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Adaptive immunity’s success relies on the extraordinary diversity of protein receptors on B and T
cell membranes. Despite this diversity, the existence of public receptors shared by many individuals
gives hope for developing population wide vaccines and therapeutics. Yet many of these public
receptors are shared by chance. We present a statistical approach, defined in terms of a probabilis-
tic V(D)J recombination model enhanced by a selection factor, that describes repertoire diversity
and predicts with high accuracy the spectrum of repertoire overlap in healthy individuals. The
model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, sug-
gesting strong antigen-driven convergent selection. We exploit this discrepancy to identify COVID-
associated receptors, which we validate against datasets of receptors with known viral specificity.
We study their properties in terms of sequence features and network organization, and use them to
design an accurate diagnosis tool for predicting SARS-CoV-2 status from repertoire data.

I. INTRODUCTION

The unique antigen receptors expressed on the sur-
face of B and T cells determine the set of epitopes that
may be recognised during an immune response. Public
sequences shared by many individuals have for a long
time solicited potential therapeutic interest [1]. How-
ever, many of these receptors are shared by chance [2–
5] and not necessarily due to prior antigenic experience.
Here, by comparing healthy individuals and COVID-19
patients, we explore the interplay of chance and exposure
on T-cell and B-cell receptor sharing.

B-cell receptors (BCR) are composed of a heavy and
a light chain, and T cell receptors (TCR) are made of
analogous beta and alpha chains. Each chain is formed
via a DNA editing mechanism. This process, called
V(D)J recombination, randomly splices genes together
from germline segments (V, D and J for heavy and β
chains, and V and J for light and α chains). In addition,
a random number of base pairs are trimmed at the junc-
tions between the segments, and random non-templated
ones are inserted. The resulting junctional region makes
up the hypervariable complementarity determining re-
gion 3 (CDR3), which is key for antigen specificity [6, 7].
After generation, receptors are selected through thymic
selection for T cells [8], and central tolerance for B cells
[9], to ensure proper receptor functionality and to avoid
recognition of self-antigens.

Estimates of the number of possible combinations pro-
duced by V(D)J recombination range from 1020 [10] to
1061 [11] for TCR, and even more for BCR. These num-
bers far exceed the number of distinct antigen receptors,
∼ 108 − 1010 [12, 13], or even the total number of B
and T cells in the human body, ∼ 1012 [14]. Despite
this large difference, unrelated individuals share a con-
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siderable number of public sequences, as observed both
in antigen-specific repertoires and in the whole repertoire
as revealed by high-throughput sequencing [13, 15, 16].

While the sharing of public sequences was initially at-
tributed to selection biases due to encountered antigens,
it was then proposed that public sequences may be ex-
plained by convergent recombination [2]. The V(D)J re-
combination process generates biases that favor certain
sequences over others, and those frequent sequences are
likely to be found in many individuals. However con-
vergent recombination itself is not enough to explain the
amount of overlap between the TCR repertoires of un-
related individuals [5]. Convergent selection, which am-
plifies biases in sequence statistics, is further needed to
explain it quantitatively. Convergent selection can ei-
ther stem from peripheral selection triggered by encoun-
tered pathogens or avoiding self-antigens. Learning a sin-
gle, sequence-independent correction factor allows one to
predict the full spectrum of sharing observed among a
large cohort of donors [5]. However, this approach ig-
nores sequence-specific features of selection, and can only
imperfectly predict which sequences are public or private.
In addition, it has not been applied to B cells, for which
there is no quantitative theory of repertoire sharing.

Here we develop a detailed framework to explain and
quantitatively predict immune receptor sharing through
both convergent recombination and convergent selection,
as schematized in Fig. 1. We integrate selection pressures
acting on receptor sequences [17, 18] into a statistical
theory of repertoire sharing [5]. We apply this framework
to successfully predict the sharing spectrum of TCR and
BCR repertoires in human cohorts. By contrasting pre-
dictions in cohorts of healthy donors against patients re-
cently infected with COVID-19, we identify lists of “over-
shared” sequences with putative specificity for SARS-
CoV-2, which we validate against existing databases.
Our approach not only predicts sharing among healthy
individuals, but can also be used to identify antibodies
and T-cell receptors of interest that are both specific and
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public, opening new avenues for applications of repertoire
sequencing to diagnostics, precision medicine and vaccine
design.

II. RESULTS

Predicting sharing in healthy BCR repertoires

We aim to quantify how convergent recombination and
selection influence and shape the repertoire landscape.
To that end, we examined the degree of sequence over-
lap across different BCR and TCR repertoires. We first
combine all the unique CDR3 amino acid sequences of
immunoglobulin heavy chains (IGH) or T cell β chains
(TCRβ), which we refer to hereafter as “clonotypes,”
from each individual of the respective cohorts. For each
clonotype, we computed their sharing number, i.e. the
number of individuals in which it appears. The sharing
number offers a nuanced view in which clonotypes are nei-
ther purely “public” nor “private”, but may instead have
different degrees of publicness. The “sharing spectrum”
can be visualized by plotting the distribution of sharing
numbers, i.e. the number of clonotypes corresponding to
each sharing number (Fig. 1).

We investigated sharing in IGH repertoires. We an-
alyzed high-throughput sequencing data from a cohort
of 10 healthy donors totalling more than 3 × 108 IGH
sequences, separated into IgM and IgG subpopulations
[13]. The sharing number distribution of their IgM reper-
toires is shown in Fig. 2A (blue crosses). To explore
the forces behind the existence of public sequences, we
compared the distribution of sharing number in exper-
imentally sampled datasets with theoretical predictions
from previously described models for immune receptor
sequences. Given a model P (σ) for the probability of oc-
currence of any clonotype σ, we can predict the sharing
spectrum either by simulating synthetic repertoires, or
by using the technique of generating functions, which is
computationally faster (see [5] and Methods).

The first model we consider describes the generation
process in terms of the statistics of the V(D)J recombi-
nation process, denoted by Pgen(σ). It is inferred from
the nonproductive nucleotide sequences of the IgM reper-
toires of all donors, using the IGoR tool [19]. This model
accounts for convergent recombination, which is the most
evident driver of sharing. However, Pgen alone underesti-
mates the amount of sharing (Fig. 2A, green curve). We
hypothesized that this discrepancy could be explained
by effects of selection that follow the generation process,
which include functionality checks and central tolerance.
To test this, we trained a selection model on top of Pgen,
but this time on productive clonotypes, using the SONIA
package [20]. Mathematically, the probability of a clono-
type σ takes the form Ppost(σ) = Q(σ)Pgen(σ), where
Q(σ) is a sequence-dependent selection factor made up
of a product of individual amino-acid choices at each po-
sition along the CDR3. Ppost(σ) characterizes a given

CDR3 amino acid sequence not only by its probability of
being stochastically generated, but also of having passed
selection and belonging to the functional repertoire. The
prediction of this model for the sharing spectrum shows
excellent agreement with the data (Fig. 2A, red curve),
implying that a combination of convergent recombination
and functional selection is enough to explain the overlap
between repertoires.

