
Supplementary materials to Optimal proteome allocation and

the evolution of cross-feeding

Florian Labourel1, Frédéric Menu1, Vincent Daubin1, and Etienne Rajon1
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Text S1 Total optimal content and cellular constraints

Numerous constraints may affect the total optimal content of cells. It was shown by Dill et al. [2011]
that the amount of proteins should establish at an optimal intermediate level due to the deleterious
impact an extra expression of proteins would have on diffusion. However, they did not account for the
protein burden of producing these molecules. Their focus was besides on the total content without
regard to the specific allocation of this content. This matters because a cell should be more prone to
invest in a task when it entails large increases of fitness, and/or when these tasks are necessary to
survive. Here, we assessed the effects of cellular constraints asumed to be within documented ranges
[Wagner, 2005, Chou et al., 2014, Lynch and Marinov, 2015, Kafri et al., 2016, Blanco et al., 2018,
Andrews, 2020].

We modelled a pathway initiated by a glucose carrier protein that facilitates diffusion, whose
features correspond to average values - VTm = 1mM/s, KT = 10mM,α = 1 - for those reported in
yeasts [Teusink et al., 1998, Maier et al., 2002]; notice that we do not report results of the influence
of transporters since it had none on the processes we are interested in. The chemical equation for
facilitated transport can be approached by the following equation [ter Kuile and Cook, 1994, Bosdriesz
et al., 2018]:

d[Sin]

dt
= VTm.

[Sout]− [Sin]

KT + ([Sout] + [Sin]) + α. [Sout][Sin]
KT

(S1)

To match with central carbon metabolism, composed by glycolysis and tricarboxylic acid cycle,
the pathway modelled is comprised of 40 enzymes that obey Michaelis Menten kinetics, according to
the following scheme (we relax the absence of reversibility later, by using Briggs-Haldane equations
[Briggs and Haldane, 1925]):

Ei + Si

kf,act−−−−⇀↽−−−
kr

ESi
kcat−−→ Ei + Pi, (S2)

where kf,act is the in vivo value of kf when accounting for the influence of crowding on difusive
processes. This influence is modelled by the following equation, already justified elsewhere [Labourel
and Rajon, 2021]:

kf,act = kf .10−([Ebasal]+
∑40

i=1[Etot,i])/[Mb],

where [Etot,i] = [Ei] + [ESi],[Mb] = 3 · 10−3M represents the scaling factor for the effect of diffusion,
while Ebasal denotes the constant amount of protein allocated to other tasks than those of central
carbon metabolism. Notice that compared with the previous reference, where we were mostly in-
terested in setting a qualitatively realistic crowding limit, we have here refined this estimate to get
as close as possible from physical findings [Blanco et al., 2018, Andrews, 2020] and from a realistic
cellular protein fraction [Ellis, 2001, Dill et al., 2011]. Noticeably, the effect appears somewhat higher
than previously, reflecting the need of an increase in the expression of cellular machineries such as
ribosomes [Klumpp et al., 2013, Kafri et al., 2016] in order to produce more proteins.
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kf , kcat and kr are first set to values in line with high estimates for central carbon metabolism
[Bar-Even et al., 2011].

The selective pressure can be approximated by a linear degradation parameter ηd competing with
enzymes for their substrate (often denoted as a product since it also coincides with the product of
the previous reaction), according to the following scheme:

Pi + Ei+1

kf

kr
Ei+1Pi

kcat
Ei+1 + Pi+1,

ηd

Pi,out

(S3)

where Pi is the product of the previous enzymatic reaction and Ei+1 is the focal enzyme of the pathway,
specialised at processing this product. As previously stated, the degradation rate ηd that competes for
metabolites applies to each reaction in the pathway.

In the first section below, we tested the influence of the selective pressure imposed by the degradation
rate under different assumptions. As mentioned in the manuscript, our Adaptive Dynamics model relies on
the dynamic competition between cells, and, more specifically, on the capability of mutants to invade resident
strategies when these mutants are rare.

