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ABSTRACT 10 

Background. Regional distribution of somatic mutations in cancer genomes associates with 11 

DNA replication timing (RT) and chromatin accessibility (CA), however normal tissues and cell 12 

lines have contributed these insights while associations with the epigenomes of primary cancers 13 

remain uncharacterized.  14 

Results. Here we model megabase-scale mutation burden in whole cancer genomes using ~900 15 

CA and RT profiles of primary cancers, normal tissues, and cell lines. CA profiles of primary 16 

cancers, rather than normal tissues, predict regional mutagenesis in most cancer types. Regional 17 

mutation burden associates with the CA profiles of matching cancer types, indicating tissue-18 

specific determinants of mutagenesis. However, mutagenesis in squamous cell and lymphoid 19 

cancers instead associates with RT profiles. Mutational signatures also show tissue-specific 20 

associations with cancer epigenomes, especially for carcinogen-induced and unannotated 21 

signatures. Lastly, while each cancer type includes certain frequently-mutated genomic regions 22 

exceeding epigenome-informed predictions of mutation burden, these regions show a pan-cancer 23 

convergence to biological processes involved in development and cancer. Thus, modelling 24 

excess mutations using epigenomes highlights known cancer driver genes as well as frequently 25 

mutated non-coding regions. 26 

Conclusions. The dominant association of regional mutation burden with cancer epigenomes 27 

suggests that many passenger mutations are determined by the epigenetic landscapes of 28 

transformed cells and may occur later in tumor evolution. CA-informed models help find cancer 29 

genes and pathways with positive selection and highlight regions where additional mutation 30 

burden is contributed by local mutational processes. This study underlines the complex interplay 31 

of mutational processes, genome function and evolution in cancer and tissues of origin. 32 

   33 
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INTRODUCTION 34 

The cancer genome is a footprint of its evolution and molecular environment that is shaped by 35 

somatic mutations such as single nucleotide variants (SNVs) and structural alterations 1,2. Cancer 36 

initiation and progression is caused by a small number of driver mutations that provide cells with 37 

selective advantages 3-5, however most mutations are functionally neutral passengers that are 38 

caused by various mutational processes 6-8. Somatic mutations also occur in  normal tissues and 39 

are frequently observed in known cancer genes 9,10. Thus, we need to understand mutational 40 

processes to decipher tumor etiology and evolution and better characterize driver mutations.  41 

Mutational processes act at different scales of the cancer genome 11,12. Single base substitution 42 

(SBS) signatures affect certain trinucleotide context of DNA and are associated with aging, 43 

carcinogen exposures, defects in DNA repair pathways, and cancer therapies 6,13. At a 100-44 

nucleotide resolution, local mutational processes disproportionately affect certain non-coding 45 

genomic elements such as transcription start sites and binding sites of gene-regulatory proteins 46 

such as CTCF 14-16. At the regional, megabase-scale resolution of the genome, mutation burden 47 

correlates with DNA replication timing (RT), chromatin accessibility (CA) and transcriptional 48 

activity 17-19. Early-replicating, transcriptionally active regions of open chromatin have fewer 49 

mutations than late-replicating, passive regions of heterochromatin, potentially due to increased 50 

error rates and decreased mismatch repair later in DNA replication 20-23. SBS signatures are also 51 

distributed asymmetrically with respect to DNA replication origins and timing 24. Regional 52 

mutation burden is associated with epigenetic information of related normal cells, providing 53 

evidence of cells of cancer origin contributing to somatic variation 25 and allowing classification 54 

of cancers of unknown origin 26. However, the precise molecular mechanisms driving these 55 

mutational processes remain incompletely understood. In particular, cell lines and normal tissues 56 

have been used to associate chromatin accessibility and mutation burden in cancer, while the 57 

epigenetic landscapes of primary human cancers remain unexplored.   58 

Here we studied cancer epigenomes as determinants of regional mutagenesis in thousands of 59 

whole cancer genomes through a diverse collection of CA and RT profiles of cancers, normal 60 

tissues, and cell lines. CA profiles of matching cancer types, rather those than normal tissues, are 61 

the major determinants of regional mutagenesis and mutational signatures in most cancer types. 62 
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We found tissue-of-origin effects of CA and RT in most predictions, bespoke deviations in 63 

specific cancer types and mutational signatures, and a pan-cancer convergence of excess 64 

mutations to cancer driver genes and developmental pathways. Together, these results underline 65 

the spatial complexity of regional mutagenesis in cancer genomes and highlight epigenome-66 

informed avenues to discover driver mutations.   67 
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 68 

 

Figure 1. Characterizing chromatin accessibility (CA) and replication timing (RT) as determinants of 

regional mutagenesis in cancer genomes. A. Somatic mutations in cancer genomes (top) and CA and RT 

datasets of normal tissues and cancers (bottom) were integrated to study regional mutational processes. Somatic 

single nucleotide variants (SNVs) of 2,517 whole cancer genomes were analyzed with 869 genome-wide profiles, 

including 773 CA profiles of primary human cancers, normal tissues, and cell lines from ATAC-seq experiments, 

and 96 RT profiles of and six cell cycle phases in 16 cell lines from RepliSeq experiments. B. Genomic regions of 

one megabase (Mbp) were analyzed. Regional mutation burden was estimated as the number of SNVs per 

megabase region. The mean values scores per region were derived for CA and RT profiles. C. Random forest 

models were trained using regional mutation burden profiles as the outcome and CA and RT profiles as the 

predictors. We analyzed the pan-cancer dataset and 17 datasets of specific cancer types with relevant CA and RT 

profiles available. D. To associate regional mutation burden with CA and RT, mutational signatures, and cancer 

driver genes, the random forest models were evaluated in terms of accuracy, predictor importance, and model 

residuals. 

  69 
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RESULTS 70 

Chromatin accessibility of primary cancers is a major determinant of regional mutagenesis 71 

To study cancer epigenetic profiles as determinants of regional mutagenesis in cancer genomes, 72 

we collected 773 ATAC-seq profiles of genome-wide CA measurements in primary human 73 

cancers, normal tissues and cell lines from ENCODE3, TCGA, and additional studies 27-34, as 74 

well as 96 RepliSeq profiles of DNA replication timing measurements in 16 cell lines and six 75 

cell cycle phases 35 (Figure 1A; Supplementary Figure 1, Supplementary Table 1). As 76 

regional mutation burden, we studied 23 million SNVs in 2,465 highly-mappable genomic 77 

regions of one megabase mapped across 2517 whole cancer genomes of 37 cancer types of the 78 

ICGC/TCGA PCAWG project 1 (Figure 1B). The 869 CA and RT profiles were derived as mean 79 

signal intensity values per megabase.  80 

To map the complex non-linear associations of CA and RT profiles with regional mutagenesis, 81 

random forest regression models were trained with mutation burden profiles as outcomes and CA 82 

and RT profiles as predictors (i.e., features) for the 17 cancer types for which both genomic and 83 

relevant epigenomic profiles were available (Figure 1C). The most informative predictors were 84 

quantified using statistical analysis and local feature prioritization of random forest models 36 85 

