Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study

Sonja Srdanovic,ᵃᵇ Madita Wolter,ᶜᵈ Chi H. Trinh,ᵃᵉ Christian Ottmann,ᶜᵈ Stuart L. Warriner,ᵃᵇ Andrew J. Wilson,ᵃᵇ*

ᵃAstbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
ᵇSchool of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
ᶜLaboratory of Chemical Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
ᵈInstitute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, 5600 MB, The Netherlands
ᵉSchool of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
*e-mail: a.j.wilson@leeds.ac.uk

Abstract

p53 plays a critical role in regulating diverse biological processes: DNA repair, cell cycle arrest, apoptosis, and senescence. The p53 pathway has therefore served as the focus for drug-discovery efforts. p53 is negatively regulated by hDMX and hDM2; prior studies have identified 14-3-3 proteins as hDMX and hDM2 client proteins. 14-3-3 proteins are adaptor proteins that modulate localisation, degradation and interactions of their targets in response to phosphorylation. Thus 14-3-3 proteins may indirectly modulate the interaction between hDMX or hDM2 and p53 and represent potential targets for modulation of the p53 pathway. In this manuscript we report on the biophysical and structural characterization of peptide/protein interactions that are representative of the interaction between 14-3-3 and hDMX or hDM2. The data establish that proximal phosphosites spaced ~20-25 residues apart in both hDMX and hDM2 co-operate to facilitate high-affinity 14-3-3 binding and provide structural insight that can be utilized in future stabilizer/inhibitor discovery efforts.
Introduction

The transcription factor p53 is often described as “the guardian of the genome” because of its central role in regulating diverse biological processes: DNA repair, cell cycle arrest, apoptosis, and senescence.⁠¹⁴ Thus, the p53 pathway has seen significant attention in developing new anticancer treatments.⁠¹⁵ One such target has been the interaction between p53 and hDM2 or hDMX (Fig. 1a).³⁵ p53 is negatively regulated by hDMX and hDM2;⁶⁻¹⁰ they bind to the transactivation domain of p53 sterically blocking its interaction with DNA,⁹⁻¹² p53 is additionally targeted for nuclear export and proteasomal degradation through hDM2 which bears an E3 ligase domain.¹³⁻¹⁵ Although hDMX lacks such a domain, the E3 ligase activity of hDM2 is enhanced through formation of hDMX/hDM2 heterodimers.¹⁶⁻¹⁸ This continuous targeting of p53 for degradation keeps p53 levels low under normal conditions. It is only under stressed conditions (e.g. DNA damage, hypoxia, oncogene activation and ribosomal stress) that p53 is rapidly activated through multiple post translational modifications; subsequent stabilization and accumulation of p53 upregulates gene expression leading to cell cycle arrest and/or apoptosis. This tightly controlled autoregulatory loop is thus of vital importance; knock out studies of the oncogenes MDMX and MDM2 (the murine homologues of hDMX and hDM2) have shown that these proteins are essential in mice studies.¹⁹ However, hDM2 and hDMX are themselves subject to regulatory control and have additional independent roles in cell cycle regulation.²⁰⁻²² For instance, in addition to modulating p53 binding, post translational modification of hDMX and hDM2 such as phosphorylation influences their localization and degradation.²¹⁻²⁵

Several kinases have been reported to phosphorylate hDMX and/or hDM2 whilst cellular studies have shown that phosphorylated hDMX and hDM2 interact with 14-3-3.²⁶ First identified in 1967,²⁷ 14-3-3 proteins are eukaryotic adapter proteins that control diverse physiological functions through interaction with a large network of proteins e.g. they are involved in signal transduction, protein trafficking, apoptosis, and cell cycle regulation.²⁸ Given these functions, they have been shown to play an important role in inflammatory conditions, neurodegenerative diseases, cancer and cystic fibrosis.²⁹⁻³³ and have consequently received attention as potential drug-discovery targets.²⁸, ³⁴ The 14-3-3 family of proteins consist of seven isoforms in humans: β, γ, ε, η, ζ, σ and τ/θ, all of which share a high degree of sequence conservation (see supporting information, Fig. S1). Even though sequence conservation between the isoforms can indicate redundancy in protein function, this is not the case for 14-3-3 proteins as different affinities towards a target protein are clear between the isoforms.³⁵⁻³⁶ 14-3-3 proteins exist as homo or heterodimers where each monomer consists of nine α-helices forming an amphipathic binding groove. Four α-helices are directly responsible for dimer formation, while the rest of the α-helices form the “W” shape of the protein dimer.³⁷ The N
terminal domain of 14-3-3 proteins modulates homo/heterodimerization while the C terminal domain binds client proteins.37 Activity and modulation of many cellular pathways by 14-3-3 is controlled by phosphorylation events. Target proteins are typically recognized by 14-3-3 through well defined sequences that can be generalized into three categories: I.) RXX pS/pT XP, II.) RX(Y/F)X pS/pT XP, III.) XX pS/pT X COOH (pS and pT being phosphorylated Ser and Thr, respectively, X being any amino acid).38 In mode I and II, proline is always located at position +2 in relation to the central pSer/pThr and arginine is at position -3 in mode I. Mode III represents C terminal sequences where pSer/pThr are the penultimate amino acid of the partner protein.