Text S1.1 Influence of the degradation rate on optimal enzyme concen-
tration

Because Adaptive Dynamics rely on the resident strategy having reached its ecological equilibrium, it is
necessary to set an amount of net energy produced - the energy produced minus expenses entailed by protein
production - that corresponds to this equilibrium in which births compensate for deaths. We set this amount
to Φeq = 10−4M.s−1. This parameter only influences the relative cost dedicated to the sustainment of
the proteome. Besides, there is also a need to set the size of cells - rc = 1µm corresponding to a volume
of Vc ≈ 4.2µm3 (roughly that of E.coli) - and to consider a specific fraction of the environment - set to
Venv = 1000µm3 without cells (it is the volume of the environment that is free of cells). Notice that the size
of cells matter when we study the influence of permeability for passive diffusion depends on the SA:V ratio,
which decreases when cells are bigger - this is discussed in the section about cross-feeding. On the contary, the
size of the environment does not matter: it only modifies the number of cells coinciding with the ecological
equilibrium, which, in Adaptive Dynamics, is not involved in the outcome due to genetic drift not being
considered. Finally, the “chemostats” parameters are set such that the enrichment rate equals the dilution
rate, α = 10−3 and β = 10−3 yielding a steady-state concentration in a cell depleted medium of [Sout]

∗ = 1M .
These coefficients are in line with estimates for diffusion coefficients of metabolites in solvant. Lowering them
changes the speed at which nutrients are brought to the environment, and, therefore, influences how possible
it is for cells to thrive (because they need to sustain a given flux, that is a given amount of production per
unit time, which is partly dependent on how quickly the environment is replenished). The set of parameters
that are fixed at this stage is summed up in the following table:

Parameters Φeq(M−1s−1) Vc(µm
3) Venv(µm3) α(Ms−1) β(s−1)

Values 10−4 4.2 1000 10−3 10−3

Table S1: Set of constant parameters used to simulate competition

As the system yields an ecological equilibrium that needs be solved numerically through a two step process
- see Materials & Methods of the article for details - it is not possible to determine the joint influence of the
whole set of parameters. Instead, we varied them on a pairwise basis where the degradation rate is always the
focal variable while other parameters are all set but one (or two, if necessary). When not explicitly mentioned,
these parameters are set according to the following table:

Parameters kf (M−1s−1) kcat(s
−1) c Ebasal

Values 107 102.5 10−2.5 5.5 · 10−3

Table S2: Set of basic settings used to determine their individual influence
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Notice also that in this first subsection, kr is always set to equal kcat.

Text S1.1.1 Influence of enzyme kinetic parameters and the concentration of the first
enzyme of the pathway

To evaluate how kinetic parameters impact the optimal cell content, we modelled the process for three different
values of enzyme efficiency, varying them by half an order of magnitude. This is made necessary because
kinetic parameters define another parameter on which Natural Selection can act to promote enzyme activity.
But there is an essential difference between those two: while enzyme levels should be easily tunable, since they
are constrained by their consequence on the working of cells, kinetic parameters, for their part, are constrained
by the inherent difficulty to improve due to the scarcity and findability, if existing, of very efficient phenotypes.
Simulatenously, there is also another factor impacting the fitness landscape on which cells evolve and that
in turn modifies the optimal content, which is the concentration of the most upstream enzyme. Indeed, this
enzyme determines how much nutrients is taken from the environment at each timestep, and therefore, the
flux of substrate entering the metabolic pathway. Because facilitated diffusion relies on carrier proteins and
the substrate gradient along the cell membrane, it has its own selective pressure, potentially differing from
downstream enzymes [ter Kuile and Cook, 1994, Labourel and Rajon, 2021].