(Figure 1D). As expected, genome-wide profiles of regional mutation burden clustered 86 

according to cancer types (Supplementary Figure 2). 87 

We asked whether the CA profiles of cancers or those of normal cells and tissues showed 88 

stronger associations with regional mutational processes in cancer genomes. We predicted 89 

regional mutation burden in pairs of random forest models with matched data splits where the 90 

predictors included either CA profiles of primary cancers or CA profiles of normal cells and 91 

tissues, respectively. RT profiles were also included as predictors in both models to estimate the 92 

relative contributions of CA.  93 

In most cancer types, CA profiles of primary cancers showed stronger associations with regional 94 

mutagenesis than CA profiles of normal cells and tissues (13 of 17, P < 0.05) (Figure 2A). The 95 

most pronounced signal was observed in breast cancer where the regional mutagenesis 96 

predictions informed by cancer CA profiles were nearly twice as accurate as those informed by 97 
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CA profiles of normal tissues (median adj.R2 0.70 vs. 0.38; P < 0.001) (Figure 2B). Stronger 98 

associations of cancer CA profiles and regional mutagenesis were also found in cancers of the 99 

prostate, uterus, and kidney, and melanoma: the improvement in prediction accuracy was above 100 

10% in those cancer types (P < 0.001). Stronger associations with cancer epigenomes were also 101 

confirmed in the pan-cancer analysis across 37 cancer types, with a small but statistically 102 

significant improvement in model accuracy (adj.R2 0.90 vs. 0.88; P < 0.001). As the only 103 

exception, regional mutation burden in liver cancer better associated with CA profiles of normal 104 

tissues (adj.R2 0.85 vs. 0.83; P = 0.044). The analysis provided inconclusive evidence for four 105 

cancer types including lymphoid cancers (BNHL, CLL) and lung and thyroid adenocarcinomas. 106 

We confirmed that the accuracy of regional mutation burden predictions in individual cancer 107 

types was not significantly correlated with the overall mutation burden or the number of 108 

sequenced genomes per cancer cohort (Supplementary Figure 3).  109 

In summary, this analysis shows that in most cancer types, regional mutagenesis is more strongly 110 

associated with chromatin accessibility of primary human cancers rather than normal tissues and 111 

cell lines, even when accounting for DNA replication timing in the comparison. The diverse 112 

collection of epigenomes included as predictors suggests that tissue-specific chromatin features 113 

of individual cancer types, as well as pan-cancer chromatin features of proliferative cells may 114 

contribute to regional mutagenesis.  115 
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Figure 2. Chromatin accessibility of primary cancers is a major determinant of regional mutagenesis in 

cancer genomes. A. Random forest models informed by CA profiles of primary cancers are more accurate 

predictors of regional mutation burden, compared to models informed by CA of normal tissues. Bar plot shows 

relative change in prediction accuracy (Δ adjusted R2) of random model regression models informed by CA 

profiles of primary cancers, compared to matching models informed by CA of normal tissues. Replication timing 

(RT) profiles are included in all models as reference. Empirical P-values and 95% confidence intervals from 

bootstrap analysis are shown. Accuracy values of models informed by cancer CA profiles are listed below the 

bars (adjusted R2). B. Examples of regional mutation burden predicted using models informed by CA profiles of 

cancer (top) vs. CA profiles of normal tissues (bottom). Scatterplots show model-predicted and observed mutation 

burden (X vs. Y-axis) in one-megabase regions. Prediction accuracy values are shown (bottom right). 

 116 
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 117 

 

Figure 3. Top predictors of regional mutagenesis tie cancer types and sites of origin. A. Quantitative 

genome-wide associations of regional mutation burden with the most informative CA and RT profiles in random 

forest models. 2D-density plots show the association CA and RT scores (Y-axis) and Shapley feature importance 

(SHAP) scores in each genomic window (X-axis) across all cancer types. CA profiles for cancer and normal 

samples, early RT profiles, and late RT profiles are plotted separately. CA and early RT profiles negatively 
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correlate with regional mutation burden while late RT profiles correlate positively. Spearman correlation values 

are shown (top right). B. CA profiles of primary cancers are the top predictors of regional mutagenesis in most 

cancer types. Bar plot shows the importance scores of the five most important predictors of random forest models 

for 17 cancer types (permutation P < 0.001). Error bars show ±1 standard deviation from bootstrap analysis. 

Brighter colors indicate the predictors where the epigenomic profile (CA or RT) matches the mutation profile of 

the related cancer type. C-F. Top predictors of regional mutation burden in individual cancer types. Shapley 

additive explanation (SHAP) scores show the impact of a given predictor on the predictions of regional mutation 

burden (Y-axis) relative to the values of the predictor (CA or RT; color gradient). In CA profiles, higher values 

(red) primarily associate with lower SHAP scores corresponding to increased mutation rates, while in contrast, 

higher values in late RT profiles associate with higher SHAP scores. Symbols indicate RT profiles (triangles) and 

CA profiles of normal tissues (circles). 

 118 

Top predictors of regional mutagenesis match cancer types and sites of origin 119 

To interpret the determinants of regional mutagenesis, we asked which specific CA and RT 120 

profiles contributed the most to the predictive models when using all 869 cancer and normal 121 

epigenomes as predictors. We selected the five most significant predictors for each cancer type 122 

(permutation P < 0.001). These 85 CA and RT profiles were quantified using Shapley additive 123 

explanation (SHAP) scores 36 that measured the directional associations of individual profiles 124 

with the regional mutation burden in all genomic regions. As expected, regional mutation burden 125 

negatively correlated with CA profiles of primary cancers and normal tissues (ρcancer = -0.74 vs 126 

ρnormal = -0.79; P < 10-16) (Figure 3A). A dual relationship was apparent in RT profiles: RT 127 

profiles of late cell cycle phases positively correlated with regional mutation burden while RT 128 

profiles of early cell cycle phases correlated negatively (ρlate = 0.75 vs. ρearly = -0.84, P < 10-16). 129 

The inverse relationships of CA and RT with respect to regional mutation burden are consistent 130 

with previous studies 17-23 and extend here to a diverse collection of epigenomes from primary 131 

cancers and normal tissues.  132 

We examined the most significant predictors of regional mutation burden for each cancer type 133 

(Figure 3B). CA profiles of primary cancers dominated among the strongest predictors of 134 

regional mutation burden in 12 of 17 cancer types. Most CA profiles represented the same or 135 

related cancer type where the regional mutation burden was predicted, underlying tissue-specific 136 
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interactions of chromatin state and somatic mutagenesis Overall, CA profiles of primary cancers 137 

were enriched among the top predictors (55 of 85 profiles observed vs. 41 expected, Fisher’s 138 

exact P = 0.011), confirming the stronger association with primary cancer epigenomes and 139 

regional mutagenesis. Regional mutation burden measured in the breast, prostate, kidney, 140 

stomach, and thyroid cancer cohorts of the PCAWG WGS dataset associated with the CA 141 

profiles of the matching cancer samples in TCGA (BRCA, PRAD, KIRP, STAD, and THCA, 142 

respectively). For example, in prostate cancer, four CA profiles of primary prostate cancers and 143 

one breast cancer profile associated negatively with regional mutation burden (Figure 3C). 144 

