory (Texprog � Texint � Texterm), and (3) TexKLR trajectory (Texprog � Texint 369 

� TexKLR; Figure 3G). The Texprog trajectory showed a gradual loss of HOMEOBOX TF 370 

motifs and enrichment of BATF, AP-1, BACH, NFKB, TCF and CTCF motifs. In contrast, 371 

in both Texterm and TexKLR trajectories, we observed a gradual loss of Texprog specific TF 372 

motifs (e.g., TCF, BACH and BATF) upon entry to the Texint cell state. Differentiation 373 

trajectories that bifurcated from the Texint state showed the enrichment of specific TF 374 

motifs that might bind TFs which can guide the differentiation program of TexKLR (e.g., 375 

ZEB, ID, IRF, KLF, ETS, RFX, HIVEP and RUNX) and Texterm (e.g., RUNX and NR4A; 376 

Figure 3G). Finally, we studied the accessibility of the Tox locus, encoding the TF that 377 

is critical for Tex differentiation [4, 15, 16, 18, 19]. Accessibility of the Tox locus 378 

gradually increased as cells transitioned from Texeeff to Texprog, while it gradually 379 

decreased as they transitioned to TexKLR. The Texterm trajectory demonstrated a 380 

decrease in Tox accessibility during the Texprog to Texint transition and a subsequent 381 

increase in the Texterm state (Figure 3G). We annotated differentially accessible OCRs 382 

(compared to Tnaive cells) in a +/- 250kb window around the transcription start site of Tox 383 

and identified 88 OCRs. Of these OCRs, 16 and 8 were differentially accessible in 384 

Texeeff or Texprog, respectively, which was also supported by high Tox expression in 385 

these subsets (relative to Tnaive), indicating that TOX executes the molecular 386 

programming of Tex differentiation in these subsets (Figure S3F, Table S12). These 387 

results identify the Texeeff population as a novel point of the molecular programming of 388 

exhaustion and nominate the Texint population as a potential bifurcation point of Tex cell 389 

differentiation states. 390 

 391 

Clone tracing reveals divergent Tex differentiation trajectories during chronic 392 

viral infection. 393 

We next leveraged paired scRNA/TCR-seq data to analyze clonal trajectories of 394 

T cells in Arm and Cl13 (D8 and D21) infection (Figure 4A). We identified 212 and 280 395 

expanded T cell clones (> 1 cell) at D8 and D21 of Arm infection, respectively, and 134 396 

and 338 expanded clones at D8 and D21 of Cl13 infection, respectively. As expected, at 397 

D8 of Arm infection, clonally expanded T cells were largely restricted to the Teff pool, 398 

while at D21, clonally expanded T cells exhibited a balanced distribution between Tem 399 

and Tmem phenotypes (Figure 4B and Figure S4A). In contrast, clonal expansion at D8 400 

in Cl13 infection occurred almost exclusively in Texeeff (Figure 4C). Importantly, the 401 

Texprog population did not show strong clonal expansion at this early time point, further 402 

supporting our prior observation that cells in this population are infrequent at D8 and 403 

subsequently expand by transition from TEX-eeff or self-renewal from cells not 404 

significantly present at D8 (Figure 3). At D21 in Cl13 infection, we observed expanded 405 

clones across multiple Tex phenotypes, including Texprog, Texint, Texterm, and TexKLR 406 

(Figure 4C and Figure S4B).  407 

 To further investigate Tex clonal differentiation trajectories, we visualized the 408 

distribution of cellular phenotypes for the top 10 expanded clones at D8 and D21 in 409 

each infection. At D8, cells of the top expanded clones from the Arm condition almost 410 

exclusively acquired the Teff phenotype, with clone sizes ranging from 77-321 cells 411 

(mean 153 cells, 3.8% of 4,030 total cells). At D21, top expanded clones acquired both 412 

Tem and Tmem phenotypes, with clone sizes ranging from 145-366 (mean 246 cells, 3.5% 413 

of 7,033 total cells; Figure 4D and Figure S4A). In contrast, the top expanded clones in 414 
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Cl13 infection acquired the Texeeff phenotype at D8, with clone sizes ranging from 26-95 415 

cells (mean 49 cells, 3.5% of 1,414 total cells). Notably, expanded clones only 416 

contained small numbers of cells with the Texprog phenotype at this time point (Figure 417 

4D). Analysis of D21 of Cl13 infection identified substantially larger clone sizes, ranging 418 

from 146-2,026 cells (mean 525 cells, 7.0% of 7,489 total cells; Figure 4D). Strikingly, 419 

these large clones contained cells with multiple Tex phenotypes (Texprog, Texint, TexKLR, 420 

and Texterm), although the frequency of each phenotype varied considerably between 421 

individual clones. Namely, individual clones either preferentially acquired the Texterm or 422 

the TexKLR phenotypes, or developed into both phenotypes (Figure 4D and Figure 423 

S4B). This observation prompted us to perform a more detailed analysis of the 424 

phenotypic distribution of all large clones (> 3 cells detected) of the top 7 most dominant 425 

clonal phenotype combinations, which revealed three main clonal differentiation 426 

patterns (referred to as clone behaviors): 1) Texterm-biased clones, consisting of cells 427 

that predominantly acquired the Texterm and not TexKLR phenotype (45% of clones), 2) 428 

TexKLR-biased clones, consisting of T cells that predominantly acquired the TexKLR 429 

phenotype (18% of clones), and 3) divergent clones, consisting of cells that acquired 430 

Texterm and TexKLR phenotypes (37% of clones; Figure 4E). Divergent clones were the 431 

most clonally expanded and ranged from 7-2,026 cells (mean 197 cells) per clone, while 432 

Texterm-biased clones ranged from 4-111 cells (mean 19 cells) per clone. Interestingly, 433 

TexKLR-biased clones were relatively small and ranged from 4-21 cells (mean 8 cells) 434 

per clone (Figure 4E-G). We also noted several larger clones (4-233 cells, mean 53 435 

cells) that skewed heavily to the TexKLR phenotype (>50% of cells acquire the TexKLR 436 

phenotype), but had a small percentage of Texterm cells (Figure S4C). To account for 437 

sampling biases where not all relevant phenotypes may be observed for small clones, 438 

we randomized T cell phenotype and TCR clone assignment to generate a null 439 

distribution of clone patterns if each clone randomly acquired all observed phenotypes 440 