Figure S1: Influence of kinetic parameters and
the concentration of the most upstream enzyme
on the optimal content of cells. The optimal
concentration that each enzyme needs reach is
represented for moderately low (black squares) -
kf = 106.5M−1 · s−1, kcat = 102s−1, moder-
ate (red circles) - kf = 107M−1 · s−1, kcat =
102.5s−1 - and moderately high (green triangles) -
kf = 107.5M−1 ·s−1, kcat = 103s−1 - enzyme effi-
ciency. It is represented for three values of first en-
zyme concentration (A:[E0] = 10−4.5M ,B:[E0] =
10−4M ,C:[E0] = 10−3.5M) picked in the range
for which the flux is the highest (the optimal first
concentration varies a little with the degradation
rate). As the degradation rate increases, the selec-
tive pressure on the content is higher, and thereby
the optimal enzyme concentration. Notoriously,
the increase of the content eventually meets an
asymptote - when accounting for 20% of the pro-
teome - where the effect of hindered diffusion al-
ways overcomes the extra gain of activity.

The higher the concentration, the higher the nutrient gradient, and the higher the flux, as long as the
expression of downstream enzymes do not impede too much cellular diffusion of macromolecules. This means
that a more highly expressed upstream enzyme increases the selective pressure on downstream enzymes,
which increases their optimal expression level and eventually up to a point where the effect of an increment
of expression is deleterious. Inasmuch as the expression of the first enzyme is part of the hindering process

3



and in spite of the previous argument, its occurrence may also decrease the optimal concentration for other
enzymes. This latter phenomenon can be observed marginally on Figure S1 - C, where the optimal concen-
tration decreases more for a higher degradation rate - compare C with B, for the highest degradation rates.
Notice that the A situation corresponds to the example pf PIPs shown in Figure S14 of Appendix. For high
values of degradation rates (around - that are consistent with the selective pressure observed for enzymes
involved in central carbon metabolism [Bar-Even et al., 2011, Labourel and Rajon, 2021], the optimal content
approximately converges towards an asymptotic value of 20%. Above this level, the extra activity does not
offset the loss of intracellular diffusibility, a conclusion that holds qualitatively for all enzyme efficiencies and
first enzyme concentration. Notice that this degradation rate is on another hand inconsistent owing to the
amount of nutrients lost in the process, a limit on which we later elaborate.

Text S1.1.2 Influence of other cellular parameters

As to study the influence of other parameters, we then set kf = 107M−1s−1, kcat = 102.5s−1 and kr = kcat,
approximately an order of magnitude higher than median estimates of Bar-Even et al. [2011]. In parallel, the
concentraiton of the upstream enzyme is set to 0.1mM . In the following, we tested the influence of other
parameters and demonstrated that the main influence is set, as expected, by the degradation rate.

Figure S2: Influence of cellular parameters on the
optimal proteome content have proven to be mi-
nor. (A): linear protein cost, where c = 1e − 3
means that intracellular proteins approximately
accounts for 5% of the total budget of cells while
c = 1e− 2 approximately accounts for 50% of the
same budget. (B): basal proteome concentration
[Mtot] (proteome fraction not dedicated to energy
metabolism like the central carbon metabolism) -
the total fraction of the proteome also depends on
the background concentration, which explains why
distinct lines are drawn. (C): pathway yield varies
from 1 to 10 “fitness” molecule(s) per glucose
molecule. Notice, that an energy molecule can be
2 ATPs, for instance. Again, the total fraction
of the proteome dedicated to energy metabolism
cannot exceed an amount between 15% to 20%.

Text S1.1.3 Influence of environment parameters

The replenishment of the environment results from the flux parameter α while the degradation results from
the rate parameter β. They had no impact on the optimal content, only changing the demographic equilib-
rium (with a lower α, the steady-state population diminishes and may even vanish, even if the steady-state
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concentration in the environment is high). We do not report these results but the scripts that generated the
results are available in the repository.