Additional associations were apparent at the level of organ systems. CA profiles of stomach and 145 

colorectal cancers were the top predictors of regional mutation burden in biliary and esophageal 146 

cancers (Figure 3D), suggesting epigenetic and mutational similarities of cancers of the 147 

gastrointestinal tract. As another example, regional mutagenesis in in breast cancer genomes was 148 

significantly associated with one CA profile of uterine cancer, and a similar association with 149 

breast cancer CA was apparent in uterine cancer genomes, perhaps explained by common 150 

mutational processes in cancers of the female reproductive system. Therefore, regional 151 

mutational processes in individual cancer types have strong tissue-specific interactions with the 152 

epigenomes of these cancer types.  153 

Fewer CA profiles of normal tissues were found among top predictors of regional mutation 154 

burden. The strongest association with normal tissue epigenomes was apparent in liver cancer, as 155 

three CA profiles of normal liver were detected as the highest-ranking predictors of regional 156 

mutation burden (Figure 3E). CA profiles of normal tissues were identified as predictors in 157 

seven other cancer types, however their feature importance scores were lower compared to CA 158 

profiles of related primary cancers. As expected, these CA profiles of normal tissues also 159 

matched the cancer types where regional mutagenesis was measured. For example, in thyroid 160 

cancer, one normal thyroid CA profile and four primary cancer CA profiles of the matching 161 

cancer type (THCA) were the top predictors of regional mutation burden.  162 

Replication timing showed the strongest associations in squamous cell cancers (SCC) and 163 

lymphoid cancers, reflecting tissue-specific effects. Mutations in Lung-SCC and Head-SCC 164 

cohorts of PCAWG associated with RT profiles of NHEK cells, a squamous cell line of human 165 

epidermal keratinocytes (Figure 3F). Similarly, regional mutation burden in lymphoid cancers 166 
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(Lymph-BNHL, Lymph-CLL) strongly associated with RT profiles of B-cells. One potential 167 

explanation of these normal cell lines associating with regional mutagenesis in those cancer 168 

types, rather than CA profiles of primary cancers, is an earlier occurrence of mutagenesis in the 169 

evolution of these cancer types. In the genomes of Lung-SCC and Head-SCC cohorts of 170 

PCAWG, many mutations are associated with signatures of tobacco exposure, while somatic 171 

hypermutation contributes to genome variation in normal B-cells and lymphomas 37.  172 

Most RT predictors of regional mutagenesis we found in the analysis (12/15) represented late-173 

replicating cell cycle phases G2 and S4. Individual RT profiles positively associated with 174 

regional mutation burden in late-replicating regions (e.g., phase G2 of MCF-7 in breast cancer) 175 

and negatively in early-replicating regions (e.g., phase S1 of HNEK in Head-SCC), consistent 176 

our analysis above (Figure 3A) and with earlier observations that elevated regional mutagenesis 177 

is caused by increased DNA damage and decreased repair in late-replicating regions 20.  178 

Fewer RT profiles occurred among top predictors compared to CA profiles in other cancer types. 179 

RT profiles of matching cell lines (MCF-7, HepG2) were found among predictors of regional 180 

mutation burden in breast and liver cancer, respectively, and the latter RT profile was also a 181 

minor but significant predictor in uterine cancer. In general, fewer and less-diverse RT profiles 182 

of cell lines were available for this analysis, and these offer only a limited representation of 183 

mutational processes in different cancer types. In contrast, the larger set of CA profiles 184 

represents more cancer types and provides complementary information to RT. This analysis 185 

extends our findings of tissue-specific CA and RT profiles as the principal predictors of regional 186 

mutagenesis and underlines the effects of cell-of-origin and tumor heterogeneity. Dominance of 187 

cancer CA profiles among top predictors in most cancer types is consistent with our first 188 

observations that CA profiles of primary cancers provide accurate predictions of regional 189 

mutagenesis.   190 
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Figure 4. Associations of mutational signatures with chromatin accessibility and replication timing. A. Top 

predictors of megabase-scale mutation burden of single base substitution (SBS) signatures (top five predictors; P 

< 0.001, permutation test). Colors indicate the predictor type (CA, RT) and its relationship to the cancer type 

where mutagenesis is predicted (matching site/tissue or other). Brighter colors indicate the predictors where the 

epigenomic profile (CA or RT) matches the cancer type of the mutation profile. Asterisks indicate CA profiles of 

CD4-positive T-cells as predictors of SBS1 mutations. B. Prediction accuracy of megabase-scale burden of SBS 

signatures using CA and RT profiles. Signatures of carcinogens, unknown origin, and aging are more accurately 

predicted by CA and RT profiles than endogenous signatures. P-values are computed using F-tests with 

adjustment for genome-wide signature burden. Median accuracy values are printed. C-F. Top predictors of 

megabase-scale mutation burden in breast cancer quantified using SHAP scores. SHAP scores show the impact of 

a predictor (i.e., CA or RT profile) on the predictions (Y-axis) and corresponding predictor values (color 
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gradient). C. Regional mutation burden in breast cancer genomes is predicted by CA profiles of primary breast 

cancers (BRCA) and uterine cancer (UCEC) as well as later replication timing (G2 phase) in a breast cancer cell 

line (MCF-7). CA profiles mostly negatively associate with mutagenesis while late RT profiles associate 

positively. D. Age-related mutations of SBS5 are predicted by BRCA CA profiles as well as RT profile of MCF-

7, similarly to overall SNV burden. E. APOBEC-related mutations of SBS13 are also predicted by CA profiles 

(BRCA, as well as LUSC, TCGT); however, SHAP scores show that SBS13 mutations are positively correlated 

with CA. F. SBS1 mutations related to molecular clock activity are predicted by diverse CA profiles: two breast 

cancers as well as blood and immune cells (GM18520, CLL1_CD4, Peyer’s patch). Symbols indicate RT profiles 

(triangles) and CA profiles of normal tissues (circles). 

 191 

Associations of mutational signatures with chromatin accessibility and replication timing 192 

We asked whether the associations of regional mutagenesis with CA and RT are further 193 

explained by mutational signatures. We quantified the megabase-scale mutation burden 194 

separately for the major single base substitution (SBS) signatures based on PCAWG datasets 6 195 

and predicted their regional distributions using random forest regression. We then selected the 196 

top five CA and RT profiles that most significantly associated with the burden of each 197 

mutational signature and cancer type (P < 0.001).  198 

We compared the top CA and RT profiles that associated with total regional mutation burden and 199 

the burden of individual mutational signatures (Figure 4A). Top predictors of individual 200 

signatures were often consistent with predictors of bulk regional mutation burden and showed 201 

tissue-specific associations of mutagenesis and chromatin accessibility. Matching CA profiles of 202 

cancers were the top predictors of mutational signatures in breast, kidney, colorectal and stomach 203 

cancers, while RT profiles of matching cell lines associated with mutations in SCCs and 204 

lymphoid cancers. Top predictors of endogenous and exogeneous signatures were also mostly 205 

consistent, indicating that various mutational processes are affected by the epigenetic landscapes 206 

of cancers or their normal cells of origin.  207 

SBS1 mutations showed the most variation in terms of CA profiles, compared to the profiles 208 

predictive of bulk mutations and other SBS signatures. Interestingly, the CA profile of CD4-209 

positive T-cells from the peripheral blood of a CLL patient (CLL1_CD4) was consistently 210 
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detected as a predictor of SBS1 mutation burden in six solid cancer types (liver, kidney, uterus, 211 

esophagus, stomach, head). This CA profile was only specific to SBS1 mutations and was not 212 

associated with bulk mutation burden or any other SBS signatures in the cancer types we studied. 213 

This T-cell CA profile may represent somatic mutations in non-cancerous cells of the immune 214 

system or the tumor microenvironment. As another example, SBS1 mutations in liver cancer 215 

associated with CA profiles of liver cancers, while overall regional mutation burden was 216 

predominantly associated with CA profiles of normal liver tissues. The clock-like SBS1 217 

signature of 5-methylcytosine deamination is associated with cancer patient age and stem cell 218 

division rate, and this signature has been found in the somatic genomes of normal tissues and 219 

adult stem cells 10,38,39. Thus, SBS1 mutations may represent an earlier timepoint in tumor 220 

evolution or contribution from normal cells that remain convoluted in bulk tissue sequencing. 221 