(Methods). This analysis revealed a striking enrichment of TexKLR- and Texterm-biased 441 

clone behavior over random chance, whereas the divergent clonal differentiation pattern 442 

was twice as likely to be detected by random chance than observed in our data, 443 

suggesting that the observed biases in clone behavior are not simply the result of 444 

sampling bias (Figure S4D). Altogether, these results reveal novel clonal Tex 445 

differentiation trajectories during chronic infection (Figure 4H).   446 

 447 

Antigen-specific expanded Tex clones and phenotypes are shared across tissues.  448 

 Next, we asked if clonal differentiation patterns are intrinsically programmed, 449 

perhaps by the TCR, or stochastic. We first determined whether expanded Tex clones 450 

could be found across different tissues by analyzing antigen-specific gp33+ and gp33- 451 

CD8+ T cells across organs (animal-matched) in Cl13 at D21 (Figure 5A). In spleen-, 452 

liver-, and lung-derived scRNA/TCR-seq datasets, we detected expanded T cell clones 453 

across all three tissues, and as expected, the gp33+ and gp33- fractions showed 454 

minimal TCR overlap, validating our sorting strategy (Figure 5B and Figure S5A). 455 

Importantly, there was significant TCR sharing across the different organs for both 456 

gp33+ and gp33- fractions (Figure S5A). We identified expanded organ-shared T cell 457 

clones that had at least 5 T cells, which consisted of at least 1 cell from each organ. 458 

This analysis identified 100 shared T cell clones among all organs, 37 clones shared 459 

between the lung and spleen, and 22 clones specific to the spleen (Figure 5C and D). 460 
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We examined the degree of expansion of TCR clones that were detected across organs 461 

and observed a strong correlation in clone frequency in each pairwise organ 462 

comparison (spleen:liver - R=0.66; spleen:lung - R=0.65; liver:lung - R=0.76, Figure 463 

5C).  464 

Next, we examined the distribution of phenotypes for clones shared across 465 

organs with different differentiation trajectories defined by their trajectory in the spleen 466 

(Figure 5E, F and Figure S5B, C). First, we focused on comparisons between the 467 

spleen and lung, since they exhibited similar heterogeneity in Tex phenotypes. 468 

Strikingly, differentiation trajectories were highly conserved between the two tissues. 469 

Divergent clones in the spleen also maintained Texterm and TexKLR phenotypes in the 470 

lung (although instead exhibiting the aforementioned terminal Texlung phenotype; 35/48 471 

divergent clones detected in both organs, Figure 5E, F, Figure S5B, C). Similarly, the 472 

majority of splenic TexKLR-biased clones remained TexKLR-biased in the lung (4/7 clones 473 

detected in both organs) and the majority of splenic Texterm-biased clones remained 474 

Texterm-biased in the lung (11/14 clones detected in both organs; Figure 5E and Figure 475 

S5C). In particular, we did not observe appreciable interconversion between TexKLR- 476 

and Texterm-biased clones between these two organs (0/19 shared clones). Accordingly, 477 

quantification of the TexKLR and Texterm frequencies within individual clones showed a 478 

high concordance across organs (TexKLR spleen:lung - R=0.96, Texterm spleen:lung - 479 

R=0.75; Figure 5G). Altogether, these results demonstrate that clonally expanded Tex 480 

clones are shared across organs and that clonal differentiation behavior is primarily an 481 

intrinsically programmed, rather than stochastic, process.  482 

 483 

Depletion of TexKLR clones in the liver microenvironment.  484 

We next analyzed clonal behavior in the liver, which showed an enrichment of 485 

Texterm compared to other organs (94% Texterm), perhaps driven by high antigen burden 486 

[39]. Thus, in contrast to the lung, we expected an enrichment in clonal Texterm 487 

frequency; however, this could either be driven by: (1) depletion of TexKLR in the liver 488 

microenvironment, or (2) interconversion of TexKLR-biased clones to Texterm-biased 489 

clones. To distinguish between these two possibilities, we first analyzed the TexKLR-490 

biased clones from the spleen and found that only one of these clones was present in 491 

the liver (1/7 shared clones), suggesting that TexKLR-biased clones are depleted in the 492 

liver niche. Similarly, although divergent clones were largely detectable in the liver 493 

(52/58 clones shared between spleen and liver), we again observed a depletion of 494 

TexKLR cells, resulting in Texterm-biased behavior in the majority of the cases (32/52 495 

shared clones). In contrast, the majority of Texterm-biased clones remained Texterm-496 

biased in the liver, although they were heavily skewed towards the Texterm phenotype, 497 

with relative loss of Texprog and Texint phenotypes (9/9 clones, Figure 5E, F and Figure 498 

S5C). Importantly, Texterm-biased clones did not adopt a TexKLR phenotype. 499 

Quantification of frequencies of TexKLR and Texterm phenotypes of shared clones in the 500 

spleen and liver confirmed the depletion of TexKLR cells in the liver and a skewing of 501 

Texterm-biased clones to the Texterm fate (Figure 5G and H). Altogether, these results 502 

demonstrate that Tex clones entering the liver exhibit changes in clonal behavior due to 503 

the loss of TexKLR, suggesting that TexKLR are not able to persist in high antigen 504 

environments, perhaps due to activation-induced cell death.  505 

 506 
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TCR affinity can program Tex clone behavior and phenotypic fate commitment.   507 

The difference in expansion levels between Texterm-biased clones and TexKLR-508 

biased clones led us to examine whether Tex differentiation trajectories were driven by 509 

differences in TCR affinity. We used tetramer staining as a proxy for TCR affinity 510 

against the immunodominant LCMV epitope, gp33, and sorted gp33- (n=8,914), gp33-511 

intermediate (gp33int; n=5,875), and gp33-high (gp33high; n=8,194) CD8+ T cells from the 512 

spleen of Cl13-infected mice at D21 and performed scRNA/TCR-seq (Figure 6A and 513 