![Figure 1](image-url)

Figure 1. Negative regulation of the p53 pathway by hDMX and hDM2: (a) hDMX (turquoise) and hDM2 (green) bind p53 (blue) and subsequently inhibit its transcriptional activity. hDM2 also facilitates nuclear export of p53, and as a ubiquitin ligase additionally tags p53 for degradation, whilst hDMX accelerates hDM2 mediated ubiquitin ligase activity. 14-3-3 (orange) interacts with: (i) phosphorylated p53 to stabilize tetramer formation, (ii) phosphorylated hDMX leading to its nuclear accumulation and degradation, and, possibly modulation of its interaction with hDM2, (iii) hDM2 to facilitate its nuclear export. (b) Domain structure of hDM2 and hDMX highlighting phosphosites on hDM2 and hDMX investigated in this work: Ser342 and Ser367 in intracellular localization, protein degradation and ubiquitination, and additionally Ser367 is associated with cell growth and protein stabilization. Ser166 and Ser186 on hDM2 are involved in apoptosis, signalling pathway regulation and ubiquitination.

Phosphorylated residues on hDMX or hDM2 considered relevant to recognition by 14-3-3 proteins, as well as their role in cell signalling are outlined in Fig. 1b.26, 39-43 Relevant sites on hDMX: Ser342 and Ser367 are targeted by several kinases (e.g. AMP,43 Akt,39 Chk226, 42}
or Chk1\(^{40}\)). 14-3-3 phosphorylation in response to stress or DNA damage with consequent enhancement of hDM2 mediated hDMX degradation has been reported,\(^{42, 44}\) together with a role for Ser367.\(^{41}\) Phosphorylation of hDMX on Ser367 by Chk2 was shown to promote 14-3-3 binding, hDMX nuclear import and degradation by hDM2.\(^{26}\) Similarly, Chk1 was shown to phosphorylate hDMX at Ser367, to promote 14-3-3/y/hDMX interaction and cytoplasmic retention of hDMX to counter hDMX-enhanced p53 ubiquitination, leading to its stabilization and activation.\(^{40}\) However, the potential relevance of both Ser342 and Ser367 to interaction with 14-3-3 has been noted.\(^{42, 45}\) In contrast, Akt has been shown to phosphorylate hDMX on Ser367, promoting 14-3-3 binding, stabilizing hDMX and consequently enhancing hDM2 stability leading to suppression of p53 transcriptional activity.\(^{39}\) Adenosine monophosphate (AMP) mediated phosphorylation of hDMX on Ser342 has been shown to induce hDMX/14-3-3 interaction resulting in inhibition of p53 ubiquitylation and consequent stabilization.\(^{43}\) hDM2 phosphorylation in the NLS/ELS region can lead to its stabilization by PKB/Akt,\(^{46-47}\) although the effects are complex; phosphorylation on Ser166 and Ser188 are promoted by Akt kinase,\(^{48}\) and result in positive regulation of hDM2 by inhibiting its self-ubiquitination and nuclear translocation.\(^{46, 49-50}\) Phosphorylation at Ser166 and Ser188 does not appear to result in binding of hDM2 to 14-3-3\(^{51}\) whilst such an interaction was observed when phosphorylated at Ser166 and Ser186 by Pim kinase, which simultaneously suppresses phosphorylation of Ser188.\(^{51}\) Finally, interaction between hDM2 phosphorylated in the ring domain and 14-3-3\(\sigma\) was observed to accelerate the self ubiquitination of hDM2, with a resulting downstream stabilization of p53.\(^{52}\) Thus cellular studies have linked hDMX and hDM2 to 14-3-3 proteins; 14-3-3 proteins may indirectly modulate the interaction between hDMX or hDM2 and p53 and represent potential targets for pharmacological modulation of p53\(^{51, 23}\) but the molecular bases of these interactions remain unexplored. In this manuscript we report on the biophysical and structural characterization of peptide/protein interactions that are representative of the interaction between 14-3-3 and hDMX or hDM2. The data reveal the interactions to be mode \(\lambda;\)^{53-54} whilst such 14-3-3 interactions are not stabilized by typical 14-3-3 interaction stabilizers e.g. Fusicoccin and Cotelynin A.\(^{55}\) These data provide structural insights that could be utilized in future stabilizer/inhibitor discovery efforts. More significantly, our results reveal that in both cases proximal phosphosites spaced ~20-25 residues apart in both hDMX and hDM2 cooperate to facilitate high-affinity 14-3-3 binding and do so through 1:1 stoichiometry.

Results

There are multiple serine and threonine residues in the hDMX and hDM2 proteins that could be phosphorylated (protein sequences with highlighted Ser and Thr residues on hDMX and hDM2 proteins, as well as their alignment can be found in the supporting information Fig. S2-
3). Therefore, 14-3-3Pred66 was used to identify sequences from hDM2 and hDMX that might serve as 14-3-3 binding sequences. 14-3-3Pred is a webserver that predicts 14-3-3 binding sites in client proteins based on published examples of 14-3-3 interactions with specific amino acids surrounding Ser/Thr. Scores are assigned to each Ser/Thr residue on the protein target whose sequences in FASTA format are queried, using an ensemble approach comprising three different base classification systems: position specific scoring matrix (PSSM), support vector machines (SVM) and artificial neural network (ANN). End score values are calculated as the average of three independent methods with a score >0.5 indicating high probability of the sequence binding to 14-3-3. The webserver also provides information on the phosphorylation state for each Ser/Thr residue. The phosphorylated sites on hDMX and hDM2 shown to be relevant for interaction of 14-3-3 in previous cell-based studies26, 40-43, 48, 51 were predicted to have a high probability of 14-3-3 binding, except pSer342 on hDMX, which showed low probability of binding (score 0.19) whereas Ser151 on hDMX – a previously unreported site of phosphorylation - was predicted to be a potential 14-3-3 binding site (score 0.75).