We asked if our random forest models were equally informative of various mutational signatures. 222 

Six classes of SBS signatures were compared in terms of prediction accuracy: APOBEC/AID, 223 

DNA-repair, carcinogens, two age-related classes (SBS1 and SBS5/40), and signatures of 224 

unknown cause, as predicted via all 869 CA and RT profiles in 17 cancer types. Three classes of 225 

signatures showed stronger associations with CA and RT profiles (Figure 4B): random forest 226 

predictions of carcinogenic signatures, signatures of unknown cause, and aging-associated 227 

signatures SBS5 and SBS40 were significantly more accurate than the DNA repair, 228 

APOBEC/AID, and SBS1 signatures combined, when accounting for number of mutations per 229 

signature as covariate of prediction accuracy (P ≤ 10-4; F-test) (Supplementary Figure 4). Thus, 230 

the mutational processes of carcinogen exposures, SBS5/40, and unknown signatures show 231 

stronger interactions with CA and RT in cancer genomes.  232 

We studied the interactions of SBS signatures with CA and RT profiles in breast cancer (Figure 233 

4C-F). SBS5 mutations, representing most mutations in the cohort, associated with four CA 234 

profiles of primary breast cancers (BRCA) and one late DNA-replicating profile of the breast 235 

cancer cell line MCF-7, reflecting tissue-specific associations of mutations and chromatin 236 

(Figure 4D). Regional mutation burden of all mutations was consistent with SBS5, and similarly 237 

associated with CA and RT profiles of breast cancer (Figure 4C). However, an additional 238 

predictive CA profile of uterine cancer was identified, perhaps due to common epigenetic 239 

features of female hormone-driven cancers. Megabase-scale burden of all mutations and the 240 
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regional burden individual signatures negatively correlated with CA profiles in most cases, as 241 

expected. In contrast, SBS2 and SBS13 signatures of AID/APOBEC mutagenesis correlated 242 

positively with CA, such that higher SHAP values corresponded to increased chromatin 243 

accessibility (Figure 4E). This agrees with prior observations that AID targets epigenetically 244 

active elements and results in kataegis and clustered mutational signatures 6,40,41. Lastly, SBS1 245 

mutations associated with three CA profiles representing peripheral blood, lymphoid follicles, 246 

and immune cells (Figure 4F), perhaps reflecting somatic mutagenesis in tumor-infiltrated 247 

immune cells and other cells in the tumor microenvironment. In summary, individual mutational 248 

signatures also predominantly associate with CA of primary cancers rather than normal tissues. 249 

The complex interactions of CA and RT with regional mutagenesis in certain mutational 250 

signatures may reflect inter-and intra-tumoral heterogeneity and help characterize the 251 

mechanisms of mutational processes.   252 
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Figure 5. Excess mutation burden unexplained by  CA and RT profiles converges to cancer genes and 

developmental pathways. A. Additional mutation burden exceeding predictions of CA and RT profiles, 

quantified via significantly higher model residuals of individual 100-kbps genomic windows. Scatter plot shows 

the genomic windows with elevated regional mutation burden (FDR < 0.05). Regions with known cancer genes 

are labeled if FDR < 10-10. Colors indicate cancer types (see panel D). X-axis is capped at 10-50 and Y-axis is 

capped at 400. B-C. Examples of genomic regions with excess mutation burden and known or putative cancer 

driver mutations. The plots show the genes in the region (top), mutation burden (SNVs per kbps; observed and 

expected) (middle), and the top five most significant predictors (i.e., CA and RT profiles; bottom). B. The 

genomic region encoding the driver gene PIK3CA in breast cancer. C. Super-enhancer region at the IRF4-

DUSP22 locus with elevated mutation burden in breast cancer. D. Pathway enrichment analysis of genomic 

regions with significantly higher regional mutation burden relative to CA and RT-informed predictions. The 

enrichment map shows significantly enriched biological processes and pathways (FDR < 0.05). The nodes 

represent enriched pathways and processes, the edges connect nodes sharing many genes, and the manually 
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annotated subnetworks represent functionally related pathways and processes. Colors show the cancer types 

where the pathway enrichments were detected. Pathways and processes only detected in the joint analysis of 

multiple cancer types are shown in yellow. 

 253 

Excess mutations unexplained by epigenomes converge to cancer driver genes and 254 

developmental pathways 255 

To quantify the regional mutagenesis unexplained by CA and RT, we investigated the genomic 256 

regions that were enriched in mutations relative to the mutation burden predicted by random 257 

forest regression. To enable a more detailed, gene-level functional analysis of enriched 258 

mutations, we repeated the predictions of regional mutation burden using a finer 100-kbps 259 

genomic resolution. This revealed 1570 unique genomic regions in 17 cancer types that were 260 

significantly enriched in mutations based on the CA- and RT-informed model residuals (FDR < 261 

0.05) (Figure 5A). The mutation-enriched regions encoded 900 protein-coding genes including 262 

67 known cancer genes 42, significantly more than expected by chance (33 expected, Fisher’s 263 

exact P = 3.1 x 10-8). Most driver genes were only found in single cancer types and represented 264 

key disease-specific drivers such as EGFR and TERT in glioma, MYC in BNHL and APC in 265 

colorectal cancer (Supplementary Figure 5). For example, in breast cancer, the region encoding 266 

PIK3CA was significantly enriched in mutations compared to the expected mutation burden 267 

based on the CA and RT landscape (92 SNVs observed vs. 44 expected; FDR = 9.2 x 10-4) 268 

(Figure 5B). PIK3CA is a major driver gene of breast cancer with hotspot mutations 43, thus 269 

showing that genome-wide statistical models of CA and RT can capture known driver genes.  270 

The models also revealed regions with frequent non-coding mutations. The most prominent 271 

region was found in 12 of 17 cancer types due to unexpectedly frequent mutations, including 272 

breast cancer (112 SNVs observed vs. 63 expected; FDR = 4.6 x 10-4) (Figure 5C; 273 

Supplementary Figure 6). The region encodes the oncogenic transcriptional regulator IRF4 274 

(interferon regulatory factor 4) 44 and DUSP22 encoding a signaling protein that was recently 275 

described as a network-implicated driver gene due to non-coding mutations 45. The region also 276 

includes super-enhancers of immune cells 46. The recurrence of mutations in this region in 277 

multiple cancer types highlights it as a potential pan-cancer region of interest.  278 
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We then asked whether the frequently-mutated regions were associated with common biological 279 

pathways and processes. An integrative pathway enrichment analysis that prioritized genomic 280 

regions detected in multiple cancer types revealed 177 significantly enriched pathways and 281 

processes (FDR < 0.05, ActivePathways 47), of which 142 (80%) were detected in more than one 282 

cancer type (Figure 5D). These findings converged into several functional themes of similar 283 

pathways and processes. First, developmental processes related to brain and the central nervous 284 

system, reproductive and sensory organs were associated with elevated mutation burden in 285 

multiple cancer types. Second, a group of processes related to synapse organization, olfactory 286 

and GPCR signaling were also identified in most cancer types. Third, cancer-related processes of 287 

cell cycle, hormone response, and signal transduction were also identified, often through pan-288 

cancer data integration but not in any specific cancer type specifically. Lastly, a major group of 289 

processes related to immune system activation were predominantly detected in BNHL, 290 

potentially reflecting aberrant somatic hypermutation, as well as fewer associations with liver 291 

and stomach cancers.  292 

This analysis shows that although individual frequently-mutated genomic regions are mostly 293 

characteristic of specific cancer types, enriched mutations converge to common pathways and 294 

processes in multiple cancer types. Convergence of these excess mutations to developmental and 295 

cancer-related processes is potentially explained by additional focal mutational processes 296 

targeting epigenetically active regions of the genome that are not captured by our models at the 297 

broader, sub-megabase resolution. Further, the enrichment of known cancer driver genes 298 

suggests that positive selection of functional mutations may also contribute to this additional 299 

mutation burden. This analysis exemplifies the complex interplay of cancer epigenomes, multi-300 

scale mutational processes and positive selection of cancer genes.  301 
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DISCUSSION 302 