Figure S6A). Analysis of TCR sequences identified 313 TCRs in gp33high cells, 1,576 514 

TCRs in gp33int cells, and 3,803 TCRs in gp33- cells (Figure S6B). The TCR repertoire 515 

showed a relatively small overlap between gp33high and gp33- cells (13 shared TCRs), 516 

compared to the overlap between gp33high and gp33int cells (158 shared TCRs), or 517 

gp33int and gp33- cells (306 shared TCRs), and quantification of TCR repertoire 518 

similarity using the Morisita overlap index demonstrated that gp33int sorting captured a 519 

distinct TCR repertoire compared to gp33high and gp33- fractions (Figure 6B and Figure 520 

S6B). 521 

Next, we evaluated the clone size distribution of the sorted populations, which 522 

revealed an increase in the percentage of large clones (clones with 5-200 or >200 cells) 523 

as a function of higher tetramer fluorescence, with an accompanying decrease in clonal 524 

diversity (Figure 6C). To link unique TCRs to each gp33-tetramer fraction, we 525 

compared the overlap of clones between gp33 fractions and identified 592 unique gp33- 526 

clones, 114 unique gp33int clones, and 88 unique gp33high clones (Figure 6D). 527 

Importantly, the distribution of cellular phenotypes for these unique clones showed 528 

considerable phenotypic skewing (Figure 6E-G). Namely, gp33high cells contained ~3.3 529 

times more cells with Texterm and Texint phenotypes, compared to either gp33- or gp33int 530 

cells (39% Texterm and 19% Texint in gp33high; 11% Texterm and 6.7% Texint in gp33int; 531 

11% Texterm and 7.0% Texint in gp33-), indicating a pronounced phenotypic skewing 532 

towards terminal exhaustion. In contrast, gp33int cells exhibited phenotypic skewing 533 

towards the TexKLR phenotype in the population, compared to the gp33high and gp33- 534 

populations (27% TexKLR in gp33int; 7.9% TexKLR in gp33high; 13% TexKLR in gp33-; 535 

Figure 6F and G).  536 

To further analyze differentiation trajectories at a clonal level, we visualized the 537 

top 10 unique expanded clones in each gp33-tetramer fraction and assessed their 538 

phenotypic composition. We found that the top clones in the gp33- and gp33high fractions 539 

were biased towards Texterm or divergent phenotypes (10/10 gp33- clones and 10/10 540 

gp33high clones), while in contrast, the largest clones in the gp33int pool exhibited 541 

phenotypic skewing towards the TexKLR phenotype (5/10 gp33int clones; Figure 6H). 542 

Finally, we analyzed the clone behaviors of the unique clones of the three gp33 543 

fractions in the top 7 most dominant phenotypic patterns that define clone behaviors 544 

(Figure 6I). Clones of the gp33- fraction exhibited two major clone behaviors, Texterm-545 

biased and TexKLR-biased. Interestingly, clones from the gp33int fraction were heavily 546 

enriched for TexKLR-biased differentiation. Finally, expanded clones unique to the 547 

gp33high fraction were biased towards Texterm-biased and divergent clone behaviors, and 548 

no TexKLR-biased clones were identified (Figure 6I). Surprisingly, divergent clone 549 

behaviors were much more common in the unique T cell clones of the gp33int and 550 

gp33high fractions compared to gp33- clones, suggesting that this differentiation path 551 

may be more common among T cell clones that recognize this immunodominant 552 
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epitope. These results establish that T cell clones distinguished by their affinity for the 553 

immunodominant LCMV epitope have divergent differentiation paths, with lower affinity 554 

TCR clones favoring the development of TexKLR and higher affinity TCR clones biasing 555 

toward Texterm and divergent behavior.   556 

 557 

Discussion 558 

Here we report a single-cell multi-omic atlas of T cell exhaustion during chronic 559 

viral infection, which reveals novel Tex subsets, identifies multiple differentiation 560 

trajectories of Tex clones, and nominates TCR signal strength as a key driver of clonal 561 

behavior. We define an early effector Tex differentiation state (Texeeff), where the 562 

molecular program of exhaustion is initiated, and identify a bifurcation point of Tex 563 

differentiation (Texint), which can give rise to two alternative late-stage Tex phenotypes 564 

(TexKLR and Texterm) with the potential to balance effector function, immunological 565 

memory, and persistence in high antigen environments. Using the TCR sequence as an 566 

endogenous molecular barcode, we track the fate of individual T cell clones and 567 

establish three main clonal developmental trajectories that give rise to the 568 

heterogeneous Tex pool. Surprisingly, we find that clonal differentiation patterns are 569 

shaped by TCR affinity and affect the resulting phenotype and clonal expansion in 570 

different tissue microenvironments. These findings highlight the importance of studying 571 

the polyclonal T cell repertoire at single cell resolution to fully uncover the diversity and 572 

function of T cell states in the immune response.    573 

Prior studies have described multiple Tex subsets with distinct phenotypic and 574 

functional traits, primarily within the spleen microenvironment during chronic viral 575 

infection [3,10, 11, 42, 43]. In addition to Texterm and Texprog subsets, transitory 576 

exhausted cells have more recently been characterized as a multi-functional CX3CR1+ 577 

population with high cytolytic activity, proliferative capacity, and the ability to contribute 578 

to the memory T cell pool [8, 9, 13]. Here we show that this CX3CR1+ population 579 

encompasses three T cell subsets with distinct functionalities: 1) an early effector 580 

exhausted subset (Texeeff) with high proliferative capacity early in infection that is largely 581 

absent at later stages; 2) intermediate exhausted T cells (Texint), which maintain a high 582 

proliferation signature and upregulate signaling downstream of TCR stimulation, and 3) 583 

a TexKLR subset with a strong cytolytic gene expression program, and a terminal effector 584 

memory cell-like signature that has been described in acute infection [38]. 585 

Given the distinct, stable epigenetic state of Tex, which persists after antigen 586 

clearance [20, 40, 44-46], a key question is the stage at which Tex epigenetic imprinting 587 

occurs. Previous studies have shown that early TCF1+ Texprec cells possess the 588 

epigenetic signature of Tex and can seed additional Tex subsets [14, 41]. Here, we find 589 

that the Tex program is initiated at an earlier stage in TCF1- Texeeff. scATAC-seq 590 

analysis suggests that this fate decision is initially driven by NFAT and BATF, which 591 

may prime the chromatin state of TCF1- cells to develop into Texprec, which 592 

subsequently activate BACH2 and TCF-1 to give rise to Texprog [14, 17]. This finding 593 

supports a model in which the Texprec pool, and eventually the Texprog pool originates 594 

from Texeeff, analogous to memory differentiation from memory precursors or short-lived 595 

effector cells during acute infection.   596 

Downstream of the Texprog population, the differentiation trajectory of Tex has 597 

largely been shown to follow a linear cellular path [3]. However, our data suggests that 598 
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there are two late-stage cell types that result from a divergent differentiation path 599 