We extended this approach to the analysis of memory
IGH repertoires, as captured by the IgG population com-
posed of antigen-experienced cells (Fig. 2B). The level
of sharing observed for these repertoires is even higher
than for IgM (Fig. 2C). This may be a possible signa-
ture of the selection phase occurring during the transi-
tion from IgM to IgG, in which high-affinity B cells are
positively selected in the germinal center [21]. To ap-
ply the same method as to IgM populations, we recon-
structed the set of putative ancestral sequences of the
IgG receptors. These ancestral sequences correspond to
the unmutated sequences that cells carried prior to affin-
ity maturation. Since they are rid of hypermutations,
they are similar to naive sequences from inexperienced
cells. However, they differ from them because they have
passed an additional selection step, through their acti-
vation and initial recruitment to germinal centers. In
practice, ancestral inference was done by dividing all nu-
cleotide IGH sequences into clonal families, and by recon-
structing the most likely naive progenitor of each family
(see Methods). We then computed the sharing spectrum
of the ancestral clonotypes across the same 10 donors
(Fig. 2B, blue crosses). We learned an IgG-specific selec-
tion model Ppost from the ancestral clonotypes, on top
of the generative model learned above. Similarly to IgM,
the model predicted sharing with high accuracy (Fig. 2B,
red curve), while using the generation model Pgen alone
underestimated it (green curve). Our statistical approach
is thus able to capture the convergent selection not only
of naive clonotypes, but also of memory precursor clono-
types.

Sharing in TCR repertoires depends on age and
CMV status

Next, we applied our framework to TCR repertoires.
We trained selection models from the combined produc-
tive TCRβ repertoire of 666 healthy donors, totalling
≈ 1.4× 107 unique nucleotide sequences [16], on top of a
Pgen(σ) generation model trained on the nonproductive
sequences from the same cohort. We tested two selection
models: a SONIA model as before, and a more advanced
model based on artificial neural networks implemented in
the soNNia package [18]; training was done on a subsam-
ple of 106 amino acid sequences. By contrast to B cells,
not only the generation model but also both models of
selection substantially underestimated sharing (Fig. 2D,
green and red curves). This discrepancy suggests that,
while the selection model predicts clonotype frequency
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FIG. 1: Schematic of the analysis pipeline. (a) The BCR or TCR repertoires of a cohort of healthy donors are sequenced
from blood samples. Raw reads are processed by removing duplicates and extracting the CDR3. For a given cohort, the
distribution of sharing numbers m is obtained by counting the number of sequences that are found in exactly m individuals.
In parallel, sequences are used to train a probabilistic generative model, in a two-step process: first learning the recombination
model Pgen from nonproductive sequences; second learning a selection model Q to describe productive sequences. The model is
validated by comparing its prediction for the distribution of sharing numbers with the data. (b) The repertoires of individuals
currently or recently infected with SARS-CoV-2 are collected and processed as described for healthy donors. The distribution of
sharing numbers is compared with the model prediction obtained previously, this time showing departures from the model, due
to the enriched sharing of public COVID-associated clonotypes. These clonotypes are identified as those that are significantly
more frequent in the cohort than predicted by the theory. The sequence features and organization of COVID-associated
clonotypes is then analyzed and validated against databases of receptors with known SARS-CoV-2 specificity.

accurately [18], it misses important features of thymic
selection, e.g. its dependence on HLA types which is not
included in the model.

To overcome this issue, we introduce an additional step
of convergent selection: we assume that only a fraction
q of sequences sampled from Ppost(σ) are selected. This
fraction is picked at random but fixed once for all donors.
The single parameter q is learned from fitting the rela-
tionship between the number of unique clonotypes and
the number of unique nucleotide sequences, which de-
pends on q but is not directly related to the sharing spec-
trum [5] (see Methods). Fitted values of q close to 1 mean
that the selection model Ppost captures convergent selec-

tion well, while smaller values of q imply that additional
selection is at work. Accordingly, we found increasing
values of q as the model gets more accurate: q = 0.037
for Pgen [5], q = 0.072 for SONIA, and q = 0.472 for
soNNIa. The sharing predictions using this last value of
q for soNNia is excellent (Fig. 2D, orange curve).

Ageing in TCR repertoires

More than a correction factor, q may be interpreted as
the stringency of selection. The smaller is the q value, the
less diverse will be our repertoire, and the more sharing
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FIG. 2: Sharing of BCR and TCR repertoires of healthy individuals. (A) Distribution of the sharing number (the
number of individuals in which a sequence is seen) of CDR3 amino-acid sequences of the heavy chains of IgM repertoires from
10 individuals. The prediction form the raw recombination model (Pgen, green line) underestimates sharing. Adding an ad
hoc correction factor assuming a fraction q of sequences passing selection (q = 0.759 ± 0.001) gives a good fit (not shown).
The prediction from the generation and selection model (Ppost, red line) reproduces the curve perfectly, with no need for a
correction factor. (B) Distrubion of sharing number for the IgG repertoires of the same donors. The analysis is done on the naive
ancestors of recontructed clonal lineages. The Pgen model is again inaccurate, requiring a correction factor q = 0.490 ± 0.005,
while the Ppost works well. (C) Comparison of the sharing number distribution between two equal-size cohorts of IgM and IgG
repertoires. IgG repertoires present a higher level of sharing, suggesting stronger convergent selection. (D) Distribution of the
sharing number of CDR3 amino-acid sequences of TCRβ from 666 patients. Models predictions are shown for Pgen and Ppost,
with or without a correction factor q. The correction factor is q = 0.037 for Pgen, and q = 0.472 ± 0.002 for Ppost, indicating a
better accuracy of the latter. In addition, the corrected Pgen model (black line) overestimates the number of sequences shared
by all individuals relative to the data and to the corrected Ppost prediction (orange line). (E) Value of the corrective factor q,
intepreted as the inverse strength of convergent selection (q = 1: no selection; q � 1: strong selection), for different subgroups
of the TCRβ cohort. We observe stronger selection in CMV positive individuals than in CMV negative ones, reflecting their
common antigenic exposure. Convergent selection also substantially increases with age. Significance obtained with student’s t
test.

we expect. We used this interpretation to study reper-
toire evolution with age. Ageing is believed to be accom-
panied by a gradual loss of diversity in T cell receptor
repertoires [22–24]. This phenomenon is due to a pro-
gressive deterioration of thymus functionality [25, 26] to-
gether with an expansion of memory T cell clones [27, 28]
generated by former encounters with antigens. To study

the influence of age on selection, we split the cohort
from [16] into three ages subclasses (0-25, 26-50 and 51-
75 years old), and inferred a different q factor in each
group: q0−25 = 0.538±0.012, q26−50 = 0.461±0.007 and
q51−75 = 0.443 ± 0.011. The 0-25 group had a signifi-
cantly less stringent selection factor than the other two
age groups, consistent with repertoires becoming more
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and more convergent with age (Fig. 2E, grey, brown and
maroon bars). We further checked that this effect was not
due to the increased proportion with the age of donors
who tested positive for Cytomegalovirus (CMV). CMV
positive donors share more sequences than CMV nega-
tive donors (light and dark blue bars), because of en-
hanced convergent selection for CMV specificity among
HLA-matched donors [16]. To control for this confound-
ing effect, we used the Fisher-Yates shuffle algorithm to
create 3 control groups with no age structure, but with
the same respective proportions of CMV+ donors as in
the original data. Applying the same pipeline to the con-
trol groups yielded statistically indistinguishable values
of q, meaning that age and not CMV status is the main
driver to convergent selection.

