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Supplementary Note 1: Effective rates/mean first passage 
times for a three state system

Consider the three state system with constant transition rates

A
k1−−⇀↽−−
k2

B
k3−−→ C,

with the rate for transitions C → B either naturally or artifically supressed such that state C acts as an absorbing
state. Here we will calculate the effective rate of transitioning from state A to state C, keff

A→C , characterised by the
inverse of the mean first passage time (MFPT), 〈tFP

A→C〉.
The distribution of waiting times to transition out of any state x is λxe

−λxt, by assumption, where λx =∑
y 6=x kx→y, such that the expected time from arrival into state x before a transition is tx = 1/λx. From a given

state x the probability that such a transition is into some specific state z is Px→z = kx→z/λx. Given a sequence of
transitions from state x, the expected number of transitions required to first observe the specific transition x→ z is
the expectation 〈nx→z〉 =

∑∞
i=1 iPx→z(1− Px→z)i−1 = 1/Px→z.

Given the transition network between states A, B, and C, we can consequently expect 〈nB→C〉 = 1/PB→C =
(k2 + k3)/k2 transitions from state B consisting of 〈nB→C〉 − 1 transitions B → A followed by the final transition
B → C. Each of these is paired with a preceding A → B transition. Consequently the mean time to reach state C
is given by

tFP
A→C = 〈nB→C〉 (tA + tB)

=
k2 + k3

k3

(
1

λA
+

1

λB

)
=
k2 + k3

k3

(
1

k1
+

1

k2 + k3

)
=
k1 + k2 + k3

k1k3
. (1)

We then identify the rate as the inverse of this quantity viz.

keff
A→C =

1

〈tFP
A→C〉

=
k1k3

k1 + k2 + k3
. (2)
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Supplementary Note 2: Statistical Approaches

Here we will cover the approaches taken f or generating estimates and confidence i ntervals f or reported correlations, 
R2 values, and, p-values. We shall also provide definitions of these quantities where appropriate and point to how they 
might be used to infer significance and over-fitting.

Definitions

We will be assuming the existence of indexed data of size N , d = {di | i ∈ {1 . . . N}}, consisting of 3-tuples di = {si, xi, 
εi}, where si are individual 5′ − 3′ DNA sequences forming indexed set s = {si | i ∈ {1 . . . N}}, xi are (mean) 
experimental hybridisation rates forming indexed set x = {xi | i ∈ {1 . . . N}}, and εi are standard deviations forming 
indexed set ε = {εi | i ∈ {1 . . . N}}.

The hybridisation model then generates rates y = {yi | i ∈ {1 . . . N}}, where we can write y = M(x, s) to emphasise 
that the yi values are a function, M, of both the sequences s and the experimental hybridisation rates x. Explicitly, this 
function subsumes all optimisation of internal parameters of the model to best generate an output y which is similar to 
the provided x. We then report goodness of fit measures between x and the resultant y. Specifically we use the Pearson 
correlation coefficient

ρ(x, y) =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2 ·
∑N
i=1(xi − x̄)2

,

and coefficient of determination, or R2,

R2(x, y) = 1−
∑N
i=1(yi − xi)2∑N
i=1(yi − ȳ)2

,

where x̄ and ȳ are the means of x and y, respectively. Note, the nature of the model (being absent a freely variable
intercept parameter), means that generally R2 6= ρ2, and that there is no requirement for R2 ≥ 0.

Point estimates

Goodness of fit measures, model hybridisation rates and parameters for point estimates of the experimental hybridi-
sation rates are based on the values x and the subsequent values y =M(x, s) with no reference to ε.

Error analysis of estimates

We may provide estimates of the statistics of the model (e.g. means, standard deviations and confidence intervals of
goodness-of-fit measures, parameters and rates) by recognising that the provided data x are in fact estimates of the
(unknown) true values. To find statistics of our measures we re-sample our original data under the assumption that
the errors are normally distributed with standard deviation equal to the provided experimental standard deviation
of the individual experimental obervations, ε.

As such we generate ns re-sampled data sets, x̂(i), i ∈ {1 . . . ns} according to

x̂(i) =
{
x̂
(i)
j = xj + z

(i)
j | z

(i)
j ∼ N (0, εj), j ∈ {1 . . . N}

}
where z ∼ N (0, εj) indicates that z is a normally distributed random number with mean 0 and standard deviation
εj .