(TexKLR and Texterm), and that individual clones can follow three differentiation 600 

trajectories resulting in Texterm-biased, TexKLR-biased, or divergent fates, comprising 601 

both cell types. Furthermore, we find that the differentiation trajectory of Tex clones is 602 

intrinsically programmed by TCR affinity and conserved across specific tissue 603 

microenvironments; high-affinity TCR clones are biased towards divergent and Texterm 604 

differentiation trajectories, while low-affinity TCR clones are biased towards a TexKLR 605 

trajectory. However, the presence of clones with divergent behavior suggests that there 606 

may be additional paths to induce TCR signal strength variation – perhaps via inhibitory 607 

receptor signaling, access to antigen, antigen-presenting cell type, or other factors – to 608 

generate TexKLR. Importantly, TexKLR-biased clones were dramatically depleted in the 609 

liver microenvironment, suggesting that these clones and this phenotype are sensitive 610 

to the antigen-rich environment of the liver and are unable to persist. Given the high 611 

viral load and inflammatory microenvironment of the liver during infections, these results 612 

suggest that the Texterm phenotype precludes activation-induced cell death, improves 613 

Tex persistence, and preserves anti-viral effector function in the organ system [47].  614 

Finally, these findings may have several implications for cancer, where T cell 615 

exhaustion can limit the T cell response and efficacy of immunotherapies. First, several 616 

ongoing therapeutic strategies aim to reverse exhaustion; however, our results suggest 617 

that Texterm may be specifically adapted to survive in high antigen niches, and that 618 

inhibiting Texterm differentiation may be deleterious, rather than beneficial, to the T cell 619 

response [4, 15, 16, 18, 19, 48]. Whether the pro-survival aspects of T cell exhaustion 620 

can be specifically maintained, while still reinvigorating other aspects of effector function 621 

will require further study. Second, our findings reinforce the notion that TCR signal 622 

strength directs the phenotypic fate of T cells, in addition to mediating recognition of 623 

specific antigens [49, 50]. Thus, the generation of TCR-based cellular therapies should 624 

incorporate the assessment of phenotypic outcomes of TCR activation, in addition to 625 

peptide-MHC binding properties. Finally, the observation that a polyclonal T cell 626 

response to chronic antigens balances persistence, effector, and potential memory 627 

functions via the development of two Tex states suggests that future cellular therapies 628 

should also aim to establish divergent phenotypes, encompassing Texterm and TexKLR. 629 

Future studies should investigate whether TexKLR develop during tumor-specific T cell 630 

responses. A recent study identified a natural killer (NK) cell-like signature in chronic 631 

antigen-induced exhausted human chimeric antigen receptor (CAR)-T cells, which 632 

resembles the TexKLR signature described here, suggesting that this cell type may be 633 

present in adoptive cell therapy settings as well [51]. Manipulation of these Tex states 634 

and their underlying gene regulatory programs and differentiation pathways may provide 635 

avenues to improve T cell-based immunotherapies in the future.  636 
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 673 

Methods 674 

 675 

Mice and infection 676 

Male C57BL/6N mice were purchased from Charles River Laboratories. All mice were 677 

housed in a specific pathogen-free facility at Washington University in St. Louis and 678 

were used for infection at 8–12 week of age. LCMV infection was performed essentially 679 

as described previously [52]. All experiments were performed according to a protocol 680 

approved by Washington University’s Institutional Animal Care and Use Committee.  681 

Tissue preparation 682 

Single cell suspension of the different organs was prepared by manual dissociation. 683 

Organs were minced and gently pushed through a 40-micron strainer. Spleen single cell 684 

suspensions were spun, and red blood cells were lysed with ACK-lysis buffer by 685 

resuspending the cell pellet followed by 2 minutes incubation. Cells were then washed 686 

with ice-cold PBS and stained for sorting in FACS buffer (PBS, 0.1% BSA, 2mM EDTA, 687 

5% FBS). For the lung and liver single-cell suspension, organs were cut into small 688 

pieces and gently pushed through a 40-micron diameter strainer. Single-cell 689 
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suspensions were then layered on top of Ficoll-Paque Plus (Cytiva) and centrifuged 690 

according to the manufacturer’s recommendations. The lymphocyte fraction was 691 

collected and washed with ice-cold PBS, and then stained for sorting.  692 

 693 

Staining T cells for sorting 694 

Single cell suspensions were stained with the following antibodies: CD8b (PerCP-695 

Cy5.5), PD-1 (PE-Cy7), CX3CR1 (APC), SLAMF6 (BV605) and the class I tetramer, H-696 

2Db LCMV gp33-41 (KAVYNFATC) (PE). Cells were stained with the tetramer for 20 697 

minutes at 4C followed by staining with the combination of the other antibodies for 20 698 

minutes. Cells were washed in FACS buffer and stained with LIVE/DEAD Fixable Aqua 699 

dead cell stain for 20 minutes in PBS.  700 

 701 

scATAC-seq sample and library generation 702 

Single cell ATAC-seq experiments were performed on the 10x Chromium platform as 703 

described earlier [53]. Briefly, after sorting, T cells were washed with PBS + 0.04% BSA 704 

and then subjected to nuclei isolation according to the protocol of the manufacturer. 705 

Nuclei were counted and on average ~10,000 nuclei were submitted for tagmentation. 706 

After tagmentation, nuclei were loaded for capture using the 10x Chromium controller. 707 