Convergent BCR sharing in COVID-19 donors

Having validated the predictive power of the SONIA
model for BCR sharing in healthy donors, we asked
whether it was still predictive for repertoires stimulated
by a common disease such as COVID-19. We studied the
IgG heavy-chain repertoires of 44 SARS-CoV-2-positive
individuals (as confirmed by RT-qPCR test), obtained
from three independent studies [29–31]. Fig. 3A shows
that the model trained on healthy patients substantially
underestimates sharing between the IgG repertoires of in-
dividuals with COVID-19. This enrichment of shared se-
quences among COVID-19 donors is strongly suggestive
of convergent selection for sequences that have common
SARS-CoV-2 epitope specificity.

To identify the putative clonotypes with SARS-CoV-2
specificity that are responsible for oversharing, we first
estimated, for each shared clonotype σ, its frequency
P ∗data(σ) in the COVID-19 cohort. This estimate is based
on the number of donors in which it was found as well
as its multiplicity (synonymous nucleotide variants) in
each donor (see Methods); this information is gathered
in the occurence vector ~x = xσ1 , x

σ
2 , ..., x

σ
M giving the

number of nucleotide sequence variants coding for σ in
each individual 1, . . . ,M . We expect that number to gen-
erally correlate with the model prediction derived from
healthy donors, Ppost(σ), as shown in Fig. 3B. However,
we also expect COVID-19 specific clonotypes to be over-
represented in Pdata versus Ppost, and fall in the lower-
right part of Fig. 3B. To identify those clonotypes, we
first applied a constant multiplicative factor to Ppost to
correct for the systematic underestimate of Pdata (see
Methods). Next we call “COVID-associated” clonotypes
whose estimate of Pdata(σ) was significantly higher than
the rescaled Ppost, with a false discovery rate of 10−4

(using Bayesian analysis, see Methods)
This procedure identified 6650 COVID-associated

clonotypes. To validate their COVID specificity, we
cross-checked this list against a database of antibodies
with reported specificity for SARS-CoV-2, which we built
from the literature (see Supplementary Material) [32–

46]. Among them, 175 sequences (≈ 2.6%) had at least
a 90% Levenshtein similarity (one or two mismatches
or gaps) in amino acid content with the CDR3 region
of reported SARS-CoV-2 binding antibodies. To better
understand the significance of this overlap, we carried
out two control analyses. First, we followed the same
pipeline to identify significantly overshared sequences in
the IgG healthy cohort, and looked for sequence sim-
ilarity of these overshared sequences in the assembled
SARS-CoV-2 antibody database. We found no similar
sequences, confirming the intuition that one should not
find SARS-CoV-2 specific antibodies in the repertoires
of healthy people sampled before the pandemic. Sec-
ond, we constructed a mock antibody database of the
same size as the original one, by taking random samples
from the pool of healthy IgG sequences. Sequence match-
ing among significant sequences in COVID-19 repertoires
and this control database yielded an overlap of 2.7± 1.5
sequences that are a 90% similar by Levenshtein simi-
larity. This result is also coherent since we don’t expect
all overshared sequences to be just due to SARS-CoV-2
infection.

We then asked whether the COVID-associated anti-
bodies differed in the CDR3 sequence features from other
antibodies found in healthy or COVID repertoires. In
Fig. 3C and D show the comparison of V and J gene us-
age between COVID-associated and bulk repertoires. We
observe a very diverse usage of V and J genes in COVID-
associated sequences. While no V or J gene stands out as
being COVID-specific, there are a few remarkable differ-
ences, such as the enrichment of IGHV3-30-3, IGHV4-31,
IGHV1-24 and IGHV4-61, IGHJ6 in COVID-associated
sequences, whereas IGHV3-23 and IGHJ4 are underrep-
resented. The CDR3 length distribution (Fig. 3E) shows
a small but substantial bias towards longer sequences
in COVID-19 repertoires (orange curve) compared to
healthy repertoires (green curve), consistent with previ-
ous findings [29–31, 40].

We also examined the hypermutation rates in the three
groups. COVID-associated sequences had lower hyper-
mutation rates than healthy repertoires (Fig. S1). Since
repertoires were taken during the infection, these B cells
have expanded quickly but may not have had the time
to accumulate mutations compared to mature memory
B cells. However, decent neutralization power can be
achieved without long affinity maturation [37], a feature
already observed in immune responses to other respira-
tory viruses [47].

Finally, we wondered whether the degree of convergent
selection was predictive of disease severity. To answer
this question, we focused on the data from [30], which
contains information about severity (mild, moderate, and
severe) for each individual. To quantify convergence, we
defined a selection factor qAB for each pair of individu-
als A and B as the correction needed to exactly predict
their repertoire overlap using the Ppost model as a base-
line. The lower qAB, the more convergent the repertoires
of A and B are. The resulting pairwise selection factors
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FIG. 3: Identification and analysis of COVID-associated antibody heavy chains from significantly shared se-
quences. (A) Sharing number distribution of IgG heavy chain CDR3 from SARS-CoV-2 positive individuals. This distribution
is compared with the sharing expectation in healthy individuals, obtained using the Ppost model. The discrepancy suggests the
enrichment of these repertoires in SARS-CoV-2 specific antibodies. (B) Model prediction Ppost(σ) vs. empirical probability
P ∗
data(σ) of all shared sequences. Red sequences are substantially more frequent in the data than predicted (posterior probability
< 10−4), and are predicted to be associated with SARS-CoV-2. (C) IGHV gene usage in healthy and COVID-19 repertoires,
and among COVID-associated sequences. (D) IGHJ gene usage for the same groups (same color code). (E) CDRH3 length
distribution averaged over individuals within each cohort. A control was added for sequences found to be significantly more
shared than expected in healthy individuals, to control for the bias that shared sequences tend to have a shorter CDR3. (F)
Convergent selection factor q learned from pairs of COVID-19 individuals in different severity group. Individuals with more
severe symptoms seem to have a higher level of selection, although the difference is not statistically significant (Student’s t test
(p = 0.12)

.

(Fig. 3F) show increased convergent selection among in-
dividuals with severe forms of the disease, although the
difference is not statistically significant due to the small
number of donors.