Text S1.2 Influence of the degradation rate on the concentrations of metabo-
lites along the pathway

Figure S3: Metabolite losses along the pathway due to various degradation rates (rows) considering different enzyme
concentrations (columns): the loss is log-linear in any case. The first two lines (η < 10−2s−1) coincide with realistic
losses of metabolites. However, the selective pressure acting on enzymes was shown to correspond to the highest
degradation rates (η > 10−2), raising a limit to approach the process through the sole degradation rate.
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In this section, we determined the effect of the degradation rate on the loss of metabolites along the
pathway. Indeed, each reaction copes with this linear effect that accumulate progressively. Assuming degra-
dation rates in line with estimates accounting for reversibility yields high losses, and a high decrease of flux,
which is unrealistic. This may bias the estimation of the optimal concentration insofar as the concentration
of enzyme should not be equally spread along the pathway, contrary to what we model. This even truer for
the case where we study the allocation between two parts of a pathway, one being downstream and following
the last reaction of the one, which is the upstream part. To overcome these limits and test how they may
bias outcomes, we also studied a model including metabolite toxicity and reversibility within the pathway.

Text S1.3 Influence of more realistic set of constraints on the optimal
content

We determined the effect of toxicity using a non-linear effect of toxicity - as in Chou et al. [2014] - affecting
fitness according to the following equation:

f = (Φ− cost ·
40∑
i=1

[Etot,i])×
T

T +
∑40

i=1[Mi]
,

where T is a toxicity constant, which, when reached by the total metabolite content, cut fitness by half.

For example, a toxicity constant set to 10−1M means that if the sum of all 40 metabolites involved in the
pathway equals this amount, then fitness is half what it would have been without this constraint. Toxicity
has a similar qualitative effect than those studied previously - see Figure S9, where T varies from 10−2M to
1M . Nevertheless, its impact on the optimal content is larger, as a high toxicity alone is sufficient to induce
the same selective pressure than a high degradation rate. The maximal optimal content – coinciding with
approximately 20% of the pathway dedicated to the energy metabolism – does not differ from the ones yielded
by other parameters.

Figure S4: Influence of metabolite toxicity (A) and reversibility (B, combined with a basal toxicity) on the optimal
content. Toxicity T – High: T = 10−2M ; Moderate: T = 10−1M ; Low: T = 1M – drastically increases the selective
pressure acting on enzyme concentration (see the high toxicity - black points - in A), so that even with a low degradation
rate, the optimal cell content is largely increased. With a high toxic level of metabolites, the selective pressure on enzyme
concentration is no longer influenced by the degradation process except that the higher it is, the lower the efficiency
for any strategy (in terms of expression). Assuming a moderate toxicity – Krev = 1/9 – in (B) that combines with a
realistic level for reaction reversibility, the selective pressure is again less dependent on the degradation rate, although
changes in where the reversiblity is located – “equal”: kr = kcat/3, kinh = kf/3; “mostly kr” :kr = kcat, kinh = kf/9
– only impacts the viability of cells (when relying mostly on kinh, cells are no longer viable - results not displayed
here).

Reversible reactions obey the following scheme (where (i) denotes the ieth reaction):

Si + Ei

kf,i

kr,i
EiS

kcat,i

kinh,i

Ei + Pi (S4)
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Reversibility was therefore studied by considering that it can affect either kr, kinh or both. The level of
reversibility was set to a specific value (Krev = 1/Keq = [S]eq/[P ]eq = 1/9), which is the geometric mean
of that for reacions involved in the central carbon metabolism and whose value have been summarised in Li
et al. [2011]. As reversibility can be spread between two parameters, it is necessary to see how the flux reacts
to this intrinsic process under the cellular constraints. Notice that we simplify this process by assuming it
does not evolve, even though it was shown that organisms should in principle optimise the energy profile
determining how reversibility is spread [Heinrich et al., 1991, Klipp and Heinrich, 1994]. If the reversibility
impedes only the parameter kinh, there is no degradation rate susceptible to produce a flux high enough
to compensate for the need to sustain its pool of proteins. Therefore, we report results only for the two
cases where reversibility acts only on kinh, or that for which it is equally spread between both parameters
(kcat = kr/3 and kinh = kf/3). The effect of reversibility also increases largely the selective pressure, although
for low degradation rates, there is stil a little room for extra protein expression. Notice that we do not report
the influence of reversibility solely, for it proved to be similar.