After Gel emulsion generation, linear amplification was performed, followed by DNA 708 

purification according to the manufacturer’s protocol. The resulting DNA was used for 709 

library construction as described on the website of the manufacturer. Libraries were 710 

quantified by Agilent Bioanalyzer and were sequenced on an Illumina NovaSeq S4 711 

sequencer, using the following setup: 50bp read 1N, 8bp i7 index, 16bp i5 index and 712 

50bp read 2N. In this reaction, 1N and 2N refers to the DNA insert sequencing, while i5 713 

and i7 sequencing identifies the individual barcodes of single cells.  714 

 715 

Single-cell RNA-seq library preparation 716 

Single-cell RNA-seq libraries were prepared using the 10X 5’ Single Cell Immune 717 

Profiling Solution Kit (v1.1 Chemistry), according to the manufacturer’s instructions. 718 

Briefly, FACS sorted cells were washed once with PBS + 0.04% BSA and on average 719 

10,000 cells were submitted for capture using the 10x Chromium controller. Following 720 

reverse transcription and cell barcoding in droplets, emulsions were broken, and cDNA 721 

was purified using Dynabeads MyOne SILANE followed by PCR amplification (98°C for 722 

45 sec; 14 cycles of 98°C for 20 sec, 67°C for 30 sec, 72°C for 1 min; 72°C for 1 min). 723 

For gene expression library construction, 50 ng of amplified cDNA was fragmented, 724 

end-repaired, and double-sided size selected with SPRIselect beads. Purified DNA was 725 

subjected to PCR amplification with sample indexing primers (98°C for 45 sec; 14 cycles 726 

of 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 sec; 72°C for 1 min). Amplified DNA 727 

was double-sided size selected with SPRIselect beads and were quantified using 728 

Agilent Bioanalyzer. Single-cell RNA-seq libraries were sequenced on an Illumina 729 

NovaSeq S4 sequencer using the following read configuration 26bp Read1, 8bp i7 730 

Index, 91bp Read2.  731 

 732 

Single-cell TCR library generation 733 

Single-cell TCR libraries were prepared with the 10x Chromium Single Cell V(D)J 734 

Enrichment Kit for mouse T cells (v1.1 Chemistry) following the manufacturer’s protocol. 735 
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Briefly, after cDNA amplification and clean up, 2ul of cDNA was used for target 736 

enrichment. First, target enrichment 1 was performed by specific primers followed by a 737 

SPRIselect bead clean-up. Second, target enrichment 2 was performed with specific 738 

primers followed by double-sided size selection with SPRIselect beads. After the two 739 

target enrichment steps, the quality of the product was assessed with Agilent 740 

Bioanalyzer. Amplified product was then subjected for fragmentation, followed by end 741 

repair and A-tailing. End repaired product was then subjected to adaptor ligation 742 

followed by SPRIselect bead purification. Product was amplified and barcoded with 743 

adaptor specific primers and the quality of the resulting libraries were determined by 744 

Agilent Bioanalyzer. Single-cell TCR-seq libraries were sequenced on an Illumina 745 

NovaSeq S4 sequencer using the following read configuration 26bp Read1, 8bp i7 746 

Index, 91bp Read2.   747 

 748 

scATAC-seq data processing and analysis 749 

scATAC-seq datasets were processed as described previously [54]. Briefly, reads were 750 

filtered, trimmed, and aligned to the mm10 reference genome using 10X Genomics’ 751 

cellranger-atac count pipeline (version 1.2.0).  752 

 753 

Processed fragment files were loaded into ArchR (version 1.0.1) for additional 754 

processing and analysis. All functions used default parameters unless otherwise 755 

specified. Cells were filtered during Arrow file generation using ArchR’s 756 

createArrowFiles function to remove cells with an enrichment of Tn5 insertions in 757 

transcription start sites (TSS enrichment) of less than 4 or less than 1000 unique 758 

fragments. Doublets were identified using ArchR’s addDoubletScores function and 759 

predicted doublets removed using ArchR’s filterDoublets function. Dimensionality 760 

reduction was performed using Iterative Latent Semantic Indexing (LSI) using ArchR’s 761 

addIterativeLSI function. After initial clustering and UMAP projection, we excluded a 762 

small cluster of non-T cells. Cell clustering was performed using ArchR’s addClusters 763 

function on IterativeLSI reduced dimensions 1:10 and a resolution of 0.4 (reducedDims 764 

= "IterativeLSI", dimsToUse = 1:10, resolution = 0.4). The same dimensions were used 765 

for single cell embedding by Uniform Manifold Approximation and Projection (UMAP) 766 

using ArchR’s addUMAP function using IterativeLSI reduced dimensions 1:10 and a 767 

minimum distance of 0.1 (reducedDims = "IterativeLSI", dimsToUse = 1:10, minDist = 768 

0.1). Cell clustering and UMAP projection for Chronic LCMV (D8 and D14, Figure 3) and 769 

Day 8 (Chronic and Acute, Figure S3B) subsets were performed as described above 770 

with the following modifications: dimsToUse = NULL, resolution = 0.2, and minDist = 771 

0.4. 772 

 773 

GeneScore matrices were computed by summing Tn5 insertions in the gene promoter 774 

and gene body during Arrow file generation using ArchR’s createArrowFiles function 775 

[54]. Gene score imputation was performed with Magic using ArchR’s 776 

addImputeWeights function [55]. After clustering the cells, peaks were called by MACS2 777 

on pseudoreplicates sampled from each cluster to obtain a reproducible peak set 778 

retaining cell type specific peaks using ArchR’s addReproduciblePeakSet function. 779 

Peak co-accessibility and Peak2Gene linkages were computed using ArchR’s 780 

addCoAccessibility and addPeak2GeneLinks functions. Transcription factor (TF) motif 781 
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deviations were computed with chromVar using ArchR’s addDeviationsMatrix function 782 

[26]. Pseudo-bulk tracks for indicated groups of cells were plotted using ArchR’s 783 

plotBrowserTrack function with default normalization method based on reads in 784 

transcription start sites ("ReadsInTSS"). Differential peak testing was performed using 785 