<table>
<thead>
<tr>
<th>Table 1 14-3-3 binding hDM2 and hDMX Sequences studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencea</td>
</tr>
<tr>
<td>hDMX\textsubscript{144-158}pThr151</td>
</tr>
<tr>
<td>hDMX\textsubscript{335-349}pSer342</td>
</tr>
<tr>
<td>hDMX\textsubscript{361-374}pSer367</td>
</tr>
<tr>
<td>hDMX\textsubscript{335-374}pSer342/pSer367</td>
</tr>
<tr>
<td>hDM2\textsubscript{160-171}pSer166</td>
</tr>
<tr>
<td>hDM2\textsubscript{180-192}pSer186</td>
</tr>
<tr>
<td>hDM2\textsubscript{160-192}pSer166/pSer186</td>
</tr>
</tbody>
</table>

a X = acetyl or FAM-Ahx where FAM is 5,6-carboxyfluoresceine and Ahx is aminohenxanoic acid.

Using the 14-3-3Pred results server several key regions of hDMX and hDM2 were thus identified. Peptides containing these binding regions were designed bearing five/six residues flanking the central phosphorylated residue on either side and prepared by solid-phase peptide synthesis (SPPS). Given the proximity of pSer342 and pSer367 from hDMX, as well
as pSer166 and pSer186 from hDM2, we also prepared doubly phosphorylated sequences for both to probe for avidity effects. Peptides were synthesized using a combination of manual or automated Fmoc SPPS on rink amide resin (Rink amide ProTide for doubly phosphorylated sequences) and modified at the N terminus by acetylation for isothermal titration calorimetry (ITC), surface plasmon resonance (SPR) and crystallography studies or with 5,6-carboxyfluorescein following an Ahx linker to function as a tracer in fluorescence anisotropy (FA) assays (see ESI for further details).

Biophysical characterization of the interaction of hDMX and hDM2 peptides with 14-3-3

To determine the binding affinity between all 7 isoforms of 14-3-3 proteins and hDMX and hDM2 peptides, FA experiments were carried out. 14-3-3 proteins were titrated against a constant concentration of the tracer resulting in an increase of anisotropy upon engaging 14-3-3 proteins (Fig. 2a-c for 14-3-3 binding hDMX sequences and Fig. S4-6, for 14-3-3 binding hDM2 sequences, non-binding sequence and unphosphorylated controls). A noteworthy feature of the data is that different maximum anisotropy levels were observed between hDMX or hDM2 peptides and 14-3-3 isoforms, indicating different diffusion properties of the fluorophore when bound to the different 14-3-3 isoforms. This may: (i) reflect differences in the interaction between fluorophore and protein restricting the former’s mobility to a greater or lesser degree between isoforms, or (ii) arise as a consequence of a more complex equilibrium e.g. isoform dependent variation in 14-3-3 dimerization across the concentration range of the assay. This will be investigated in future studies. The consequence of this behaviour is that for weaker binding peptides where saturation was not observed, it was not possible to determine a K_d value. Thus, in some cases, e.g. $hDM2_{180-192p^{Ser186}}$, K_d values (see below) with τ, σ and ϵ could only be estimated to be greater than limiting values. Similarly, accurate fitting for doubly phosphorylated peptides could be obtained only for η, γ and β isoforms. Peptides $hDMX_{335-349p^{Ser342}}$ and $hDMX_{361-374p^{Ser367}}$ showed affinity for 14-3-3 proteins, whereas peptide $hDMX_{144-158p^{Thr151}}$ exhibited no response under the conditions of the assay (see supporting information Fig S5). None of the corresponding unphosphorylated control hDMX sequences exhibited evidence of binding under the conditions of the assay confirming the role of phosphorylation for binding of pSer342 and pSer367 to 14-3-3 (see supporting information Fig. S6). hDM2 peptides representing sites pSer166 and pSer186 showed low micromolar affinities to all 14-3-3 isoforms (supporting information, Fig S4).

Generally, all peptides exhibited tightest binding towards the 14-3-3η isoform, followed by γ, β, τ, ζ, σ and ϵ, respectively. hDMX and hDM2 peptides mimicking one phosphorylation site fit well to a 1:1 binding isotherm. In this previously described model each 14-3-3 dimer protein can bind two peptides, one peptide per 14-3-3 protomer. K_d values for all 14-3-3
isoforms are reported in Table 2, but for simplicity only the 14-3-3\(\eta\) isoform is discussed below.

\(h\text{DMX}_{361-374}^{p\text{Ser}367}\) exhibited higher affinity \((K_d = 98.8 \pm 4.6\) nM) than \(h\text{DMX}_{335-349}^{p\text{Ser}342}\) \((K_d = 20.0 \pm 1.2\) \(\mu\)M). \(h\text{DM2}\) sequences bound with weaker affinity \((h\text{DM2}_{160-171}^{p\text{Ser}166}\) \(K_d = 10.2 \pm 0.3\) \(\mu\)M and \(h\text{DM2}_{180-192}^{p\text{Ser}186}\) \(K_d = 31.6 \pm 1.9\) \(\mu\)M). As might be expected the highest affinity sequence \((h\text{DMX}_{361-374}^{p\text{Ser}367})\) is a mode I 14-3-3 sequence/binder (see later) with Pro at the +2 position and Arg at the -3 position.