Text S2 Differential allocation between subparts of pathways:
a toy model

In this section, we introduce a toy model designed to unraval the intricacies behind the optimal allocation
strategy along a pathway. Instead of considering a long pathway, we focus on a pathway made up of two
consecutive reactions that contribute to fitness, where the flux prior to the first reaction is denoted by Φ0.
Based on insights from the flux control theory [Kacser and Burns, 1973, Heinrich and Rapoport, 1974] and
a more recent mechanistic approach [Labourel and Rajon, 2021] partly relaxing the need for unsaturated
reactions, the flux sustained by enzymes of reaction (i) can be written as:

Φi = Φi−1
[Ei]

K + [Ei]
, (S5)

where [Ei] denotes the total concentration of enzyme (i) and K represents a phenomenological saturation
parameter acting on enzymes and involving different constraints emerging within a pathway [Hartl et al.,
1985, Kaltenbach and Tokuriki, 2014].

With two reactions in pathway, the system can be summarised as follows:
Φ1 = Φ0

[E1]

K + [E1]
(S6a)

Φ2 = Φ1
[E2]

K + [E2]
(S6b)

W = Φ1 + Φ2 − c · ([E1] + [E2]) (S6c)

with c representing the cost of protein production and Φ1, Phi2 the fluxes that directly (and equally)
contribute to fitness.

Making the simplistic assumption that the parameter K is identical for both reactions, fitness can therefore
be written as:

W = Φ0 · (
[E1]

[E1] +K
)(1 +

[E2]

[E2] +K
)− c · ([E1] + [E2])

Note that what generates the flux Φ0 does not matter for our purpose, though it may be seen as the flux
produced by carrier proteins transporting a specific nutrient.

The optimal allocation stemming from such a system is reached when the extra fitness gained by increasing
either one of the concentration equals that obtained with the other one. Indeed, at the point where any
increase of the total concentration does not entail any extra fitness, this concentration has to be spread
between pathways and if it increases fitness to increase the allocation in one pathway, it implies that there is
a corollay interest to decrease the allocation to the other one. This condition can be written as:

Condition 1 ∂W
∂[E1]

= ∂W
∂[E2]

This condition straightforwardly requires the following quadratic equation to hold:

([E1])2 +K[E1]− (2[E2] +K)([E2] +K) = 0,

which can be rewritten as:
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[E1] =
−K + (K2 + 4(2[E2] +K)([E2] +K))1/2

2
(S7)

Finally, one can distinguish this optimal allocation depending on the level of saturation of the reactions:


[E1] ≈

√
2[E2], if [E2]� K (S8a)

[E1] ≈ 2[E2], if [E2] −→ K (S8b)

[E1] is independent from [E2], if K � [E2] (S8c)

As a conclusion, it means that a cell should allocate more to the first part of the pathway since it
contributes more to the fitness (both directly and indirectly), a phenomenon which fades away, to a certain
extent, when reactions stand far from saturation. More precisely, cells should allocate around 0.6 of their
available proteome to the first part of the pathway under such circumstances. This estimate needs not be
considered as a quantitative prediction (despite being close to findings with the more realistic pathway), yet,
for it relies on an oversimplified definition of the influence of enzyme concentration on fluxes. It is all the
more true since the expression used to describe it originally comes from a framework that does not capture
realistically reactions approaching saturation [Bagheri-Chaichian et al., 2003] - but see [Yi and Dean, 2019] and
[Labourel and Rajon, 2021] for other approaches showing similar saturating effects of enzyme concentrations.