ArchR’s getMarkerFeatures function with testMethod = "wilcoxon” and bias = 786 

c("TSSEnrichment", "log10(nFrags)"). TF motif enrichment in differential peavks was 787 

performed using ArchR’s peakAnnoEnrichment function. Trajectory analysis was 788 

performed using ArchR’s addTrajectory and plotTrajectory functions. Identification of 789 

positive TF regulators was performed using ArchR’s correlateMatrices function to 790 

examine the correlation between chromVar deviation z-scores of TF motifs 791 

(“MotifMatrix”) and imputed gene expression (“GeneIntegrationMatrix”) following cross-792 

platform linkage with scRNA-seq data using ArchR’s addGeneIntegrationMatrix.  793 

 794 

scRNA-, TCR-seq computational methods 795 

scRNA-seq reads were aligned to the mm10 reference genome and quantified using 796 

cellranger count (10x Genomics, version 3.1.0). Filtered gene-barcode matrices that 797 

contained only barcodes with unique molecular identifier (UMI) counts that passed the 798 

threshold for cell detection were used for further analysis. scTCR reads were aligned to 799 

the mm10 reference genome and consensus TCR annotation was performed using 800 

cellranger vdj (10x Genomics, version 3.1.0). TCR annotation was performed using the 801 

10x cellranger vdj pipeline as described.  802 

 803 

Additional analysis was performed in R (version 4.0.3) using Seurat (version 4.0.1) 804 

using default function parameters unless otherwise noted [56]. Doublets were predicted 805 

using DoubletFinder (version 2.0.3) [57]. Cell types were predicted using SingleR 806 

(version 1.4.1) based on mouse bulk RNA-seq reference data (MouseRNAseqData) 807 

from celldex (version 1.0.0) [58]. Cells with less than 200 genes detected, greater than 808 

5% mitochondrial RNA content, predicted doublets from DoubletFinder, and cells 809 

annotated as non-T and non-NK cells by SingleR were excluded from analysis. We 810 

predicted cell cycle phase based on previously defined gene sets using the 811 

CellCycleScoring function [59]. We then split cells by experimental batch and cell cycle 812 

(non-cycling or G1 vs. cycling or G2M/S) into four datasets using Seurat’s SplitObject 813 

and performed batch correction using Seurat’s reciprocal PCA workflow. First, we 814 

normalized and identified variable features for each dataset independently using 815 

Seurat’s NormalizeData and FindVariableFeatures. Then we selected variable features 816 

across datasets using Seurat’s SelectIntegrationFeatures. We excluded variable TCR 817 

(^Tr.v) genes, variable Ig (^Ig.v) genes, cell cycle genes (used for cell cycle scoring), 818 

and mitochondrial genes (^mt-) from integration features used for downstream analysis. 819 

We then scaled data and ran PCA on each dataset independently using these features 820 

using Seurat’s ScaleData and RunPCA. We identified integration anchors using 821 

Seurat’s FindIntegrationAnchors using non-cycling datasets as reference datasets and 822 

rpca for dimensionality reduction. We integrated all datasets using Seurat’s 823 

IntegrateData using dims=1:50. Integrated data was used for data scaling with 824 

ScaleData and PCA dimensionality reduction with RunPCA. After initial clustering we 825 

noted three small clusters representing 7% of total cells which had low number of genes 826 

detected and high mitochondrial RNA content which were excluded from further 827 
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analysis. Clusters were identified using shared nearest neighbor (SNN) based clustering 828 

based on the first 15 PCs with resolution = 0.45. The same principal components were 829 

used to generate the UMAP projections, which were generated with a minimum 830 

distance of 0.1. Cell clustering and UMAP projection for Chronic Day 21 T cells (all 831 

tissues, Figure 2 and Figure 5), spleen derived T cells (Chronic and Acute, Day 8 and 832 

Day 21, Figure 4 and Figure 6), and Day 8 T cells (Spleen, Chronic and Acute, 833 

Supplemental Figure 3) were performed as described above with the following 834 

modifications: 835 

 Chronic Day 21 T cells: dims = 1:10, resolution = 0.25, min.dist = 0.1 836 

 Spleen derived T cells: dims = 1:8, k.param = 50, resolution = 0.45, min.dist = 0.1 837 

 Day 8 T cells: dims = 1:12, k.param = 40, resolution = 0.28, min.dist = 0.2 838 

 839 

Expression of selected genes was plotted using log normalized gene expression values 840 

based on original RNA count data prior to data integration. Marker genes were identified 841 

using Seurat’s FindAllMarkers using a cutoff of p_val_adj < 0.01. Differential gene 842 

expression analysis was performed using Seurat’s FindMarkers using a cutoff of 843 

p_val_adj < 0.05 and abs(avg_log2FC) > 0.25. Gene module scoring was performed 844 

using Seurat’s AddModuleScore. TCR clone behaviors were visualized using UpSetR 845 

(version 1.4.0). Null distribution of TCR clone behaviors was determined by randomly 846 

shuffling TCR clonotype and scRNA phenotype and generating a distribution of TCR 847 

clone phenotype combinations (n=50 iterations). Morisita-Horn index for quantifying 848 

TCR overlap was calculated using the mh function from the R package divo (version 849 