Table 2 \(K_d\) values for \(h\text{DMX}\) and \(h\text{DM2}\) peptides binding to 14-3-3 proteins (in \(\mu\)M)
(increasing affinity is denoted by increasingly darker grey shading)

<table>
<thead>
<tr>
<th>protein peptide</th>
<th>(K_d) (14-3-3)</th>
<th>(K_d) (14-3-3)</th>
<th>(K_d) (14-3-3)</th>
<th>(K_d) (14-3-3)</th>
<th>(K_d) (14-3-3)</th>
<th>(K_d) (14-3-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h\text{DMX}_{335-349}^{p\text{Ser}342})</td>
<td>20.0 ± 1.2</td>
<td>49.4 ± 11.5</td>
<td>107.8 ± 60.0</td>
<td>95.8 ± 3.6</td>
<td>37.8 ± 0.7</td>
<td>135.9 ± 3.6</td>
</tr>
<tr>
<td>(h\text{DMX}_{361-374}^{p\text{Ser}367})</td>
<td>0.099 ± 0.005</td>
<td>0.51 ± 0.02</td>
<td>1.2 ± 0.2</td>
<td>0.92 ± 0.03</td>
<td>0.53 ± 0.04</td>
<td>3.6 ± 0.4</td>
</tr>
<tr>
<td>(h\text{DMX}_{335-373}^{p\text{Ser}342/p\text{Ser}367}) (K_d1)</td>
<td>0.030 ± 0.006</td>
<td>0.026 ± 0.099</td>
<td>-</td>
<td>-</td>
<td>0.091 ± 0.015</td>
<td>-</td>
</tr>
<tr>
<td>(h\text{DMX}_{335-373}^{p\text{Ser}342/p\text{Ser}367}) (K_d2)</td>
<td>10.7 ± 1.2</td>
<td>7.6 ± 0.8</td>
<td>-</td>
<td>-</td>
<td>18.7 ± 0.7</td>
<td>-</td>
</tr>
<tr>
<td>(h\text{DM2}_{160-171}^{p\text{Ser}166})</td>
<td>10.2 ± 0.3</td>
<td>11.1 ± 0.5</td>
<td>29.3 ± 2.4</td>
<td>19.6 ± 0.2</td>
<td>3.9 ± 0.3</td>
<td>32.7 ± 1.4</td>
</tr>
<tr>
<td>(h\text{DM2}_{180-192}^{p\text{Ser}186})</td>
<td>31.6 ± 1.9</td>
<td>207.9 ± 6.3</td>
<td>> 250</td>
<td>165.8 ± 5.6</td>
<td>82.9 ± 2.1</td>
<td>> 170</td>
</tr>
<tr>
<td>(h\text{DM2}_{160-192}^{p\text{Ser}166/p\text{Ser}186}) (K_d1)</td>
<td>0.050 ± 0.012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.089 ± 0.010</td>
<td>-</td>
</tr>
<tr>
<td>(h\text{DM2}_{160-192}^{p\text{Ser}166/p\text{Ser}186}) (K_d2)</td>
<td>17.5 ± 2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28.0 ± 0.8</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 2. Biophysical analyses of the interaction between 14-3-3 and hDMX peptides (a-c) FA assays for the hDMX peptides (a) hDMX335-349pSer342 (b) hDMX361-374pSer367 and (c) hDMX335-373pSer342/pSer367 with all isoforms of 14-3-3 (FAM tracer peptide 50 nM, in 10 mM HEPES, 150 mM NaCl, 0.1% Tween 20, 0.1% BSA, pH 7.4, concentration of proteins given as 14-3-3 monomer concentration); (d-e) ITC data for the interaction of hDMX peptides with 14-3-3η; (d) hDMX361-374pSer367; (e) hDMX335-373pSer342/pSer367 (peptides were titrated into 14-3-3η 0.1M for mono phosphorylated peptide and 0.02M for doubly phosphorylated peptide), 25°C, 25 mM HEPES pH 7.5, 100 mM NaCl, 10 mM MgCl\textsubscript{2}, 0.5 mM TCEP); (f-g) Dose response SPR experiments for the binding of hDMX peptides to immobilized 14-3-3η (f) hDMX361-374pSer367; (g) hDMX335-373pSer342/pSer367 (peptides – concentration at 10x the K\textsubscript{d} for each peptide – were passed over immobilized 14-3-3η, 25°C, 25 mM HEPES pH 7.5, 100 mM NaCl, 10 mM MgCl\textsubscript{2}; experiments were performed in a multicycle kinetic format and data was fitted to a Langmuir model. K\textsubscript{d} values were determined by fitting maximal response level at the end of injection against protein concentration using a steady state affinity model in the Biocore evaluation software.

Because of its dimer structure, 14-3-3 is known to bind multiple binding partners simultaneously, either by binding two different phosphorylated residues from the same target or possibly two phosphorylated sites within a multiprotein complex31, 58-60 Thus, doubly phosphorylated hDMX and hDM2 peptides were used to assess the affects of proximal phosphorylation on affinity. Two state binding in FA was observed for both doubly...
phosphorylated hDMX and hDM2 peptides (Fig. 2c for hDMX peptide and Fig S4 for hDM2 peptide). Fitting for the observed biphasic-dose response curves was performed in the same manner as for the short peptides by fitting each binding event separately to a 1:1 model (one peptide to one 14-3-3 monomer) so as to obtain stepwise K_d values. Accurate fitting was possible for 14-3-3 η, γ and β isoforms as reported in Table 2 (for 14-3-3η, hDMX335-373pSer342pSer367 $K_{d1} = 30.3 \pm 6.4 \text{ nM and } K_{d2} = 10.67 \pm 1.2 \text{ µM}$, hDM2160-192pSer166pSer186; $K_{d1} = 49.6 \pm 12.1 \text{ nM and } K_{d2} = 17.5 \pm 2.5 \text{ µM}$). Approximately 200-fold higher affinity K_{d1} was observed for hDM2160-192pSer166pSer186 compared to hDM2160-171pSer166 whilst a more modest 3-fold increase in binding affinity for hDMX335-373pSer342pSer367 was observed in comparison to hDMX361-374pSer367 (although enhancement was more pronounced for binding to β and γ isoforms).