Our analysis highlights chromatin accessibility of primary human cancers as a major determinant 303 

of regional mutational processes in cancer genomes. Cancer epigenomes are predictive of 304 

regional mutation burden of matching cancer types, indicating tissue of origin associations in 305 

most cancer types we studied. While these associations are apparent for overall regional mutation 306 

burden in cancer genomes, they are also consistent with the regional variations in mutational 307 

signature burden. In contrast, the chromatin states of normal tissues and cell lines show only 308 

limited associations with regional mutagenesis of cancer genomes, extending the earlier studies 309 

that used the epigenetic profiles of cell lines and normal tissues to characterize mutational 310 

processes. The transformation of normal cells to cancer cells involves major changes in their 311 

epigenetic landscapes as gene-regulatory programs of cancer hallmark pathways are activated. 312 

Thus, one potential explanation to this stronger association of cancer epigenomes and regional 313 

mutagenesis is that mutational processes have a longer exposure on the somatic genomes shaped 314 

by the epigenomes of transformed cells, suggesting that many passenger mutations occur later in 315 

cancer evolution after the cells have acquired the epigenetic characteristics of cancer cells.  316 

Replication timing information also associated with regional mutagenesis and confirmed strong 317 

effects with cell types related to cancer origin. However, CA profiles of primary human cancers 318 

evidently captured a larger fraction of variation of regional mutagenesis compared to RT 319 

profiles, apart from squamous cell and lymphoid cancers that strongly associated with relevant 320 

cell lines. Fewer RT profiles are used as predictors in our dataset and include mitotic cell lines 321 

that offer only limited representation of the diverse disease types in the pan-cancer cohort. As 322 

our models also include DNA replication timing profiles of several cell lines as reference, the 323 

stronger association with epigenomes of primary cancers shows that cancer epigenomes 324 

complement replication timing information with respect to regional mutagenesis. Interestingly, 325 

DNA replication has been shown to determine chromatin state 48. Thus, the informative CA 326 

profiles of human cancers may represent a proxy of cancer-specific replication dynamics.  327 

Mutational signature analysis revealed interactions of mutational processes with CA and tissues 328 

of origin. Carcinogen signatures, as well as signatures of unknown etiology, were overall better 329 

predicted by CA and RT, in contrast to signatures of aging and DNA damage where the genome-330 
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wide predictions were less accurate. The stronger association of carcinogen signatures suggests 331 

that the chromatin environment interacts with DNA damage or repair processes of carcinogen 332 

exposure, for example through elevated mutational processes targeting active genes that are 333 

otherwise protected from mutations through error-free mismatch repair 41. Early replicating 334 

regions in cells exposed to tobacco mutagens show elevated mutagenesis in transcribed strands 335 

due to differential nucleotide excision repair activity 49. Based on their stronger interactions with 336 

RT and CA profiles, we speculate that some mutational signatures of currently unknown etiology 337 

may relate to carcinogens. SBS17 mutations show some of the strongest interactions with CA 338 

and RT in stomach and esophageal cancers in our analysis. This signature is currently of 339 

unknown cause, however it has been linked to gastric acid reflux and reactive oxygen species 24. 340 

Further integrative analysis of clinical and lifestyle information with patterns of regional 341 

mutagenesis may shed light to these mutational processes.  342 

We observed a functional convergence to developmental processes and cancer-related pathways 343 

in the genomic regions where mutations were enriched beyond the predictions of our epigenomic 344 

models. On the one hand, these data suggest that additional mutational processes affect distinct 345 

regions with developmental genes and open-chromatin regions in individual cancer types, 346 

however these regions converge to the same molecular pathways across cancer types. Such local 347 

mutational processes are consistent with previous studies. For example, transcription start sites of 348 

highly expressed genes and constitutively-bound binding sites of CTCF are subject to elevated 349 

local mutagenesis in multiple cancer types 16. Lineage-specific genes are enriched in indel 350 

mutations in solid cancers 50. Such local mutational processes are complementary to megabase-351 

scale processes where open chromatin is generally associated with a lower mutation frequency. 352 

On the other hand, the enrichment of cancer genes and pathways in our data suggests that some 353 

mutations unexplained by CA and RT are functional in cancer and their frequent occurrence at 354 

specific genes, non-coding elements and molecular pathways is explained by positive selection 3-355 
5,45. We can use this computational framework to find genomic regions with known and putative 356 

driver mutations in coding and non-coding sites. Further study of these regions may deepen our 357 

understanding of mutational processes and refine the catalogues of driver mutations.  358 

This approach enables future studies to decipher the mechanisms and phenotypic associations of 359 

mutational processes. Clinical, genetic, and epigenetic profiles of cancer patients can be 360 
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integrated to understand how regional mutational processes and the chromatin landscape are 361 

modulated by clinical variables such as stage, grade or the therapies applied, genetic features 362 

such as somatic driver mutations or inherited cancer risk variants, or lifestyle choices such as 363 

tobacco or alcohol consumption. Complementary insights from sub-clonal reconstruction 364 

analysis of cancer genomes 2,51, as well as single-cell sequencing of genomes and epigenomes 365 

will allow mapping of regional mutagenesis at the level of distinct cell populations contributing 366 

to temporal and spatial variation in mutational processes. As such multimodal datasets grow, we 367 

can learn about early cancer evolution by comparing regional mutagenesis in the genomes of 368 

cancers and normal cells. Understanding the molecular and genetic determinants of regional 369 

mutagenesis and signatures in cancer genomes may help characterize carcinogen exposures and 370 

genetic predisposition, ultimately enhancing early cancer detection and prevention in the future.   371 
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Methods  372 

Somatic mutations in whole cancer genomes. We analyzed somatic single nucleotide variants 373 

(SNVs; n = 43,778,859) derived from whole-genome sequencing (WGS) of 2,583 primary 374 

cancer samples that were uniformly mapped to GRCh37/hg19 as part of the ICGC/TCGA Pan-375 

cancer Analysis of Whole Genomes (PCAWG) project 1. Indels and variants in sex chromosomes 376 

were excluded. To integrate mutations with epigenetic information, we mapped the SNVs to the 377 

human genome version GRCh38 using the LiftOver function of the rtracklayer package in R (v 378 

1.48) 52. We removed 66 hypermutated tumors with more than 90,000 mutations (~30 mutations 379 

/ Mbps), resulting in a dataset of 23,215,600 SNVs in 2,517 whole cancer genomes. We analyzed 380 

the genomes of 17 cancer types with at least 25 samples in PCAWG as well as related epigenetic 381 

profiles of normal and cancer tissues, as well as the pan-cancer dataset of all 37 cancer types.  382 