1.0.1).  850 

 851 
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Figure 1. Single-cell genomic atlas of T cell exhaustion during LCMV infection. 
(A) Schematics on the mouse model used, indicating the two viral strains, the tetramer 
sort and the single cell technologies applied. (B) UMAPs of scRNA-seq profiles colored 
by the samples (gp33+ and gp33- fractions) sorted from the spleen of Arm- or Cl13-
infected animals on the indicated days (D8 and D21) (left). UMAPs of scRNA-seq profiles 
colored by the samples originating from the different organs of Cl13-infected animals at 
D21 (right). (C) UMAPs of scATAC-seq profiles colored by the samples (gp33+ and gp33- 
fractions) sorted from the spleen of Arm- or Cl13-infected animals on the indicated days. 
(D) UMAP of all scRNA-seq profiles, colored by the annotated T cell subsets (left). UMAP 
of scTCR-seq results colored by the size of the expanded clones from which individual T 
cells originate (right). (E) UMAP of all scATAC-seq profiles colored by the annotated T 
cell subsets. (F) Heat map of subset specific marker genes determined by scRNA-seq. 
Feature plots of specific gene markers that characterize T cell subsets. (G) Heat map of 
Gene score values (accessibility) determined by scATAC-seq. Feature plots of specific 
Gene score values that mark main T cell subsets. (H) Heat map of Peak score values at 
the unique open chromatin regions (OCRs) of the T cell subsets determined by scATAC-
seq. Feature plots show the motifs that are accessible in specific T cell subsets 
(chromVAR deviation scores are depicted). (I) Genome browser snapshots on the 
indicated gene loci, showing the chromatin states of the different T cell subsets. Violin 
plots show the associated expression level of the indicated genes from the respective T 
cell subsets determined by scRNA-seq. 
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Figure 2. Identification of early effector, KLR-expressing, and organ-specific Tex 
subsets. 
(A) UMAP of scRNA-seq results colored by the main T cell subsets of the sorted PD-1+, 
CX3CR1+ and CD8+ T cells. Stacked bar plot shows the phenotypic distribution of the 
sorted population (right) (B) Volcano plot of differentially expressed genes between the 
TexKLR and Texint cell populations (left). Ingenuity pathway analyses on the differentially 
expressed genes show the enriched biological pathways in the two subsets. Top 6 hits 
are shown. (C) Heatmap of the expression of the marker genes of terminal effector 
memory (T-Tem) cells defined by Milner et al. in the indicated T cell subsets. (D) UMAP 
colored by the strength of the T-Tem gene signature (T-Tem module score) in the scRNA-
seq dataset (left). Violin plot representation of the T-Tem score in the indicated T cell 
subsets. (E) UMAPs colored by the expression of the indicated marker genes of the T-
Tem subset. (F) UMAP of scRNA-seq results from the three organs at D21 following Cl13 
infection colored by the annotated T cell subsets (left). Stacked bar plot representation of 
the phenotypic distribution of the annotated T cell subsets in the three organs (right). (G) 
UMAPs colored by the cells from the three organs. (H) Volcano plots of differentially 
expressed genes comparing the Texterm cell populations from the different organs. 
Ingenuity pathway analysis results on the differentially expressed gene groups (bottom). 
Top 3 hits are shown. (I) Heat map of the gene expression values of the common 
exhaustion gene signature among the organ specific Texterm subsets. (J) Violin plot 
depicts the exhaustion scores of the three organs based on Im et al. 2016. 
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Figure 3. Texint represent a bifurcation point of exhausted T cell fate differentiation. 
(A) UMAP of scATAC-seq results of D8 and D21 gp33+ and gp33- T cells from the Cl13 
infection model. UMAP is colored by the annotated T cell subsets. Small UMAPs (right) 
show T cells that originate from the indicated gp33 fractions and timepoints. (B) Feature 
plots of the indicated Gene score values (accessibility) (top) and genome browser 
snapshots of the corresponding genomic loci (bottom). (C) Heat map of Peak score 
values at the unique open chromatin regions (OCRs) of the T cell subsets determined by 
scATAC-seq with a list of annotated putative target genes based on proximity (left). Heat 
map of motif enrichment results at the unique OCR sets of the annotated T cell subsets. 
(D) Volcano plot of differentially expressed genes between the Arm effector cells and Cl13 
early effector cells (left). Ingenuity pathway analysis results show the top 8 enriched 
biological terms (bottom). Volcano plot depicts the differentially accessible OCRs 
between the Arm effector cells and Cl13 early effector cells (right). (E) UMAP depicts the 
populations used for differential OCR analysis (top). Upset plot of differentially accessible 
OCRs and their overlap among the TexKLR and Texterm populations (bottom). (F) Hockey 
stick plots depict the enriched transcription factor motifs at the specific OCRs of the 
Texterm and TexKLR subsets. (G) Pseudotime trajectory analyses of three potential Tex 
differentiation paths (top). Heat maps show transcription factor deviation scores that 
change over the pseudotime trajectories (middle). Gene score values of Tox on the three 
pseudotime trajectories (bottom).     
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Figure 4. TCR-based lineage tracing reveals divergent Tex clonal trajectories. 
(A) UMAP of scRNA-seq results from the gp33+ and gp33- T cell factions of the Arm and 
Cl13 infection model from D8 and D21 following infection. UMAP is colored by the 
annotated T cell subsets. (B) UMAP of scRNA-seq results colored by the size of the 
detected TCR clones at D8 and D21 in the Arm infection model. (C) UMAP of scRNA-
seq results colored by the size of the detected TCR clones at D8 in the Cl13 infection 
model (left). Same UMAP colored by the TCR clone size at the D21 time point in the 
Cl13 infection model (right). (D) Stacked bar plot of the phenotypic distribution of the top 
10 expanded clones in the gp33+ fraction of Arm D8 and D21 samples (left). Same 
stacked bar plots representing the top 10 expanded clones in the Cl13 infection model 
(right). (E) Upset plot depicting the expanded clones with specific phenotype 
combinations (clone behaviors). Barplot shows the number of cells with the indicated 
phenotypes that make up the expanded clones. Violin plot shows the clone size 
distribution of the detected clone behaviors. (F) Stacked bar plots show the top 6 
expanded clones with the indicated clone behaviors. (G) UMAPs show representative 
examples for the detected clone behaviors. (H) Scheme on the phenotypic composition 
and the potential differentiation trajectories of the identified clone behaviors. 
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Figure 5. Conserved clonal T cell trajectories across organs and depletion of TexKLR 
in the liver microenvironment. 
(A) UMAP of organ-derived T cells at D21in Cl13 infection colored by the annotated T cell 
subsets. (B) UMAPs colored by the detected TCR clone sizes in the different organs. (C) 
Scatterplots depicting the frequencies of expanded T cell clones from the indicated organ 