ITC was used as an orthogonal assay to confirm the binding affinities of hDMX and hDM2 peptides to 14-3-3η and to gain additional information about the stoichiometry of the interactions. Moreover, such experiments provide thermodynamic data and as a label free method require no immobilization/functionialization of any of the binding partners. Here data were obtained by titration of peptide into 14-3-3η protein (Fig 2d-e and supporting information Fig. S7). Thermodynamic parameters for interaction of 14-3-3 with hDMX and hDM2 peptides obtained by ITC are summarized in Table 3.

Table 3 Thermodynamic parameters for hDMX(2) peptides / 14-3-3 proteins

<table>
<thead>
<tr>
<th></th>
<th>K_d (ITC)</th>
<th>ΔG (kJ/mol)</th>
<th>ΔH (kJ/mol)</th>
<th>$-T\Delta S$ (kJ/mol)</th>
<th>n</th>
<th>K_d (SPR)</th>
<th>k_{on} (1/Ms)</th>
<th>k_{off} 1/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDMX335-349pSer342</td>
<td>21 ± 3 µM</td>
<td>-27</td>
<td>-21 ± 1</td>
<td>-5</td>
<td>0.72</td>
<td>37 µM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hDMX361-374pSer367</td>
<td>870 ± 95 nM</td>
<td>-35</td>
<td>-16 ± 0.2</td>
<td>-18</td>
<td>1.28</td>
<td>189 nM</td>
<td>3.89 x 10⁵</td>
<td>0.1208</td>
</tr>
<tr>
<td>hDMX335-373pSer342pSer367</td>
<td>14 ± 10 nM</td>
<td>-45</td>
<td>-22 ± 0.7</td>
<td>-23</td>
<td>0.94</td>
<td>8.6 nM</td>
<td>1.51 x 10⁶</td>
<td>0.0048</td>
</tr>
<tr>
<td>hDMX2160-192pSer166pSer186</td>
<td>151 ± 57 nM</td>
<td>-39</td>
<td>-12 ± 0.6</td>
<td>-27</td>
<td>0.94</td>
<td>155 nM</td>
<td>1.45 x 10⁶</td>
<td>0.1215</td>
</tr>
</tbody>
</table>

ITC data showed similar trends for binding of hDMX peptides to 14-3-3η to those observed in the FA assays; binding affinities of hDMX361-374pSer367, hDMX335-349pSer342 and hDMX335-373pSer342pSer367 were $K_{d} = 870 \pm 95 \text{ nM}$, $K_{d} = 21 \pm 3 \text{ µM}$ and $K_{d} = 14 \pm 10 \text{ nM}$. An increase in binding affinity when both binding sites of hDM2 are present was also confirmed, with $K_{d} = 151 \pm 57 \text{ nM}$. The stoichiometry between doubly phosphorylated hDMX and hDM2 peptides and 14-3-3η was found to be approximately 0.94 indicating 1:1 binding model. If two phosphorylated sites from one peptide were binding simultaneously, the expected stoichiometry would be around 0.5. The contrasting absence of two binding events in the ITC
data when compared to the FA experiments can be accounted for by the different experimental configurations. In the former, titration of peptide into protein means that protein begins in excess and becomes saturated with the highest affinity site, whereas for FA, peptide begins in excess and protein (and therefore monomer/dimer ratio) varies in concentration across the experiment.

Finally, association and dissociation rates for the binding of hDMX and hDM2 peptides to 14-3-3η were determined by SPR (Fig 2e-f and supporting information Fig. S8-9). Similar K_d values were confirmed from dose response SPR and where the affinities were calculated directly, from the k_{on}/k_{off} values (for peptides where kinetics could be calculated). SPR measured affinities were broadly in agreement with K_d values determined from FA and ITC experiments (Table 2 and 3). For peptides exhibiting lower affinities (hDMX$_{335-349}^{p$Ser342}$, hDM2$_{160-171}^{p$Ser166}$ and hDM2$_{180-192}^{p$Ser186}$) it was only possible to determine steady-state affinities, but not their kinetic profile (see supporting information). The doubly phosphorylated peptides showed the expected increase in affinity, which could be attributed to a much slower k_{off} rate in comparison to singly phosphorylated hDMX$_{361-374}^{p$Ser367}$ and hDMX$_{335-349}^{p$Ser342}$ peptides.