Network analysis of COVID-specific repertoires

The CDR3 region is the major determinant of bind-
ing specificity of both BCR and TCR [48, 49]. We ex-
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FIG. 4: Networks analysis of IgG heavy chains associated with SARS-CoV-2. (A) Each node represents a CDR3aa
heavy chain clonotype. Edges connect clonotypes with two or fewer amino acid mismatches in their CDR3 region, and with
the same V and J segments. Non-connected vertices are not shown. Colored nodes represent sequences that are at most one
amino acid mismatch away from previously reported SARS-CoV-2 neutralizing antibodies, with the color indicating the region
of the virus recognized by the antibody. (B) Network of light chains CDR3 amino acid sequences found in previous reports to
be paired with a colored heavy chain of (A). The level of conservation is even more remarkable than for heavy chains.

pect that upon infection, repertoires will be enriched with
CDR3 clonotypes with similar sequences recognizing pre-
dominant epitopes [50–54]. We looked for motifs among
the COVID-associated clonotypes through a sequence-
based network analysis. Such clustering analysis was pre-
viously used to visualize repertoires from individuals suf-
fering from chronic diseases [55], giving a useful graphical
representation of the structural differences among clon-
ally expanded and healthy repertoires. We calculated
Levenshtein distances between all pairs of CDR3 clono-
types and V, J gene identity. Clonotypes are considered
adjacent if their distance is ≤ 2. We clustered clono-
types using single-linkage clustering from this adjacency
matrix. The resulting cluster are shown in Fig. 4A, where
each node is a clonotoype, and adjacent clonotypes are
linked by edges. Sequence logos [56] under each clus-

ter show that CDR3 sequences are well conserved within
each group.

To assess the robustness and significance of the clus-
ters, we designed a control cloneset obtained by pooling
together the bulk IGH repertoires from all 44 COVID-19
patients. We built 5 random subsets of the same size as
the COVID-associated subset, and repeated the network
analysis on each. Note that while specificity clusters are
still expected in bulk repertoires, they are likely to stand
out less than in specific repertoires, where diversity is
reduced and sequence similarity higher. Consistent with
this, only 3.6±0.2% sequences of the control subsets be-
longed to non-singleton clusters, compared to 8.6% for
the COVID-associated clonotypes. This implies that the
network analysis captures sequence convergence of func-
tional origin.
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One hypothesis is that each cluster corresponds to
distinct specificity group targeting a given epitope as-
sociated to SARS-CoV-2. To test this, in Fig. 4A we
marked clonotypes found to be close to previously re-
ported SARS-CoV-2 antibodies with a color that depends
on which antigenic region of SARS-CoV-2 they recog-
nize. In the largest cluster (labeled 1 in the figure), 13
out of 97 sequences (14%, versus 0.1± 0.3% for random
clonotypes) are just one amino-acid away from antibod-
ies recognizing the receptor binding site (RBD) of the
S protein. Entry into human cell is initiated by inter-
action between the RBD and the cell surface receptor
ACE2 [57–61] making RBD an immunodominant target
for neutralizing antibodies [62]. Two clusters (3 and 4)
include matches with antibodies interacting with other
epitopes than RBD (non-RBD and S2 domain, which
contain the fusion peptide). V and J gene usage is well
conserved across clusters 2, 4 and 5 (IGHV3-33, IGHV3-
30, IGHV3-30-3 and IGHJ6), while central positions of
the CDR3s are enriched in different residues, consistent
their distinct specificies.

We then asked whether there was an analogous struc-
tural selection acting on light chains. While we do
not have light-chain repertoire datasets from COVID-19
donors, we can collect the light chains of all SARS-CoV-
2-specific antibodies from the literature that matched
(up to 2 aminoacid substitutions) our COVID-associated
clonotypes in their CDR3. Applying the same clustering
procedure as described above yields 10 different clusters,
shown in Fig. 4B), with the color of the circle outline
coding for the cluster membership of the heavy chain of
that clone in A. For example, cluster (c) is exclusively
associated to anti-RBD antibodies, and matches heavy-
chain cluster (1). Cluster (g) represents a clear antigen-
specific cluster with all components being antibodies act-
ing on S2, but does not have a clear analog among heavy
chain clusters, suggesting that specificity is primarily de-
termined by the light chain. For light chains, the level
of redundancy observed was even greater than for heavy
chains. This was in part due to the fact that some SARS-
CoV-2 confirmed antibodies from the literature differ in
their CDR3 heavy chain, but have identical light chains.

Predicting sharing in T cell repertoires from
COVID-19 patients

T cells play an important role in COVID-19 infections,
and can persist for years even when IgG antibodies have
become undetectable [63, 64]. We applied our sharing
analysis to the TCRβ repertoires of 1414 donors with
confirmed SARS-CoV-2, sampled at various timepoints
following the peak of the disease, and totalling 1.6 · 108

reads [65].
Fig. 5A shows the sharing spectrum for all 1414 donors.

We recall that, by contrast to IGH, a corrective selection
factor q was needed to allow the statistical model Ppost to
correctly predict the sharing spectrum, even for healthy

donors (Fig. 2C). This selection factor may be interpreted
as quantifying the level of convergent selection among
donors, as demonstrated for CMV+ donors (Fig. 2D).
Inferring q on the COVID-19 cohort using the soNNia
model yielded 0.452 ± 0.002, compared to q = 0.472 ±
0.006 for the healthy cohort, suggesting that COVID-19
donors shared more TCR among them due their common
infection. The corresponding prediction for the sharing
spectrum is excellent (5A, orange curve).

While convergent selection is less evident than for B
cell repertoires, highly clonal T-cell repertoires have been
reported by several studies [40, 66]. Inspired by these
results, we used the same approach as for B cells for
identifying COVID-associated TCR. In Fig. 5B, we com-
pare the soNNia-inferred probabilities Ppost(σ) with the
empirical frequencies of the receptor sequences Pdata(σ).
The potential responding clones marked in red were iden-
tified as those whose empirical frequency was unexpectly
high relative to the model prediction, as described before
for B cells. To focus on clonotypes with the largest sig-
nificance, we picked the 0.1% clonotypes with the highest
posterior probability of being COVID-associated, result-
ing in a list of 20,841 sequences. To validate the speci-
ficity of this list, we compared it to a list of clonotypes
with know specificity to SARS-CoV-2 epitopes, as con-
firmed by a Multiplex Identification of Antigen-Specific
(MIRA) assay [65], and found 3,722 (17%) overlapping
clonotypes. By contrast, random lists of 20,841 sequences
from healthy patients and from COVID-19 associated
datasets (drawn from a biased distribution to reflect their
sharing properties, see Methods) only shared 27± 5 and
193 ± 13 clonotypes with the MIRA assay, respectively.
These much lower quantities demonstrate not only that
the cohort of significantly shared sequences is enriched
of SARS-CoV-2 specific clones but also indicates pre-
existing cross-reactive T cells recognizing SARS- CoV-
2 epitope in previously unexposed individuals, probably
related to other seasonal coronaviruses [66–68].

The analysis of sequence features revealed a slight
increase of CDR3 length in COVID-associated versus
generic clonotypes (Fig. 5D). A few V and J genes
were enriched or depleted in COVID-associated TCR
(Fig. 5E and F): TRBV5-1, TRBV20-1 and TRBV6-
2, TRBJ1-1 are considerably underrepresented in the
COVID-associated repertoire, while TRBV27, TRBJ2-
1 and TRBJ1-2 are enriched, consistent with previous
reports [40, 69].