For each generated data set, x̂(i), we run the model to get a set of estimates, ŷ(i) = M(x̂(i), s), from which we
obtain an estimate of the true correlation and coefficient of determination, ρ̂(i) = ρ(x̂(i), ŷ(i)) and R̂2

(i) = R2(x̂(i), ŷ(i)),

in turn leading to a distribution of ρ̂ = {ρ̂(i) | i ∈ {1 . . . ns}}, and R̂2 = {R̂2
(i) | i ∈ {1 . . . ns}} from which we can

report estimates of the mean, median, standard deviation, and confidence intervals. This can then also be done
analogously for model parameters and hybridisation rates.
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Determining p-values and assessing over-fitting with permutation tests

We provide a measure of statistical significance by calculating standard right-tailed p-values for the calculations of
the goodness-of-fit statistics ρ and R2. As per usual, smaller values indicate that a result equally or more extreme
(values of ρ or R2 greater or equal to those for the model and experimental data), is less likely under the null
distribution.

To determine these p-values we must be able to specify, or sample from, such a null distribution for our test
statistics. Direct specification is not available here, and so a standard way of sampling such a distribution is through
repeated generation of random permutations of the provided data set, and calculating the test statistic for each such
permutation. The implicit assumption is that data is exchangeable under the null hypothesis. For us this means the
null hypothesis is that there is no relationship between i) DNA strand sequences or lengths and ii) their hybridisation
rates. Note, for instance, that under the null hypothesis we would not expect similar strand sequences to possess
similar hybridisation rates.

The samples from that null distribution can then also serve as suitably random data to assess how well the model
can fit to arbitrary patterns, thus providing a rudimentary insight into the possibility of over-fitting.

Sampling from the null distribution

For our purposes a permutation is understood as a function which ‘shuffles’ the data-values (the hybridisation rates,
xi), but not the labels (the sequences, si). A given permutation, or shuffling, indexed by i, can be represented by
notation σi. This can be understood as a bijective function on data indices k, σi(k) : {1 . . . N} → {1 . . . N}. As such
given data indices {1, 2, 3, 4, 5}, a permutation σi might be {2, 5, 1, 3, 4}, such that σi(5) = 4 and σi(3) = 1. As such,
a single element, dk, of our data d under permutation σi can be written

dσi(k) = {sk, xσi(k), εσi(k)}

leading to permuted sets xσi = {xσi(k) | k ∈ {1 . . . N}}, and εσi = {εσi(k) | k ∈ {1 . . . N}}. To account for
experimental uncertainty, we simlutaneously resample from the assumed normally distributed standard deviations
to give a set of samples from the null distribution

x̃σi
=
{
x̃σi(k) = xσi(k) + z

(i)
k | z

(i)
k ∼ N (0, εσi(k)), k ∈ {1 . . . N}

}
.

Using these sets we can find model predictions for the samples from the null distribution viz.

ỹ(i) =M(x̃σi
, s).

This in turn gives estimates of correlation and coefficients of determination for the samples

ρ̃(i) = ρ(x̃σi
, ỹ(i)),

R̃2
(i) = R2(x̃σi

, ỹ(i)),

thus yielding null-distributed sets ρ̃ = {ρ̃(i) | i ∈ {1 . . . np}}, and R̃2 = {R̃2
(i) | i ∈ {1 . . . np}}, where np is the number

of such random permutations.

Use of null distributed statistics for over-fitting detection

It is important to recognise that our test statistics are the goodness-of-fit measures of the model with the data after
optimisation of the internal parameters of the model to best fit the provided data. As such running the model on each
permutation x̃σi

, indicated here through function M(x̃σi
, s), independently attempts to find the best fit under that

particular permutation with a separately optimised set of internal model parameters. As such the null distributed
values ρ̃ and R̃2 can be used to infer over-fitting through the model’s ability to replicate/correlate with random
data1. For instance if the mean of ρ̃ is ∼ 0, the model is broadly unable to fit arbitrarily varying data, whereas if the
mean of ρ̃ is high it indicates the model has enough free internal structure to fit to any data presented to it. Such
properties cannot be determined from p-values alone and so an ‘effect size’ can also be considered consisting of the
difference between mean goodness-of-fit statistics (ρ(·, ·), R2(·, ·)) resulting from the data and resulting from the null
distribution. Explicitly, if a high correlation, e.g. ρ = 0.9, is found with data, but the mean of ρ̃ is also high, e.g.
〈ρ̃〉 = 0.8, then even if the result is significant, much of the correlation may be arising from excess model complexity.