The 1:1 stoichiometry between the doubly phosphorylated peptides and 14-3-3η contrasts with previously reported work, although it may be that the length and/or accessible conformation of the hDMX and hDM2 peptides is incompatible with simultaneous engagement of both 14-3-3 protomers in the dimeric structure. To further explore this behaviour and understand the basis of cooperativity and affinity enhancement we performed additional experiments. To exclude possible formation of higher order oligomers (e.g. 14-3-3 tetramers held together by two peptides bridging two dimers), an analytical ultracentrifugation experiment was performed. 14-3-3η (at the concentration of 14 μM, approximately corresponding to the second binding events observed in FA, Fig 2c) and hDMX$_{335-373}^{p$Ser342/p$Ser367}$ peptide in two different concentration ratios (1:1 and 1:0.5, protein versus peptide) were analysed. The sedimentation coefficient value remained unchanged for 14-3-3η protein alone and when varying peptide/protein concentrations, indicating that only one dimer of 14-3-3η is involved in binding (see supporting information Fig. S10). Secondly, peptide length may also have a significant effect on the affinity and binding mode. This has been demonstrated in a recent study with p53 peptides with 14-3-3σ, where variation in the peptide length (from 9 to 32 residues) correlated with increased binding affinities. Two long variants of hDMX$_{335-373}^{p$Ser342/p$Ser367}$ peptide were synthesized, with only one phosphorylation site: pSer367 or pSer342, extending the peptide length by 26 amino acids. The two peptides were tested in FA assays to decouple the influence of peptide length from the co-operative influence of having two phosphosites. The hDMX$_{335-373}^{p$Ser342}$ peptide showed an increase in binding
affinity with 14-3-3η (Kd = 5.4 ± 1.1 µM) as expected, in comparison to the short version of the hDMX335-349pSer342 peptide (Kd = 20.0 ± 1.2 µM). On the other hand, increasing the peptide length for hDMX335-373pSer367 decreased the binding affinity (Kd = 0.8 ± 0.1 µM) and significantly lowered the maximum anisotropy signal. The lower max. signal observed might be due to the fluorophore being moved approximately 20 amino acids further from the binding pSer-367 (see earlier discussion on fluorophore mobility). Whilst there is a moderate increase in binding affinity of hDMX335-373pSer342 on increasing the peptide length this is insufficient for high affinity interaction. Similarly, the slight loss in potency for the longer hDMX335-373pSer367 peptide is noteworthy in considering the interaction with full length protein as these data hint at interference from the additional residues. Taken together, the data indicate that proximal phosphorylation of both sites in hDMX335-373pSer342/pSer367 is required for high affinity 1:1 stoichiometric binding between hDMX and 14-3-3 protomers. Given the absence of 1:2 binding, the presence of multiple sites may increase affinity through statistical rebinding or interaction with a second non-canonical phosphate binding site on the surface of 14-3-3. The second binding event observed only in fluorescence anisotropy experiments, may represent a further non-specific binding event or an interaction linked to 14-3-3 dimerization and will be investigated in future work.

Figure 3 Difference in the affinity between short hDMX335-349pSer342 and hDMX361-374pSer367 peptides and their longer singly phosphorylated variants (hDMX335-373pSer342 and hDMX335-373pSer367) as determined by fluorescence anisotropy titration (tracer 50 nM, 10 mM HEPES, 150 mM NaCl, 0.1% Tween 20)

Structural characterization of the interaction between 14-3-3 and hDMX or hDM2 peptides

The W shaped structure of a 14-3-3 dimer provides a groove for phosphorylated client proteins to bind. One dimer usually accommodates two copies of phosphorylated sites from one target, but there are examples of two different targets simultaneously binding to one dimer of 14-3-3 proteins. Phosphorylated Ser/Thr residues from partner proteins generally bind directly
between Lys49 and Arg56 in helix α3, and Arg127 and Tyr128 in helix α5 as they form a basic binding pocket in otherwise acidic surroundings. Structural data were obtained by solving three crystal structures of hDMX\textsubscript{361-374}pSer367 (PDB: 6YR5), hDM2\textsubscript{180-192}pSer186 (PDB: 6YR6) and hDMX\textsubscript{335-373}pSer342/pSer367 (PDB: 6YR7) in complex with 14-3-3σ\textsubscript{∆C} (the C-terminus was truncated for the crystallography purposes). Refinement statistics for all three structures are given in the ESI as are additional images of each structure with electron density for peptides in each monomer of 14-3-3σ.

Figure 4 Interactions between 14-3-3 and hDM peptides (a) hDMX\textsubscript{361-374}pSer367/14-3-3σ structure (PDB: 6YR5); left hand side shows assembly of the hDMX\textsubscript{361-374}pSer367/14-3-3σ complexes in the asymmetric unit with each singly phosphorylated peptide (cyan surface) bound to a 14-3-3σ monomer (dark green, light green, light blue or light lilac surface), in its conserved amphipathic groove, right hand side shows monomer B (light green fold, 14-3-3σ side chains shown as sticks with carbon dark green, nitrogen dark blue and oxygen red, hDMX\textsubscript{361-374}pSer367 shown as sticks, carbon in cyan, phosphorous orange, nitrogen and oxygen as above, non-covalent contacts shown as dashed lines) (b) hDM2\textsubscript{180-192}pSer186/14-3-3σ (PDB: 6YR6) monomer C (light lilac fold, 14-3-3σ and hDM2\textsubscript{180-192}pSer186 side chains shown as sticks with colour coding as above), inset shows complex in asymmetric unit (colour coding as above) (c) hDMX\textsubscript{335-373}pSer342/pSer367/14-3-3σ structure (PDB: 6YR7) monomer B (light green
fold, 14-3-3σ and hDMX335-373pSer342/pSer367 side chains shown as sticks with colour coding as above), inset shows complex in asymmetric unit (colour coding as above). The hDMX361-374pSer367/14-3-3σ structure was solved to a resolution of 2.25 Å with a dimer and two additional monomers of 14-3-3σ (in green and blue) in the asymmetric unit, each binding a hDMX361-374pSer367 peptide (cyan) in a conserved amphipathic groove (Fig. 4a and supporting information Fig S11 for additional images). Ten amino acids from hDMX361-374pSer367 (RTI(pS)APVVRP) could be built into the electron density map. The phosphoserine of hDMX361-374pSer367 peptide is positioned in a basic pocket of 14-3-3σ making polar contacts with Lys49, Arg56, Tyr119 and Arg129 (presented as dashed lines), whilst Asn226 makes polar contacts with the backbone of the peptide (Ile-1 with reference to pSer-367), in agreement with previously published 14-3-3 structures. Additional polar contacts were found between Arg-3 of the hDMX361-374pSer367 and Glu182 of 14-3-3σ, alongside Ala+1 and Thr+2 on the peptide backbone with Asn175 and Trp230 on the protein respectively. Hydrophobic contacts were found between Ile-1, Ala+1 and Pro+2 of the peptide with multiple residues on the protein (presented as spheres).