Chromatin accessibility (CA) and replication timing (RT) profiles. Chromatin accessibility 383 

data was derived from several ATAC-seq datasets, including the ENCODE3 project and six 384 

additional studies to maximize the coverage of cancer types included in the PCAWG dataset, as 385 

described below. CA profiles of 196 human cell and tissue types and 9 cancer cell lines at a 386 

single basepair (bp) resolution in GRCh38 were derived from the ENCODE3 project 27. CA 387 

profiles of 115 normal human brain samples at a single bp resolution in GRCh37 were retrieved 388 

from the study by Fullard et al. 29. CA profiles of 21 normal immune cell types (B-cells, T-cells) 389 

and 34 primary cancers (CLL) at a single base pair resolution in GRCh37 were retrieved from 390 

the study by Rendeiro et al. 30. Four CA profiles of HEK293 embryonic kidney cells at a 10-bp 391 

resolution in GRCh37 were retrieved from the study by Karabacak Calviello et al. 31. CA profiles 392 

for two lymphoma cell lines at a single-bp resolution in GRCh37 were retrieved from the study 393 

by Scharer et al. 32. One CA profile of the normal human melanocytes (NHM1) cell line at a 10-394 

bp resolution in GRCh37 were retrieved from the study by Fontanals-Cirera et al. 33. CA profiles 395 

of four normal prostate tissues and six primary prostate cancers at a single-bp resolution in 396 

GRCh37 were retrieved from the study by Pomerantz et al. 34. CA profiles of several cancer 397 

types were retrieved from the TCGA ATAC-seq dataset 28 of 410 primary cancer samples, 398 

representing cancers of 404 unique patient donors and 796 genome-wide profiles in total. We 399 

used 381 CA profiles of the TCGA dataset such that technical and biological replicates of 400 

distinct cancer samples were pooled by per-region averaging CA signal. Prior to this averaging, 401 
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22 CA profiles for which only one replicate was available were removed, and one CA profile of 402 

a low-grade glioma (LGG) that was an outlier in our initial analyses as also removed. In total, 403 

773 CA profiles were included in the analysis, including 421 cancer profiles, 341 profiles of 404 

normal tissues and cell lines, and 11 profiles of cancer cell lines. Besides these CA profiles, 96 405 

replication timing profiles of 16 cell lines, each with six cell cycle phases, were derived from the 406 

RepliSeq study by Hansen et al. 35. CA and RT profiles were constructed from the BigWig files 407 

of the original studies using mean values of signal intensity per each genomic window. Genomic 408 

coordinates of the GRCh37 reference genome were mapped to the GRCh38 reference genome 409 

using LiftOver. In total, the set of 869 (773 + 96) CA and RT profiles was used. 410 

Integrating regional mutagenesis with CA and RT profiles. We evaluated chromatin 411 

accessibility, replication timing and mutation burden in non-overlapping genomic regions of one 412 

megabase (Mbp; one million base pairs). We excluded a subset of genomic regions with low 413 

mappability (≤80% in the UMAP software 53) as well as sex chromosomes, resulting in 2,465 414 

regions included in the study. For megabase-scale CA and RT profiles, each genomic region was 415 

assigned the mean value of its epigenetic signal. For megabase-scale somatic mutation burden, 416 

each region was assigned the total mutation count separately for the pan-cancer dataset and each 417 

of the 17 cancer types. In two cohorts (chronic lymphocytic leukemia; B-cell non-Hodgkin 418 

lymphoma), we removed two regions encoding immunoglobulin genes (chr2:89Mbps, 419 

chr22:23Mbps) with known high somatic variation in immune cells, as observed in our initial 420 

analyses.  421 

Random forest regression. Megabase-scale profiles of mutation burden and CA and RT profiles 422 

were analyzed with random forest regression 54 with CA and RT profiles as the predictors (i.e., 423 

features) and mutation burden as the target (i.e., response). Number of trees (1000) and fraction 424 

of predictors at each split (1/3) were used as hyperparameters. Monte-Carlo cross-validation over 425 

1000 data splits considered subsets of genomic regions for model training (80%) and validation 426 

(20%). We used the adjusted R2 (adj.R2) metric to evaluate model performance that measures the 427 

variance explained by the model adjusted for model complexity (i.e., the number of CA and RT 428 

profiles used for predictions).  429 
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Comparing CA profiles of primary cancers and normal tissues as predictors of regional 430 

mutagenesis. First, we compared the overall accuracy of predicting megabase-scale mutation 431 

burden using CA profiles of cancers vs. normal tissues. Two sets of random forest regression 432 

models were run in a joint Monte-Carlo cross-validation procedure that used all CA profiles of 433 

normal tissues (Mn) and cancers (Mc) as predictors, respectively. Both models also included the 434 

same set of RT profiles as predictors as reference. At each iteration, models were trained on 435 

matching subsets of genomic regions (80%) and tested on the remaining genomic regions (20%), 436 

and model accuracy (adj.R2) values as well as the relative change values (∆adj.R2 = adj.R2(Mc)- 437 

adj.R2(Mn)) were derived in the corresponding test sets, allowing us to directly compare the two 438 

models. For each cancer type, median ∆adj.R2 values and 95% confidence intervals were 439 

reported. Empirical P-values were computed as the fraction of cross-validation iterations where 440 

the ∆adj.R2 crossed on the opposite side of zero relative to the median value. We also trained the 441 

models Mn and Mc on the full set of genomic regions and compared the  accuracy of the two sets 442 

of models. Observed and model-predicted mutation burden values per region were visualized as 443 

scatter plots with local regression (loess) trendlines (span=0.9). Spearman correlation tests were 444 

used to evaluate the associations of model accuracy, WGS cohort size and per-megabase 445 

mutation burden in different cancer types.  446 

Evaluating CA and RT profiles as predictors of regional mutation burden. We used the 447 

incMSE (increase in model mean-squared-error) metric to evaluate the most important features 448 

(i.e., CA, RT profiles) in random forest models. incMSE measures the relative change in model 449 

prediction accuracy upon permutations of the values of a given feature. We derived incMSE 450 

values of CA and RT profiles for the 17 cancer types for which matching CA and/or RT profiles 451 

were available. Two additional statistical methods were used to evaluate the significance of 452 

incMSE of CA and RT profiles. First, permutation tests were used to detect CA and RT profiles 453 

where incMSE values significantly exceeded those of permuted data. We fitted random forest 454 

regression models for every cancer type 1,000 times using randomly reassigned megabase-scale 455 

mutation burden estimates as null distributions for incMSE values for CA and RT profiles. 456 

Specific profiles were considered statistically significant if their observed incMSE values 457 

exceeded all 1000 incMSE values from permuted datasets (i.e., empirical P < 0.001). Second, we 458 

used bootstrapping of random forest regression where the genomic regions with predictor and 459 
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response values were sampled randomly with replacement. We repeated this resampling process 460 

1000 times and recorded the incMSE values for all CA and RT profiles to evaluate the 461 

confidence intervals of the derived incMSEs.  462 

Feature importance of CA and RT profiles in predictions of regional mutagenesis. We used 463 

the SHapley Additive exPlanation (SHAP) method 36,55 to interpret the interactions of regional 464 

mutation burden and CA and RT profiles. Here, SHAP scores reflect the importance of each 465 

feature in the random forest model (i.e., CA or RT profile) in predicting a specific observation 466 

(i.e., mutation burden of a certain genomic region), and represent its relative contribution to the 467 

prediction (i.e., effect size) as well as the direction of the prediction (i.e., positive or negative). 468 