To better understand the structure of the COVID-
specific TCR repertoire, we next performed a network
and clustering analysis of COVID-associated clonotypes.
As before, we built a graph by putting edges between
clonotypes with at most two differences in CDR3 amino-
acid identity or in V and J gene usage. Clonotypes found
in the MIRA dataset of [65] are colored according to
their antigen specificity: yellow for the surface glycopro-
tein (S), red for the nucleocapsid phosphoprotein (N),
brown for the transmembrane protein (M) and orange
for the envelope protein (E); and the seven putative ac-
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FIG. 5: Identification and analysis COVID-associated TCRβ. (A) Sharing number distribution of CDR3 amino-acid
TCRβ clonotypes from 1414 SARS-CoV-2 positive individuals. The model prediction from Ppost (trained on healthy donors)
is good, suggesting low convergent selection. (B) Model prediction Ppost versus empirical frequency P ∗

data for all shared CDR3
amino-acid clonotypes. Clonotypes marked in red are significantly more frequent in COVID-19 donors than expected (C)
Network analysis of TCRβ amino acid CDR3s of COVID-associated clonotypes. Edge mark clonotypes with 2 mismatches
or fewer. Vertices are colored according to the location of their recognized antigen according to the MIRA assay (see main
text). (D) CDRH3 length distributions of generic and significantly overshared sequences. Sequences significantly overshared in
healthy individuals are much shorter than sequences significantly overshared in COVID-19 individuals. (E) TRBJ gene usage
in generic healthy and COVID repertoires, and in COVID-associated sequences. (F) TRBV gene usage for the same groups.
Significance is obtained using Student’s t test.

cessory proteins (ORF1ab (light green), ORF3a (light
blue), ORF6 (magenta), ORF7a (black), ORF7b (dark
green), ORF8 (light pink), and ORF10 (dark blue). The
resulting network and clusters (Fig. 5G) paint a more
complex picture than for B cells, with no clear sign of
grouping by specificity. However, the level of clustering
is significant: repeating the same graph analysis of the
control set of clonotypes from healthy patients (corrected
for their sharing properties as above, see Methods) yields
a much lower level of clustering: 12.87 ± 0.13%, versus
88% for the COVID-associated clonotypes. This means
that, while clusters are not able to discriminate between
different antigenic targets, selection for antigenic speci-
ficity still drives a local convergence of clonotypes.

Using public sequences for SARS-CoV-2 infection
diagnosis

The public COVID-associated clonotypes identified
above can be used as a bio-marker to detect exposure
to current and past virus infections. Within our proba-
bilistic framework, we developed a likelihood-ratio clas-
sification test based on comparing the likelihoods of oc-
currence of COVID-associated clonotypes in unexposed
versus exposed individuals. These likelihoods were com-
puted using Ppost(σ) for unexposed individuals, and the
empirical clonotype distribution Pdata(σ) from COVID-
19 donors for exposed individuals (see Methods for de-
tails).

We first applied this strategy to repertoires of IgG an-
cestors. We started from the previously identified list
of 6650 clonotypes significantly overshared in COVID-19
patients. Pdata(σ) was estimated empirically from the
repertoires of 20 COVID-19 donors reserved for training.

Plotting the distributions of log likelihood ratio scores
in SARS-CoV-2 positive and negative individuals held
out for testing (20 positive and 10 negative) shows a clear
separation of the two groups across a threshold value of
0, indicating perfect discrimination by this score for this
small cohort (Fig. 6A). This result implies that this score
could be used for diagnostics of COVID-19.

We next applied the same method to TCRβ reper-
toires, using 700 SARS-CoV-2 positive individuals to
train Pdata, and keeping an equivalent number for testing.
The raw log likelihood score using the 1,200 top COVID-

associated clonotypes yielded poor discrimination power
(Fig. S2). To improve performance, we trained a logistic
regression classifier predicting COVID-19 status based
on the presence or absence of top COVID-associated
clonotypes as predictors. The weights of the model were
learned using the same training set, and performance was
evaluated on the remaining donors as testing set. Classi-
fication error was optimized by tuning the number of in-
cluded clonotypes and regularization parameter to avoid
overfitting (see Methods for details). The distribution
of logistic regression scores (expressed as the probabil-
ity of being positive) among the positive and negative
cohorts of the testing set are shown in Fig. 6B. Setting
a threshold at 0.5 gives 83% specificity and 92% pre-
cision. Varying the threshold yields the Receiver Op-
erating Curve shown in Fig. 6C, which summarizes the
classification performance for both methods (logistic and
likelihood-ratio test). The performance of our method is
lower than that reported in [65], where a larger cohort
was used, and where some clonotypes leading to classifi-
cation errors were filtered out by hand.

III. DISCUSSION

Our statistical model allowed us to characterize in de-
tail how the generation and initial selection of repertoires
could explain the observed spectrum of sharing among
unrelated healthy donors. The methodology relies on two
ingredients: a stochastic recombination model, Pgen(σ),
and a selection model, Ppost = Q(σ) × Pgen(σ), where
Q(σ) is a sequence-specific selection factor. A previous
attempt at predicting sharing in TCR [5] only consid-
ered Pgen. This model alone underestimates sharing, but
applying a single corrective selection factor 0 < q ≤ 1
yielded good predictions. Our analysis shows that learn-
ing a proper selection model Q(σ) from data allows for
excellent predictions for BCR sharing, without the need
for such a corrective factor. This suggests that for B cells,
Ppost accurately captures selection effects encoded in pe-
ripheral B cells, including central tolerance and affinity
maturation. This success is surprising because we could
have expected central tolerance to remove auto-reactive
B cells, thereby reducing diversity and increasing shar-
ing. This effect would be hard to capture by a linear
models such as SONIA, which we used for Q(σ).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473105


11

FIG. 6: Repertoire-based SARS-CoV-2 diagnostics. (A) Distribution of log likelihood ratios calculated from the IgG
repertoires of 30 individuals (20 SARS-CoV-2 positive, and 10 negative). Positive values of the score imply likely SARS-CoV-2
positivity. The test perfectly separates positive and negative individuals. (B) Distribution of probabilities of SARS-CoV-2
positivity obtained from logistic regression on the presence or absence of clonotypes in TCRβ repertoires (1,000 individuals
from the testing set; model trained on 1,000 individuals from the training set). Values over 1/2 indicate likely SARS-CoV-
2 positivity. The distributions of healthy and COVID-19 individuals have little overlap (93% specificity). (C) ROC curve
obtained by tuning the positivity threshold in (B). The AUC is the area under the curve (AUC=1: perfect discrimination; 1/2:
no discrimination). ROC of the likelihood test is shown for comparison.