comparisons. The correlation coefficient, and specific and shared clone numbers are 
indicated for each comparison. (D) Venn diagram depicting the overlap of expanded T 
cell clones in the gp33+ fraction of the indicated organs. (E) Stacked bar plot of the 
phenotypic composition of individual clones across organs. (F) UMAPs depict individual 
clones with specific clone behaviors among organs. (G) Scatter plots showing the fraction 
of the shared clones with TexKLR and Texterm phenotypes between the indicated organs. 
(H) Violin plot depicts TexKLR-biased clone frequencies across the organs, which includes 
clones with >50% TexKLR phenotype (left). Violin plot of Texterm-biased and divergent 
clone frequencies across the organs.    
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Figure 6. Differences in TCR signal strength regulate clonal differentiation of TexKLR 
and Texterm. 
(A) Sorting strategy to obtain gp33-, gp33int and gp33high T cell populations from the 
spleen of LCMV-Cl13 infected animals 21 days following infection. (B) Heat map 
depicting TCR repertoire overlap (Morisita index) among the different gp33 fractions 
from the indicated samples. (C) Pie chart representation of the fraction of the detected 
clone sizes in the three gp33 T cell fractions. (D) Venn diagram depicts the overlap of 
the expanded clones from the gp33 T cell fractions. (E) UMAPs colored by size of the 
unique expanded clones in the three gp33 T cell fractions. (F) Stacked bar plot of the 
phenotypic distribution of the unique expanded clones of the three gp33 T cell fractions. 
(G) UMAPs visualizing the unique expanded clones of the three gp33 T cell fractions 
colored by the annotated T cell subsets. (H) Stacked bar plot of the top 10 uniquely 
expanded T cell clones from the three gp33 T cell fractions colored by the annotated T 
cell phenotypes. (I) Upset plots depict the unique expanded clones with specific 
phenotype combinations (clonotype behavior) from the three gp33 T cell fractions. 
Barplots show the number of cells with the indicated phenotypes. Dominant clone 
behaviors are indicated at the bottom. 
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Figure S1. Sorting strategy and quality controls of scATAC-seq data. Related to 
Figure 1. 
(A) Sorting strategy to obtain antigen specific gp33+ and gp33- CD8+ T cells from different 
organs. (B) Sorting strategy to obtain the main exhausted T cell subsets (left). UMAPs of 
scRNA-seq and scATAC-seq results, originating from the main, indicated exhausted T 
cell subsets. (C) Bar plot representation of cell counts from the scRNA-seq results. (D) 
Quality control of scATAC-seq data. Histogram shows normalized read enrichment on the 
transcription start sites (TSS) of genes from the indicated samples (top). Density plots 
depict the cells that passed the TSS enrichment and Log10 unique fragment count 
threshold. Median TSS enrichment (MTE) is also indicated. (E) Density plots of scATAC-
seq data from the main exhausted T cell populations depicting the same quality controls 
as on panel C. (F) UMAP of scATAC-seq data colored by the integrated scRNA-seq 
cluster labels. (G) Heat map of motif enrichments at the specific open chromatin regions 
(OCRs) of the annotated T cell populations.  
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Figure S2. Early effector exhausted cells and intermediate exhausted T cells are 
phenotypically different populations with distinct temporal appearance. Related to 
Figure 2.  
(A) UMAPs visualize the early effector exhausted population at D8 and the intermediate 
exhausted population at D21 (left). Volcano plot depicts the differentially expressed genes 
between the two populations (middle). Ingenuity pathway analysis results depict the top 
6 enriched biological terms in the two populations. (B) Violin plots depict the Cell Cycle 
score of the indicated T cell populations across the indicated organs.  
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Figure S3. Early progenitor exhausted T cells possess the molecular program of 
exhaustion. Related to Figure 3.  
(A) UMAPs depict scATAC-seq (left) and scRNA-seq (right) results from the D8 Arm and 
Cl13 infections. Cells on the small UMAPs are colored by their origin from the two infection 
models (bottom). (B) Volcano plot of differentially expressed genes between the memory 
precursor T cells (Tmp) of the Arm and the progenitor exhausted T cells (Texprog) of the 
Cl13 infection model. (C) Ingenuity pathway analyses of the Tmp and Texprog specific gene 
sets. Top 8 enriched biological terms are shown. (D) Volcano plot depicts the differential 
open chromatin regions (OCRs) of the Tmp and Texprog populations (left). Hockey stick 
plots show the enriched transcription factor motifs at the specific OCR sets of the Tmp and 
Texprog subsets. (E) Volcano plot of the differentially expressed genes between the TexKLR 
and Texterm subsets. (F) Upset plot of differentially accessible OCRs annotated to the Tox 
gene relative to Tnaive cells and their overlap among the different Tex cell subsets. Violin 
plot shows the gene expression level of Tox in the identified Tex subsets.  
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Figure S4. Highly expanded clones of the Arm and Cl13 infection model describe 
the dominant clone behaviors of exhausted T cell differentiation. Related to Figure 
4.  
(A) UMAPs depict highly expanded clones from the Arm infection model at the indicated 
time points. (B) UMAPs depict highly expanded clones of the Cl13 infection model at the 
indicated time points. (C) Stacked bar plot of the phenotypic composition of individual T 
cell clones with a bias towards the TexKLR fate, but also exhibiting the Texterm phenotype. 
Top 6 clones are shown. (D) Upset plot of the phenotype combinations of the observed 
and shuffled TCR clones.  
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Figure S5. scRNA/TCR-seq reveals the clone behaviors of different organs. Related 
to Figure 5. 
(A) Heat map representation of the correlation between the TCR repertoires of the 
indicated gp33+ and gp33- CD8+ T cell subsets from different organs. (B) Stacked bar plot 
of the phenotypic composition of individual clones across organs. (C) Schematics show 
the definition of an expanded, organ-shared T cell clone for clone behavior analysis. Only 
those clones were considered that had at least 5 T cells present in each organ. Shared 
clone numbers across the organs are indicated (left). Table depicting the number of 
expanded clones that are shared across tissues and their clone behaviors (right).  
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Figure S6. scRNA-seq reveals the phenotypic composition of T cell subsets with 
different affinities to recognize the immunodominant viral epitope. Related to 
Figure 6. 
(A) UMAPs of scRNA-seq results colored by the phenotypic distribution of the three gp33 
fractions of T cells. (B) Venn diagram shows the overlap of all detected TCR clones 
among the three gp33 T cell fractions.   
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.472900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.472900
http://creativecommons.org/licenses/by-nc-nd/4.0/