SHAP values were computed using models trained all genomic regions and separately for cancer 469 

types, using the python packages shap (0.35.0) 36,55 and scikit-learn (0.23.1) 56 via the R package 470 

reticulate (1.16) 57.  471 

Associating mutational signatures with CA and RT. For mutational signature analysis, we 472 

used single base substitution (SBS) annotations of SNVs derived in the PCAWG project 6. For 473 

each genomic region, we computed the mutational signature burden probabilistically by adding 474 

the SBS-specific probabilities of all individual SNVs in the region, thus accounting for all 475 

signature exposures rather than top-ranking signatures for each SNV. We filtered lower-476 

frequency SBS signatures in each cancer type (i.e., <20,000 or <5% of all SNVs). To evaluate 477 

CA and RT profiles as predictors of megabase-scale mutational signature burden, we trained 478 

random forest models where a probabilistic SBS profile was used as model response. We 479 

evaluated model performance, selected top features, and computed SHAP scores similarly to 480 

bulk mutation analysis described above. We grouped the mutational signatures based on their 481 

etiology according to the COSMIC database (version 3.2, downloaded in March 2021): 482 

AID/APOBEC, deficient DNA repair, exogeneous/carcinogen, unknown/other, SBS5/40 and 483 

SBS1. We compared model accuracy values for predicting regional mutational signature burden 484 

of the six classes of signatures using ANOVA analysis and F-tests. We used the covariate of the 485 

average megabase-scale SBS burden to account for a potential of improved predictions in cancer 486 

types with higher overall mutation burden. 487 
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Prioritizing highly-mutated genomic regions exceeding CA and RT predictions. To study 488 

regional mutation burden unexplained by CA and RT profiles, we prioritized the genomic 489 

regions where the random forest predictions significantly underestimated the observed mutation 490 

burden. Random forest regression was repeated on 100-kbps regions to improve gene-level 491 

interpretation. To score genomic regions, we subtracted the predicted mutation counts from the 492 

observed counts to derive residual values. Residuals were Z-transformed and the resulting one-493 

tailed P-values were adjusted for multiple testing using Benjamini-Hochberg FDR.  494 

Pathway enrichment analysis of regional mutation variation. To understand the functional 495 

importance of excess mutations unexplained by CA and RT profiles, we performed an integrative 496 

pathway enrichment analysis across the relevant cancer types using the ActivePathways method 497 
47 (FDR < 0.05). Gene sets of biological processes of Gene Ontology and molecular pathways of 498 

Reactome were collected from the GMT files provided in the g:Profiler web server 58 499 

(downloaded Feb 23rd, 2021) and were filtered using default settings of ActivePathways. In each 500 

cancer type, all protein-coding genes were assigned the P-values reflecting excess mutation 501 

burden unexplained by CA and RT in respective regions. The data fusion in ActivePathways 502 

prioritized the genes that were frequently mutated in multiple cancer types. Enriched pathways 503 

were visualized as an enrichment map 59 and themes were curated manually. We also visualized 504 

the genomic regions with excess mutations as a scatter plot of residual values and -log10-505 

transformed FDR values that were capped at 400, and 10-50, respectively. We highlighted known 506 

cancer driver genes of the Cancer Gene Census database 42 (downloaded Mar 26th 2021) and 507 

computed their enrichment in the list of pathway-associated genes using a Fisher’s exact test. 508 

Code availability. Source code for this study is available at 509 

https://github.com/reimandlab/CA2M_v2.   510 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/


 28 

Acknowledgments. We thank Christian A. Lee, Kevin Cheng, Phedias Diamandis, and Anne 511 

Martel for constructive comments on this study. This work was supported by the Canadian 512 

Institutes of Health Research (CIHR) Project Grant to J.R., A New Investigator Award of the 513 

Terry Fox Research Institute (TFRI) to J.R., and the Investigator Award to J.R. from the Ontario 514 

Institute for Cancer Research (OICR). Funding to OICR is provided by the Government of 515 

Ontario. The results shown here are in whole or part based upon data generated by the TCGA 516 

Research Network: https://www.cancer.gov/tcga. We acknowledge the contributions of the many 517 

clinical networks of ICGC and TCGA who provided samples and data to PCAWG. We thank the 518 

patients and their families for their participation in ICGC and TCGA projects. 519 

Author contributions. O.O. analyzed the data and prepared the figures. J.R. and O.O. 520 

interpreted the data and wrote the manuscript. J.R. conceived and supervised the project. The 521 

authors reviewed and edited the manuscript and approved the final version.   522 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/


 29 

References 523 

1 ICGC-TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis 524 
of whole genomes. Nature 578, 82-93, doi:10.1038/s41586-020-1969-6 (2020). 525 

2 Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122-128, 526 
doi:10.1038/s41586-019-1907-7 (2020). 527 

3 Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. 528 
Cell 171, 1029-1041 e1021, doi:10.1016/j.cell.2017.09.042 (2017). 529 

4 Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,693 cancer whole 530 
genomes. Nature 578, 102–111 (2020). 531 

5 Zhu, H. et al. Candidate Cancer Driver Mutations in Distal Regulatory Elements and 532 
Long-Range Chromatin Interaction Networks. Mol Cell, 533 
doi:10.1016/j.molcel.2019.12.027 (2020). 534 

6 Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 535 
578, 94-101, doi:10.1038/s41586-020-1943-3 (2020). 536 

7 Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 537 
578, 112-121, doi:10.1038/s41586-019-1913-9 (2020). 538 

8 Kumar, S. et al. Passenger Mutations in More Than 2,500 Cancer Genomes: Overall 539 
Molecular Functional Impact and Consequences. Cell 180, 915-927 e916, 540 
doi:10.1016/j.cell.2020.01.032 (2020). 541 

9 Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of 542 
somatic mutations in normal human skin. Science 348, 880-886, 543 
doi:10.1126/science.aaa6806 (2015). 544 

10 Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during 545 
life. Nature 538, 260-264, doi:10.1038/nature19768 (2016). 546 

11 Supek, F. & Lehner, B. Scales and mechanisms of somatic mutation rate variation across 547 
the human genome. DNA Repair (Amst), 102647, doi:10.1016/j.dnarep.2019.102647 548 
(2019). 549 

12 Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local Determinants of the 550 
Mutational Landscape of the Human Genome. Cell 177, 101-114, 551 
doi:10.1016/j.cell.2019.02.051 (2019). 552 

13 Pich, O. et al. The mutational footprints of cancer therapies. Nature genetics 51, 1732-553 
1740, doi:10.1038/s41588-019-0525-5 (2019). 554 

14 Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nature 555 
genetics 47, 818-821, doi:10.1038/ng.3335 (2015). 556 

15 Sabarinathan, R., Mularoni, L., Deu-Pons, J., Gonzalez-Perez, A. & Lopez-Bigas, N. 557 
Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 558 
532, 264-267, doi:10.1038/nature17661 (2016). 559 

16 Lee, C. A., Abd-Rabbo, D. & Reimand, J. Functional and genetic determinants of 560 
mutation rate variability in regulatory elements of cancer genomes. Genome Biol 22, 133, 561 
doi:10.1186/s13059-021-02318-x (2021). 562 

17 Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-563 
associated genes. Nature 499, 214-218, doi:10.1038/nature12213 (2013). 564 

18 Schuster-Bockler, B. & Lehner, B. Chromatin organization is a major influence on 565 
regional mutation rates in human cancer cells. Nature 488, 504-507, 566 
doi:10.1038/nature11273 (2012). 567 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/


 30 

19 Stamatoyannopoulos, J. A. et al. Human mutation rate associated with DNA replication 568 
timing. Nature genetics 41, 393-395, doi:10.1038/ng.363 (2009). 569 