Structural evidence for interaction of hDM2 with 14-3-3 proteins was obtained by solving the novel crystal structure of the hDM2180-192pSer186 peptide in complex with 14-3-3σ, to a resolution of 1.75 Å. The complex crystallized in space group P1 with the asymmetric unit containing one dimer along with an additional two monomers of 14-3-3σ (monomers A-D) with pSer186 peptide in each groove (in cyan). Six amino acids of the peptide were resolved in electron density: RHK(pS)DS (Fig. 4b see supporting information Fig S12 for additional images). pSer of the peptide is always located in the same position, between Lys49, Arg56, Arg129 and Tyr130 and the peptide is stabilized by polar contacts between Lys-1 and Asp225, His-2 and Glu182, Trp230, and the peptide backbone with Asn175 and Asn226. Arg-3 and Ser+2 peptide residues are also stabilized through hydrogen bonds with water molecules.

The structure of a doubly phosphorylated peptide hDMX335-373pSer342/pSer367 in complex with 14-3-3σ was solved to 2.1 Å resolution (Fig. 4c). Here 14-3-3σ crystallized as a dimer in space group C121 with the asymmetric unit containing one dimer (green) with additional electron density for the peptide (cyan) observed in both monomeric units of 14-3-3σ (Fig. 4c and supporting information Fig. S13 for additional images). Based on previously published structures of doubly phosphorylated peptides, it was expected to observe pSer342 binding to monomer B and the pSer367 binding to monomer A. The electron density within the binding groove of monomer B could unambiguously be assigned to the pSer342, whereby eight amino acids of the peptide could be resolved (HSL(pS)TSDI). The peptide was observed
to adopt an unusual conformation by taking a sharp turn. A closer examination of the pSer342 binding site in monomer B of 14-3-3σ shows pSer binding to a basic pocket as expected, making polar contacts with Arg56, Arg129 and Tyr130. In this orientation, the Ile+4 from the peptide makes hydrophobic contacts with Leu218 and Ile219 on the protein (represented as spheres). Peptide residues Thr+1 and Ser+2 make polar contacts with Lys122, Asn175 and Glu182, Trp230, while Asn226 makes polar contacts with the backbone of the peptide. Overall, the C-terminus of the peptide takes a sharp turn after the pSer-Thr residues and this peptide conformation is stabilized by hydrogen bonds between water molecules and Thr+1, Ser+2 and Asp+3 peptide residues. In contrast the electron density map within the binding groove of monomer A indicated partial ligand occupancy and could be interpreted in different ways, indicating an overlay of multiple conformations (both pSer342 and pSer367 sites, with the dominant electron density map ascribable to pSer342 binding see supporting information Fig S13 for additional images and discussion).

Discussion

We used FA, ITC and SPR to determine the binding affinity of hDMX and hDM2 peptides to 14-3-3 proteins. $hDMX_{335-349}^{pSer342}$, $hDMX_{361-374}^{pSer367}$, $hDMX_{160-171}^{pSer166}$ and $hDMX_{180-192}^{pSer186}$ mimicking one phosphorylation site fit well to a 1:1 binding isotherm and exhibited greatest affinity towards the 14-3-3η isoform, followed by γ, β, τ, ζ and ε, respectively. The highest affinity peptide ($hDMX_{361-374}^{pSer367}$) bound strongly ($K_d = 98.8 \pm 4.6 \text{nM}$), whereas the remaining sequences bound 14-3-3 less tightly ($hDMX_{335-349}^{pSer342} K_d = 20.0 \pm 1.2 \text{μM}$ {14-3-3η isoform}), $hDM2_{160-171}^{pSer166} K_d = 10.2 \pm 0.3 \text{μM}$ and $hDM2_{180-192}^{pSer186} K_d = 31.6 \pm 1.9 \text{μM}$). Interestingly, different maximum anisotropies were observed for peptide binding across the 14-3-3 isoforms, which may reflect a difference in the 14-3-3 dimerization affinity or mobility of the fluorophore. Binding experiments with doubly phosphorylated peptides were observed to result in two binding events. As expected for a multivalent interaction with 14-3-3 proteins, the first binding event in both cases was higher affinity than either monovalent interaction, whereas the second binding event was in the micromolar regime (for 14-3-3η, $hDMX_{335-373}^{pSer342/pSer367} K_{d1} = 30.3 \pm 6.4 \text{nM}$ and $K_{d2} = 10.67 \pm 1.2 \text{μM}$, $hDM2_{160-192}^{pSer166/pSer186}; K_{d1} = 49.6 \pm 12.1 \text{nM}$ and $K_{d2} = 17.5 \pm 2.5 \text{μM}$). This enhancement in affinity for the first binding event was also observed in ITC experiments which lacked the second binding event (but were performed by titration of peptide into protein in contrast to the FA experiments) and SPR experiments which indicated that a slower k_{off} was associated with co-operative binding of doubly phosphorylated peptides. Importantly, for the doubly phosphorylated peptides, binding was negatively co-operative (i.e. less than additive (Table 4).
Table 4 – Thermodynamic values for binding of hDM2 and hDMX peptides to 14-3-3η