For T cells, the picture is more nuanced. Using Ppost

yielded much better predictions than Pgen alone, but a
corrective factor q was still needed to get a perfect fit.
The value of q is indicative of the level of selection not
captured by the model but still necessary to explain shar-
ing. Its increase from q = 0.037 when using Pgen, to
q = 0.472 when using Ppost, is a strong signature of
model improvement. A possible hypothesis for why q
is still needed is that negative thymic selection reduces
diversity and increases sharing. Linear or even smooth
non-linear models such as soNNia may not be able to
capture such effects. Thymic selection also strongly de-
pends on the HLA type, which determines what peptides
may be presented to T-cells during selection, and this in-
formation is specific to each individual. One needs to go
beyond universal models to make personnalized predic-
tions of clonotype prevalence and sharing.

SARS-CoV-2 infection substantially affects the anti-
body repertoire [70–72] — around 0.15-0.8% of total
memory B cells are spike-specific according to [73]. We
expect to observe a pool of overshared BCR clonotypes
among COVID-19 donors, corresponding to a conver-
gent response. Our pipeline identifies such overshared,
antigen-specific receptors. Since these antibodies are
both COVID-specific and found in many donors, and
they are likely to be elicited in many patients. Such
identification of universal antibodies could help in the
design of next-generation vaccines, or therapies based on
neutralizing antibodies [32, 74–76].

Out of the 236,079 IgG ancestral clonotypes across
all 43 COVID-19 donors collected from the literature,
20,113 (8.5%) were shared among at least two individ-
uals. Within that pool, 6,650 were found to be sig-
nificantly overshared, among which 175 had at least
a 90% Levenshtein similarity with previously reported

anti S-protein antibodies. The most shared IgG an-
cestral clonotype (CARGFDYW) was linked to the
Kawasaki syndrome, an inflammatory disease that has
been associated with COVID-19 [77]. Among signifi-
cantly shared sequences, we also matched some clono-
types with previously described antibodies, such as the
CV30 (CARDLDVSGGMDVW, IGHV3-53) in [43], the
COVA2-07 (CAREAYGMDVW, IGHV3-53) in [38] and
the COV2-2381 (CAAPYCSRTSCHDAFDIW, IGHV1-
58) in [58]. All of them were reported to reach complete
neutralization through competition with the ACE2 hu-
man protein for RBD binding, which is the main mech-
anism used by anti SARS-CoV-2 antibodies. Because
RBD is likely to accumulate escape mutations, it may
be useful to identify antibodies targeting more conserved
epitopes of the S protein. The high similarity of the S2
subdomains between SARS-CoV-2 and SARS-CoV [58]
suggests that targetting conserved epitopes may also al-
low for cross-neutralizing different coronaviruses [78].

Despite a common focus on humoral immunity against
COVID-19, T cells play an essential role. The analysis of
immunity in recovered SARS-CoV and MERS patients
showed that the T-cell response is often more durable,
remaining detectable up to 17 years after infection, even
when antibodies are undetectable [79]. We applied the
same pipeline for identifying overshared TCR clonotypes
in a cohort of 1414 COVID-19 donors. While the level
of convergent selection was much less striking than for
BCR, the method was still able to detect a subset of
20,841 significantly shared sequences, 17 % of which were
separately validated for SARS-CoV-2 specificity. We hy-
pothesized several reasons for the absence of convergence
in T-cell immune response. First, genetic differences in
the HLA genes are known to influence the composition
of TCR repertoires which can partially modify the indi-
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vidual response to pathogens [80]. The inclusion of HLA
type in future models could improve the search and val-
idation on antigen-specific clonotypes.

Our results are consistent with IgG repertoire diversity
being reduced in patients with severe diagnostic, suggest-
ing that this parameter could help predict the evolution
of the disease [81, 82]. Relatedly, we used our selection
parameter q to measure the difference in repertoire di-
versity of healthy donors from three age groups. We
found significant differences between the youngest (0-25
y.o.) and the oldest (51-75 y.o.) healthy groups, imply-
ing greater T-cell diversity in younger individuals. It has
been speculated that efficient protection against COVID-
19 in children may arise from their highly diverse T-cell
repertoire, while older adults may be at higher risk due
to immunosenescence [83]. Further statistical analyses to
study the relationship between age, repertoire diversity,
and severity could help better predict disease evolution.

In this context of condition-associated sequence analy-
sis, previous studies [65, 66, 84] yielded the identification
of pre-existing SARS-CoV-2-reactive TCR clones in un-
exposed individuals. The role that they might play in
asymptomatic or mild COVID-19 cases remains unclear.
However, they could serve as a basis for thinking about
vaccines elliciting a broader immune response. Since the
responding B and T cell clones identified by this method
repeatedly appear in different individuals, they consti-
tute an interesting vaccine target since they could trigger
a robust public response.

The clinical potential of this method also extends to
the development of a B-cell or T-cell repertoire-based di-
agnostic tool to identify current or past infection from
sequenced repertoires. The likelihood ratio test we pro-
pose here achieves perfect classification between SARS-
CoV-2 positive and negative donors using the repertoires
of IgG ancestors. However, the size of the testing cohort
is very small (30 individuals), and the method should be
validated on larger cohorts for clinical applications.

We speculate that the lower accuracy of the method
applied to TCR is partly due to the HLA restriction of
SARS-CoV-2 associated clonotypes, reducing their pre-
dictive power. However, we showed that the perfor-
mance could be considerably improved by logistic regres-
sion, as was first proposed in [16, 65]. Predictive power
might be further increased by including the HLA infor-
mation of donors, and by using larger cohorts for train-
ing. Compared to the method described in [16], we used
our trained generative model Ppost(σ) as a null model,
rather than by directly recording clonotype frequencies
in the healthy cohort. While this allows for estimating
the probability of sequences that were never seen in the
healthy cohort, its prediction may be inaccurate for cer-
tain sequences, affecting the accuracy of the score. Using
a combination of probabilistic modeling for rare clono-
types and empirical frequencies for common ones may
provide a intermediate method benefiting from both ap-
proaches.

Despite these challenges, developing TCR repertoire-

based clinical tests is important and complementary to
serological and BCR based tests, because we expect TCR
repertoires to be more stable over time, and COVID-
19 signatures to persist detectably in peripheral T cells
longer than in antibody sera. More generally, our results
are promising for the future of repertoire-based diagnos-
tics. The method is general and applicable to any disease
or condition that impacts immune repertoires. As more
cohorts of donors with a common condition are screened
for associated clonotypes, this approach would allow for
doing several tests simultaneously from a single reper-
toire sample, including retrospectively as more tests are
being designed.

IV. METHODS

Sequence preprocessing

IgM and IgG repertoires

The analysis of healthy BCR heavy-chain (IGH) reper-
toires was performed on several large datasets compris-
ing a total of over 3 × 108 productive sequences from 10
healthy adult subjects [13]. The sequence isotype, IgM or
IgG, was identified during primer removal and pairing of
the two reads. We used the pre-processed data provided
by the initial analysis of the dataset [13] with the excep-
tion of the two largest individuals (326651 and 326713).
For these two donors we applied a custom pipeline to
find high-quality out-of-frame transcripts required for in-
ference of the generative model of V(D)J recombination.
We aligned raw reads using pRESTO of the Immcanta-
tion environment [85] with a setup allowing for correcting
for errors in UMIs and deal with insufficient UMI diver-
sity. We grouped reads with the same UMI together,
annotating each consensus sequence with a correspond-
ing number of reads, which is a proxy for sequence qual-
ity. Pre-processed data were then aligned to V, D and J
templates from IMGT [86] database using IgBlast [87].