1distributed under the null distribution.
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p-value estimates for point-estimates of ρ and R2

Since ρ̃ and R̃2 are sampled from the null distribution, we can estimate a p-value for singly specified values of ρ and
R2 by determining the proportion of ρ̃ and R̃2 greater than ρ and R2, respectively. Since the number of generated
permutations in practice is less than all possible permutations2 any such proportion should be considered to be an
estimate, p̂, of the true p-value, p. An un-biased estimator of p is given by

p̂ =
g

np

where g is the number of permutations with ρ̃(i) or R̃2
(i) greater than the specified ρ or R2, respectively, and as before,

np the number of permutations. However, this can lead to failures to protect against type-I errors at the specifed
confidence level [1]. This can be avoided through the use of the conservatively biased estimator [1]

p̂bias =
g + 1

np + 1
.

The number of permutations with a larger value of the relevant statistic, g, is effectively drawn from a binomial
distribution. As such the standard deviation associated with estimates of p (equivalent to the standard error for the
Bernoulli variable of whether a single permutation’s statistic is more extreme than the data) can be specified as

std-devp =

√
p̂bias(1− p̂bias)

np
+O(n

− 3
2

p ).

In turn, confidence intervals for the estimate of p can be specified through standard library functions. Specifically
we report the “exact” Clopper-Pearson intervals at various confidence levels in the relevant data files.

p-value estimates for distributions of estimates of ρ and R2

In the case where distributions of ns estimates ρ̂ and R̂2 are specified, we must account for the two sources of
variability, namely that arising from the variation across the ns values of ρ̂(i) and R̂2

(i), and the fact that any single
estimated p-value from these distibutions is itself a point estimate, with associated variance, confidence etc.

To achieve this, for each estimate ρ̂(i) or R̂2
(i) (i ∈ {1, ns}), we first calculate the number of permutations, g(i),

for which the permuted values ρ̃(j) and R̃2
(j) (j ∈ {1 . . . np}) are greater than those estimates as per the previous

section. This leads to unbiased estimates of the p-value p̂(i) = g(i)/np. We then exploit the property that such an
estimate arises from a binomial distribution associated with the permutation procedure. As such the probability of
getting exactly g such cases can be written

Pbinom(g;np, p) =

(
np
g

)
pg(1− p)n−g.

This is then reinterpreted as a likelihood function for the true value p

Lbinom(p; g, np) =

(
np
g

)
pg(1− p)n−g,

for which the estimate p̂ = g/np is the maximum likelihood estimate (MLE) p̂ = arg maxpL(p; g, np). We may
convert this to a probability density viz.

P(p; g, np) =
Lbinom(p; g, np)Pnull(p)∫ 1

0
dp Lbinom(p; g, np)Pnull(p)

,

where Pnull(p) is the prior distribution on p under the null, which is by definition uniform [1], such that

P(p; g, np) =
Lbinom(p; g, np)∫ 1

0
dp Lbinom(p; g, np)

=
pg(1− p)np−g∫ 1

0
dp p̂g(1− p)np−g

=
Γ(np + 2)

Γ(np − g + 1)Γ(g + 1)
pg(1− p)np−g

= β(p; g + 1, np − g + 1),

2The total number of permutations is N !. E.g. for N = 40 there are approximately 8.16× 1047 possible permutations.
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and where Γ(·) & β(·; ·, ·) are the gamma function and beta distribution, respectively.
Consequently, for each value p̂(i) = g(i)/np, for a given estimate ρ̂(i) or R̂2

(i), we account for the fact that p̂(i)
is merely a point estimate by generating some number, nb, beta distributed p-values drawn from β(g(i)/np; g(i) +
1, np − g(i) + 1). We then convert to the conservative biased estimate, c.f. the previous section, such that we have a
sub-ensemble

p̃(i) =

{
p̃(i),j =

z
(i)
j np + 1

np + 1
| z(i)j ∼ β(p̂(i); g(i) + 1, np − g(i) + 1), j ∈ {1 . . . nb}

}
.

We then combine all such sub-ensembles to create a total distribution of possible p-values

p̃ =
{
p̃(i),j | p̃(i),j ∈ p̃(i), i ∈ {1 . . . ns}, j ∈ {1 . . . nb}

}
,

from which we may compute mean values, standard deviations and confidence intervals.
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