<table>
<thead>
<tr>
<th>Peptide</th>
<th>ΔG_{14-3-3η} (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDMX335-349pSer342</td>
<td>21.1</td>
</tr>
<tr>
<td>hDMX361-374pSer367</td>
<td>34.3</td>
</tr>
<tr>
<td>hDMX335-373pSer342/pSer367</td>
<td>37.2</td>
</tr>
<tr>
<td>hDM2_{160-171}pSer166</td>
<td>22.8</td>
</tr>
<tr>
<td>hDM2_{180-192}pSer186</td>
<td>20.0</td>
</tr>
<tr>
<td>hDM2_{160-192}pSer166/pSer186</td>
<td>36.0</td>
</tr>
</tbody>
</table>

Taken together the data can be rationalized by assuming that the dimerization affinity of 14-3-3 differs across isoforms and occurs within the concentration regime of the FA experiments (Fig. 5). As the titration progresses, once 1:1 stoichiometry is attained, further addition of 14-3-3 results in unbound 14-3-3 monomer and eventually all peptide will be bound in complexes containing one peptide to two 14-3-3 monomers. For the doubly phosphorylated peptides early in the titration peptides bind with high affinity in 1:1 stoichiometry – higher affinity likely results from statistical rebinding or a second phosphosite on the surface of the 14-3-3 protein. The second binding event either derives from a non-specific interaction, or arises from 14-3-3 dimerization but which is visible in the titration as a distinct binding event due to the strong affinity of the first event. Such behaviour is not observed in ITC experiments because peptide is titrated into 14-3-3 protein so its concentration does not vary, and, peptide becomes the saturating component. Considering the structural data for hDMX_{361-374}pSer367, hDM2_{180-192}pSer186 and hDMX_{335-373}pSer342/pSer367 bind to 14-3-3 directly between K49 and R56 in helix α3, and R127 and Y128 in helix α5 as is typical for 14-3-3 client proteins. The hDMX_{361-374}pSer367 peptide is a Mode I sequence (RXXpS/pTXP) which can account for its enhanced affinity in comparison to the other sequences. Curiously, for the structure containing the longer hDMX_{335-373}pSer342/pSer367 peptide, the sequence surrounding pSer342 dominates in the electron density for bound ligand despite being the weaker 14-3-3 binding site of the two individual pSer sequences, this may favour the hypothesis of a second phosphorecognition site over the statistical rebinding model. Moreover, in the context of earlier cellular studies the data highlight the complex nature by which phosphorylation regulates hDMX in particular. pSer367 may be sufficient for 14-3-3 binding and the consequent effects on localization, stability and ultimately p53 function; the presence of both pSer342 and pSer367 confers some increase in 14-3-3 binding affinity (particularly for other isoforms). In contrast, a much clearer difference in binding affinity for hDM2_{160-192}pSer166/pSer186 is observed in contrast to both
monophosphorylated peptides and points to a functional requirement for double phosphorylation.

Figure 5. Schematic overview depicting equilibrium behaviour and potential hypotheses for isoform dependent differences in anisotropies linked to 14-3-3 dimerization alongside reasons for enhanced affinity of doubly phosphorylated peptides.

Conclusions

We have performed a biophysical and structural study on the interaction of 14-3-3 with peptides derived from hDMX and hDM2. We have shown that peptides derived from hDMX containing pSer342 or pSer367 and from hDM2 containing pSer166 or pSer186 exhibit affinity for 14-3-3 as demonstrated by FA, ITC and SPR. Structural analyses reveal that the peptides bind to 14-3-3 directly between K49 and R56 in helix α3, and R127 and Y128 in helix α5 as is typical for 14-3-3 client proteins. For high affinity binding, proximal phosphosites are beneficial and in the case of hDM2 essential. In contrast to other doubly phosphorylated peptides of this length the interaction involves one peptide for each 14-3-3 protomer. The additional affinity likely derives from a reduced k_{off} rate for doubly phosphorylated peptides. Importantly, the results suggest that sequential phosphorylation of proximal sites in both hDMX and hDM2 plays a role in promoting changes in their localization and degradation in a cellular context. Thus, these data provide structural insight on the indirect affects of 14-3-3 on the p53 pathway,
which may inform the development of chemical intervention strategies (e.g. use of kinase inhibitors) and provide starting points for structure based ligand design of 14-3-3/hDMX and 14-3-3/hDM2 modulators, both stabilizers and inhibitors.

Declarations of interest

CO is co-founder and shareholder of Ambagon Therapeutics. The authors declare no competing financial interests.

Acknowledgements

We would like to thank Dr Iain Manfield for his support with ITC and SPR measurements and ongoing collaboration with AstraZeneca.

Funding information

This work was supported by EPSRC (EP/N013573/1 and EP/KO39292/1). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie programme H2020-MSCA-ITN-2015 grant number 675179 (The TASPPI project). AJW wishes to acknowledge the support of a Royal Society Leverhulme Trust Senior Fellowship (SRF\R1\191087)

Author contribution statement

SS, CO, SLW and AJW conceived and designed the research program, SS designed studies and performed the research with support from MW, CT and CO on crystallographic analyses. The manuscript was written by SS and AJW and edited into its final form by SLW and AJW with contributions from all authors.

References

36. Sengupta, A.; Liriano, J.; Bienkiewicz, E. A.; Miller, B. G.; Frederich, J. H., Probing the 14-3-3 Isoform-Specificity Profile of Protein–Protein Interactions Stabilized by Fusicoccin A. ACS Omega 2020, 5 (39), 25029-25035.