We filtered the set of productive IgM sequences to
keep only sequences with at most one mutation. Using
a subset of non-productive, naive IgM sequences of high-
quality (with at least 3 reads per consensus sequence),
we used IGoR [19] to infer the statistics of the generative
process, and to build a model Pgen(σ) that can be used to
generate synthetic sequences with no mutations, and free
of selection effects that affect real productive sequences.

To include selection effects, we learned a sequence-
specific selection factor Q(σ) that modifies the probabil-
ity of occurrences of sequences relative to the generation
model. The resulting post-selection probability model
reads: Ppost(σ) = Q(σ)Pgen(σ). The training of the func-
tion Q(σ) was done using IgM productive sequences with
at most 1 hypermutation using the SONIA software [20].
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Clonal lineage reconstruction in IgG repertoires

Large fraction of the IgG repertoire has already un-
dergone successive stages of differentiation and special-
ization after antigen activation, meaning that statistics
describing naive IgM sequences features are no longer
valid for IgG sequences. We incorporate these effects in
a selection model inferred from the sequence features of
the reconstructed naive progenitors of IgG sequences.

To reconstruct IgG clonal families and infer the an-
cestral sequences, we started by grouping together se-
quences with the same V and J genes and CDR3 length.
Inside each group, we performed single linkage cluster-
ing of CDR3 sequences with a threshold of 90% iden-
tity [85]. Clusters obtained in this way correspond to
clonal families, which we assume originate from a com-
mon naive unmutated progenitor. We reconstructed the
CDR3 sequences of the naive ancestor by removing muta-
tions from the germline segments of the sequence (using
IMGT templates), and taking the consensus sequence for
the non-templated segments.

An analogous procedure was used to process IgG
heavy-chain antibody sequences from repertoires of 43
COVID-19 donors obtained from [29–31].

TCRβ repertoires

Healthy T cell β-chain repertoires were taken from a
cohort of 666 donors [16], 641 of which were serotyped for
cytomegalovirus (CMV): 352 subjects were CMV nega-
tive (CMV–) and 289 were CMV positive (CMV+), with
a mean number of unique β chains ≈ 180,000 per donor.

COVID-19 repertoires were obtained from a cohort of
1414 SARS-CoV-2 positive donors sequenced by Adap-
tive Biotechnologies, as described in [65]. Both datasets
were already pre-processed.

We separated non-productive and productive se-
quences from healthy donors. We inferred a generative
model from the nonproductive sequences using IGoR [19],
and a selection model from the productive sequences us-
ing soNNia [18], an artificial neural network based exten-
sion of SONIA.

Analytic prediction of sharing from the density of
probabilities

Given M repertoires sampled from M individuals,
each with a number Ni of unique nucleotide sequences,
i = 1, . . . , N , the expected number of sequences sharing
among exactly m individuals is given by the coefficients
of the generating function [5]:

G(x, {Ni}) ≈
∫ +∞

0

ρ(p)dp
n∏
i=1

[
e−Nip +

(
1− e−Nip

)
x
]
,

(1)

where ρ(p)dp is the total number of potential sequences
whose probability falls between p and p + dp. Given a
model distribution P (σ), the integral in 1 is performed by
Monte-Carlo: generate a large number of sequences from
P (σ), evaluate their probability p = P (σ), and create a
histogram of ln p. Then approximate the integral over p
by the method of trapezes.

The simplest model to consider is the generative model
Pgen learned from nonproductive sequences, free of any
selection. Then Eq. 1 is used with P (σ) = Pgen(σ)/f
calculated using OLGA [88], where f is the probabil-
ity that the generative model produces a productive se-
quence (given by the IGoR model).

As a minimal to include thymic selection, and in par-
ticular negative selection that removes self-reactive re-
ceptors from the repertoire, we can introduce an ad hoc
selection factor q representing the fraction of receptors
that are not self-reactive. Then the probability distribu-
tion of non-self-reactive productive sequences is

P (σ) =
Pgen(σ)

fq
, (2)

for a random (but fixed across individuals) fraction q of
sequences, and P (σ) = 0 for all the others. This amounts
to rescaling the distribution ρ(p) in Eq. 1 by a factor
(fq)−1 in the p variable.

The stronger the selection (the lower q), the smaller
the number of unique amino-acid sequences will be as a
function of the number of unique nucleotide sequences.
We can use that relation to fit the parameter q using
least-square regression. The model prediction for the ex-
pected number of unique sequences among N random
draws from p is given by:

Mnt
0 (N, q) ≈

∫ +∞

0

ρ(p)dp
(
1− e−Np

)
, (3)

where ρ(p) is as before. We can compute that number
for nucleotide and amino-acid sequences, Mnt

0 (N, q) and
Maa

0 (N, q), using the densities ρnt(p) and ρaa(p) corre-
sponding to these two cases, as described before. The
probability of generated sequences, both at the nucleotide
and amino-acid level, is computed using OLGA [88] and
Eq. 2. We then find the q that minimizes the total dis-
tance between each pair {Mnt

i ,M
aa
i } from the data to

the parametric curve Mnt
0 (N) and Maa

0 (N):

q∗ = arg min
q

M∑
i=1

min
Ni

[(
Mnt

0 (Ni, q)−Mnt
i

)2
+

+ (Maa
0 (Ni, q)−Maa

i )
2
] (4)

Another way to include selection is to use the sequence-
specific selection model Q(σ) learned using SONIA or
soNNia, and use Eq. 1 with P (σ) = Ppost(σ) =
Q(σ)Pgen(σ) instead of Pgen(σ)/(fq).

Finally, the two ways to model selection — sequence
specific through Q(σ), and ad hoc using q— may be com-
bined by starting from Ppost as a generative model, but
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assuming that only an unknown fraction q of sequences
drawn from it actually survives. This leads to applying
the same procedure as in the paragraph above, but with
P (σ) = Ppost(σ)/q, and q inferred as in Eq. 4 but with
predictions from the SONIA or soNNia model.

To define a pair-specific selection factor qAB between
two individuals A and B for the severity analysis, we
fitted the prediction of Eq. 1 for the number of se-
quences shared between two individuals (M = 2), using
P (σ) = Ppost(σ)/q. The fit was done using a grid search
on q. This factor qAB provides an inverse sharing index
between A and B that is robust to the sample size.

Detecting significant levels of sharing among
COVID-19 repertoires

To identify potential COVID-associated receptor
clonotypes from oversharing in the cohort of infected in-
dividuals, we followed the approach developed in [89],
by looking for clonotypes that are more shared in the
COVID cohort than expected.