Figure S5: (A) shows the strat-
egy that evolved when consid-
ering different degradation rates
(η = 10−3s−1 and η =
10−2s−1) and enzymes highly
efficient, for different permeabil-
ity levels of the membrane -
permeability only concerns one
nutrient, in the middle of the
chain. To cope with this phe-
nomenon and avoid the cost of
leakiness, cells allocate more to
the second part of the pathway
in either cases. Still, an eco-
logical niche tends to emerge as
the concentration of the inter-
mediate metabolite in the envi-
ronment increases steadily un-
til moderate permeability lev-
els are reached. They then
slightly decrease as population
sizes (B) also decrease. Remark-
ably, intermediate levels enable
a slight increase in the popula-
tion size, which means that the
population is better at depleting
its environment thanks to leak-
iness. No matter what, singu-
lar strategies are stable, which
is explained by the large differ-
ence between the nutrient con-
centration in the environment
(blue) and that of the interme-
diate metabolite.
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Text S3 Membrane permeability and optimal allocation be-
tween pathways

Because fitness contributions add up along the pathway, we have shown that it may be relevant for an
organism to favour certain of its reactions over others. Up until there, the selective pressures faced by
enzymes were identical. Yet, the situation may turn out very differently, for instance if a metabolite is
susceptible to be released in the environment, either passively through simple diffusion or actively through
excretion machineries. In this section, we evaluated the impact on optimal metabolic strategies that membrane
permeability may beget.

Text S3.1 High enzyme efficiencies foster cell investment in downstream
enzymes

We first report what happens when enzyme kinetic efficiencies are high - approximately, one order of magnitude
higher than median values observed in datasets [Bar-Even et al., 2011]. To grasp the qualitative effect of
diffusion affecting a given metabolite, the contribution of each reaction to fitness, which depends on its flux,
is first considered identical (each molecule produced by any reaction contribute one fitness unit). This echoes
findings detailed in the article about the relevance for cells to cope with permeability by allocating more to
the part of the pathway downstream the metabolite that is subject to it. One interesting phenomenon is that
the higher population size is found for intermediate permeability levels, which means that permeability may
help cells to deplete the environment more quickly - see Figure S5.

We have also reported in APPENDIX (Figure S13) the outcomes when accounting for metabolite toxicity,
which proved to have very little impact.

Figure S6: This TEP shows how
a trait should evolve in a pop-
ulation comprised of two res-
ident strategies. Each coali-
tion is made up by two resident
strategies, except on the bot-
tom left toward upper right bi-
sector for which the two resident
strategies are identical. The red
area is an area where coexis-
tence is not possible, contrary to
the blue one. In the blue area,
we determine the fitness of each
neighbouring mutant: there are
four such mutants, except on the
boundaries of the plot, as each
resident can mutate and either
increase or decrease its trait by
one small unit. Here, we see
that mutants that invade coali-
tions push the trait towards the
upper left corner or the lower
right one, which is exactly simi-
lar as these plots are symmetri-
cal.

Text S3.2 Moderately high enzyme efficiencies foster cross-feeding diver-
sification

In this section, kinetic parameters have been set to their median values found in Bar-Even et al. [2011]’s
dataset, that is kf = 106M−1s−1 and kcat = kr = 102s−1. Results obtained with two degradation rates were
reported in the article. We here provide details - see Figure S6 about the trait evolution plot (TEP) showing
for which minimum permeability - combined with the moderate degradation rate - the singular strategy is
invaded by a protected dimorphism [Geritz et al., 1998, Brännström et al., 2013]. Notice that owing to
computational difficulty, it is not possible to decide whether the singular strategy is stable for cases where
fitnesses are closer from one another. Typically, in this situation, one would expect that coalitions are favored
where the subtypes are in between the singular strategies and the specialist ones [Geritz et al., 1998].