20 Supek, F. & Lehner, B. Differential DNA mismatch repair underlies mutation rate 570 
variation across the human genome. Nature 521, 81-84, doi:10.1038/nature14173 (2015). 571 

21 Zheng, C. L. et al. Transcription restores DNA repair to heterochromatin, determining 572 
regional mutation rates in cancer genomes. Cell Rep 9, 1228-1234, 573 
doi:10.1016/j.celrep.2014.10.031 (2014). 574 

22 Woo, Y. H. & Li, W. H. DNA replication timing and selection shape the landscape of 575 
nucleotide variation in cancer genomes. Nat Commun 3, 1004, doi:10.1038/ncomms1982 576 
(2012). 577 

23 Liu, L., De, S. & Michor, F. DNA replication timing and higher-order nuclear 578 
organization determine single-nucleotide substitution patterns in cancer genomes. Nat 579 
Commun 4, 1502, doi:10.1038/ncomms2502 (2013). 580 

24 Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Bockler, B. Mutational signature 581 
distribution varies with DNA replication timing and strand asymmetry. Genome Biol 19, 582 
129, doi:10.1186/s13059-018-1509-y (2018). 583 

25 Jiao, W. et al. A deep learning system accurately classifies primary and metastatic 584 
cancers using passenger mutation patterns. Nat Commun 11, 728, doi:10.1038/s41467-585 
019-13825-8 (2020). 586 

26 Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of 587 
cancer. Nature 518, 360-364, doi:10.1038/nature14221 (2015). 588 

27 Consortium, E. P. et al. Expanded encyclopaedias of DNA elements in the human and 589 
mouse genomes. Nature 583, 699-710, doi:10.1038/s41586-020-2493-4 (2020). 590 

28 Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. 591 
Science 362, doi:10.1126/science.aav1898 (2018). 592 

29 Fullard, J. F. et al. An atlas of chromatin accessibility in the adult human brain. Genome 593 
research 28, 1243-1252, doi:10.1101/gr.232488.117 (2018). 594 

30 Rendeiro, A. F. et al. Chromatin mapping and single-cell immune profiling define the 595 
temporal dynamics of ibrutinib response in CLL. Nat Commun 11, 577, 596 
doi:10.1038/s41467-019-14081-6 (2020). 597 

31 Karabacak Calviello, A., Hirsekorn, A., Wurmus, R., Yusuf, D. & Ohler, U. 598 
Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq 599 
datasets using protocol-specific bias modeling. Genome Biol 20, 42, doi:10.1186/s13059-600 
019-1654-y (2019). 601 

32 Scharer, C. D. et al. Genome-wide CIITA-binding profile identifies sequence preferences 602 
that dictate function versus recruitment. Nucleic Acids Res 43, 3128-3142, 603 
doi:10.1093/nar/gkv182 (2015). 604 

33 Fontanals-Cirera, B. et al. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a 605 
Melanoma Survival Gene. Mol Cell 68, 731-744 e739, doi:10.1016/j.molcel.2017.11.004 606 
(2017). 607 

34 Pomerantz, M. M. et al. Prostate cancer reactivates developmental epigenomic programs 608 
during metastatic progression. Nature genetics 52, 790-799, doi:10.1038/s41588-020-609 
0664-8 (2020). 610 

35 Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in 611 
human replication timing. Proc Natl Acad Sci U S A 107, 139-144, 612 
doi:10.1073/pnas.0912402107 (2010). 613 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/


 31 

36 Lundberg, S. M. et al. From Local Explanations to Global Understanding with 614 
Explainable AI for Trees. Nat Mach Intell 2, 56-67, doi:10.1038/s42256-019-0138-9 615 
(2020). 616 

37 Odegard, V. H. & Schatz, D. G. Targeting of somatic hypermutation. Nat Rev Immunol 6, 617 
573-583, doi:10.1038/nri1896 (2006). 618 

38 Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nature 619 
genetics 47, 1402-1407, doi:10.1038/ng.3441 (2015). 620 

39 Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature, 621 
doi:10.1038/s41586-021-03477-4 (2021). 622 

40 Wang, Q. et al. Epigenetic targeting of activation-induced cytidine deaminase. Proc Natl 623 
Acad Sci U S A 111, 18667-18672, doi:10.1073/pnas.1420575111 (2014). 624 

41 Supek, F. & Lehner, B. Clustered Mutation Signatures Reveal that Error-Prone DNA 625 
Repair Targets Mutations to Active Genes. Cell 170, 534-547 e523, 626 
doi:10.1016/j.cell.2017.07.003 (2017). 627 

42 Futreal, P. A. et al. A census of human cancer genes. Nat Rev Cancer 4, 177-183, 628 
doi:10.1038/nrc1299 (2004). 629 

43 Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome 630 
sequences. Nature 534, 47-54, doi:10.1038/nature17676 (2016). 631 

44 Iida, S. et al. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple 632 
myeloma. Nature genetics 17, 226-230, doi:10.1038/ng1097-226 (1997). 633 

45 Reyna, M. A. et al. Pathway and network analysis of more than 2,500 whole cancer 634 
genomes. Nature Communications 11, 729 (2020). 635 

46 Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934-636 
947, doi:10.1016/j.cell.2013.09.053 (2013). 637 

47 Paczkowska, M. et al. Integrative pathway enrichment analysis of multivariate omics 638 
data. Nature Communications 11, 735 (2020). 639 

48 Klein, K. N. et al. Replication timing maintains the global epigenetic state in human 640 
cells. Science 372, 371-378, doi:10.1126/science.aba5545 (2021). 641 

49 Kucab, J. E. et al. A Compendium of Mutational Signatures of Environmental Agents. 642 
Cell 177, 821-836 e816, doi:10.1016/j.cell.2019.03.001 (2019). 643 

50 Imielinski, M., Guo, G. & Meyerson, M. Insertions and Deletions Target Lineage-644 
Defining Genes in Human Cancers. Cell 168, 460-472 e414, 645 
doi:10.1016/j.cell.2016.12.025 (2017). 646 

51 Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human 647 
cancer genomes. Cell, doi:10.1016/j.cell.2021.03.009 (2021). 648 

52 Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with 649 
genome browsers. Bioinformatics 25, 1841-1842, doi:10.1093/bioinformatics/btp328 650 
(2009). 651 

53 Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap: 652 
quantifying genome and methylome mappability. Nucleic Acids Res 46, e120, 653 
doi:10.1093/nar/gky677 (2018). 654 

54 Ho, T. K. Random decision forests. IEEE Proceedings of 3rd international conference on 655 
document analysis and recognition 1, 278-282, doi:doi:10.1109/ICDAR.1995.598994 656 
(1995). 657 

55 Lundberg, S. M. & Lee, S. A Unified Approach to Interpreting Model Predictions. 658 
Advances in Neural Information Processing Systems (NIPS) 30 (2017). 659 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/


 32 

56 Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine 660 
Learning Research 12, 2825-2830 (2011). 661 

57 Ushey, K., Allaire, J. J. & Tang, Y. Reticulate R Package. GitHub 662 
https://rstudio.github.io/reticulate/ doi:https://rstudio.github.io/reticulate/ (2021). 663 

58 Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler--a web-based toolset 664 
for functional profiling of gene lists from large-scale experiments. Nucleic acids research 665 
35, W193-200, doi:10.1093/nar/gkm226 (2007). 666 

59 Reimand, J. et al. Pathway enrichment analysis and visualization of omics data using 667 
g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14, 482-517, 668 
doi:10.1038/s41596-018-0103-9 (2019). 669 

 670 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.05.14.444202doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444202
http://creativecommons.org/licenses/by/4.0/