To estimate the baseline probability of CDR3 amino-
acid sequences, we applied the SONIA (for B cells) or
soNNia (for T cells) model to calculate Ppost(σ).

We then computed the empirical frequency of se-
quences in the COVID-19 cohort, Pdata(σ), from the
counts xi of CDR3 amino-acid clonotype σ in individ-
ual i, but in a probabilistic manner to represent our un-
certainty. The probability of observing a receptor σ in
repertoire i with ≈ Ni recombination events (taken to
be almost equal to the number of unique nucleotide se-
quences) is binomially distributed, so that

P(x1, ..., xn | Pdata) =

=
n∏
i=1

(
Ni
xi

)[
(1− Pdata)Ni

]xi
[
1− (1− Pdata)Ni

]Ni−xi
.

(5)

The maximum likelihood estimate of Pdata(σ) reads:

P ∗data = arg max
Pdata

P(x1, ..., xn | Pdata). (6)

However in general we will work with the posterior dis-
tribution of Pdata, given by:

ρ(Pdata | x1, ..., xn) =

=
P(x1, ..., xn | Pdata)∫ 1

0
P(x1, ..., xn | Pdata)dPdata

,
(7)

where we have assumed a flat prior for Pdata.
In practice, we observe a systematic fold-difference

between Ppost and P ∗data. To correct for this ef-
fect, we first rescaled Ppost, P ∗post(σ) = αPpost(σ).
The correction factor α was fitted by minimizing∑
σ∈shared (logP ∗data(σ)− logPpost(σ)− logα)

2
.

To evaluate whether a sequence is more present than
expected, we compute the posterior probability that its

empirical frequency is larger than expected, Pdata >
P ∗post:

P(Pdata < P ∗post) =

∫ P∗
post

0

ρ(Pdata | x1, ..., xn)dPdata.

(8)
If this quantity is low, then we have confidence that the
sequence is more shared than expected in the cohort,
and is therefore called a COVID-associated clonotype.
We used different thresholds depending on the context,
often conservatively keeping the top sequences, rather
than applying a fixed threshold.

Control cohort with matching Ppost distribution

When comparing COVID-associated TCRβ to se-
quences from bulk repertoires, we observed differences
in their Ppost distribution reflecting the relationship be-
tween overlap and Ppost. To make comparisons without
that possibly confounding factor, we built a healthy con-
trol by histogramming the logPpost distribution of sig-
nificantly shared sequences in COVID-19 patients into n
equal-width bins. For each bin of width w and height h,
we randomly drew clonotypes from healthy repertoires
falling in that Ppost-bin, until we reached frequency h.
The resulting dataset has the same distribution of Ppost

as SARS-CoV-2 sequences, but with sequences from the
control repertoire.

Repertoire-based diagnosis

We used two methods to exploit information about the
presence and absence of COVID-associated clonotypes in
the repertoire to predict COVID-19 status: a likelihood
ratio test, and logistic regression.

The likelihood ratio test evaluates the likelihood
of the data under two competing hypotheses: in-
fected with SARS-CoV-2 (H1), or not infected (H0).
The log likelihood ratio score then reads L =
log(P(data|H1)/P(data|H0)), with:

P(data|H0) =
∏

σ∈i∩S
(1− e−NiP

∗
post(σ))

∏
σ∈S\i

e−NiP
∗
post(σ),

(9)

P(data|H1) =
∏

σ∈i∩S
(1− e−NiP

∗
data(σ))

∏
σ∈S\i

e−NiP
∗
data(σ),

(10)

where σ ∈ i ∩ S means that the sequence is COVID-
associated and is found in individual i, and σ ∈ S\i that
it is COVID-associated but not present in i. We took
the corrected model P ∗post for the null (uninfected) hy-
pothesis, and the maximum likelihood estimator of the
sequence frequency in COVID-19 donors, P ∗data, for the
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infected hypothesis. To avoid overfitting, we learn Pdata

on a training set.
The set S can be adjusted by taking the n top clones

(ranked from lowest to highest value of the score of Eq. 8),
and letting n vary. Individuals with score L > c are
called positives, and L < c negative, with c an adjustable
threshold, which is set to achieve a given sensitivity on
the training dataset.

For the purpose of TCR we turned to logistic regres-
sion, which uses a more general form of the score given
by the logistic function:

Lilogit = log
P (H1|i)

1− P (H1|i)
= β0 +

∑
σ∈S

βσx
i
σ (11)

where xiσ ∈ {0, 1} denotes the absence of presence of se-
quence σ from S in individual i. Note that the likelihood
ratio test is a particular case, with βσ = log(eNiP

∗
data(σ)−

1)− log(eNiP
∗
post(σ) − 1). By constrast, in logistic regres-

sion the parameters βσ are trained on labeled data, i.e.
repertoires of individuals with know COVID-19 status,
denotes by yi = 1 if the person was SARS-CoV-2 pos-
itive, and yi = 0 otherwise. Logistic regression is per-

formed by minimizing the cross-entropy over the βσ:

H =
∑
i

[yi logP (H1|i) + (1− yi) log(1− P (H1|i))]

+ C−1
∑
σ

|βσ|,

(12)

where the last term is an `1 regularization. The parame-
ters n (controling the size of S) and C were optimized to
optimize performance (see Fig. S3). With n = 7000 and
C = 0.0005, the logistic classifier achieved 83% speci-
ficity and 92% precision on held-out TCR. The dataset
was separated between training and testing sets as de-
scribed in the main text.
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FIG. S1: Violin plots representing the proportion of mutated nucleotides in B cell receptor repertoires per individual in healthy
and COVID-19 cohorts, as well as in significantly shared sequences. The dot represents the median SHM percentage. Student’s
t test: ∗p < 10−5.
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FIG. S2: Distribution of log likelihood ratio scores for 1000 T-cell repertoires belonging to the test cohort of 700 COVID-19
patients and 300 healthy individuals. The distribution of scores for each group completely overlap, leading to a classifier with
a very poor accuracy.
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FIG. S3: Parameter selection for the logistic regression model applied to T cell repertoires. (A) Variation of the logistic
regression performance as a function of the total number of sequences. In the absence of regularization, both precision and
accuracy reach their maximum for n=7000 sequences. (B) For the optimal number of sequences found, the precision and
specificity are maximized for C=0.0008.
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TABLE S1: Table of top COVID19-associated BCR, containing their CDR3 amino acid sequence, V and J gene choices, Ppost

and P ∗
data value, posterior probability of being associated (p), and index of reported antibody match from the curated database

(index column in Table S3).

TABLE S2: Table of top COVID19-associated TCR, containing their CDR3 amino acid sequence, V and J gene choices, Ppost

and P ∗
data value, posterior probability of being associated (p). All reported responding clones come from MIRA dataset.

TABLE S3: Summary table containing all reported antibodies extracted from the different studies (indicated in column
References) used for sequence matching. When known, both heavy and light chain information are provided (CDR3 amino
acid sequence, V and J gene choices) as well as the antigen target by the antibody.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 20, 2021. ; https://doi.org/10.1101/2021.12.17.473105doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473105