We also provide results in Figure S7 for two different degradation rates, which confirm observations
described in the main body of the article.
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Figure S7: Outcomes of
competition for two other
degradaiton rates than those
shown in the main document
(moderately low=10−2.5s−1;
high=10−1.5s−1). A mod-
erately low degradation rate
comes with the emergence of a
new niche when permeability
coefficients are high, but it
remains dubious whether or
not this should trigger diver-
sification under the conditions
studied here. On the con-
trary, a high degradation rate
yields a high selective pressure
and should therefore trigger
diversification between two
specialist phenotypes when
the permeability P exceeds
10−6dm · s−1

Figure S8: Outcomes of competition for a low degra-
dation rate η = 10−3s−1 and two levels of metabolite
toxicity - moderate: T = 10−1M , low: T = 1M . (A)
shows an example of branching points obatined when
studying the effect of toxicity: notice that the singular
strategy can only be invaded by a cross-feeder, which
may yield a Black Queen dynamics. (B) shows results
where the content is constantly adjusted, first by in-
creasing allocation to the first subpathway while the
other remains constant (until 0.5 on the PIP scale of
(A)) and vice-versa when the trait exceeds the value of
0.5 (on the PIP). In this latter case, cross-feeder mu-
tants are a little less favoured, and, in turn, branch-
ing points are a little more difficult to find than in
(C), which shows results obtained when optimisation
is made for a constant total content, by adjusting both
content at the same time.

Text S3.3 Toxicity may also yield cross-feeding interactions

We tested how metabolite toxicity influences the outcomes by setting η = 10−3s−1 as to limit the impact of
this parameter and studied two toxicity levels: T = 10−1M and T = 1M . The outcomes are qualitatively
different although branching points still emerge (see Figure S8 - A). Because there is little loss of metabolites,
the generalist strategy has no interest to sacrifice its second subpathway, which looks like a Black Queen
coexistence where it may seem costly to keep the first subpathway but it is nonetheless essential for the
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community to survive. Yet, for very high permeability rates, cross-feeders may eventually have the edge on
generalist strategies (see Figure S8 - B and C), although the path leading to them is narrow, at least on a
linear scale. This may not undermine these findings since levels of expression are likely evolving on a log scale,
and switching off a subpathway may still be achievable through few regulatory mutations. Notice that for this
latter reason, we did not draw coexistence plots because most of them would be dubious since weak mutations
should not permit the invasion by cross-feeders; only simulations would be able to determine whether or not
cross-feeding evolves and, if so, how often it does. Besides, we have also shown that these results are robust
to the way mutations are drawn, as PIPs based on mutants that change only one of their concentration (and
set the other to the optimum without permeation) display similar trends. This situation is slightly different
because cells may be able to decrease their total content in order to avoid excess crowding and its deleterious
effect.

Text S3.4 Realistic conditions including reversibility also promote a sim-
ilar proteome allocation and the emergence of cross-feeding

I this subsection, we report results when considering a realistic set of constraints combining both reversibility,
toxicity and degradation. Because what matters when reversibility enters into play is both the degradation
rate and constraints set by the initiating transporter (whose reversibility rate is close to 1), the optimal
allocation still requires to focus on the first sub-pathway, despite the pressure also set by toxicity. Notice that
because reversibility is spread all along the pathway, when it neighbours 1, the optimal allocation quickly
switches to an equal allocation between downstream and upstream enzymes, while a higher reversibility would
lead to the need of enhancing the expression of downstream enzymes, as the reversibility which would set
the higher constraint would be that within the cell rather than that of the trasporter initiating the pathway.
Notice that the average reversibility of the central carbon metabolism is approximately 10−1 leading to a very
high departure from the equal spread. Assuming such a reversibility and different payoffs for each subpathway
does not change qualitatively this finding, with an optimal allocation between 2:1 and 3:1.

Figure S9: Influence of reversibility on the optimal allocation. In (A), the influence of reaction reversibility is shown
for an equal yield of each subpathway when a low toxicity (T = 1M) and a low degradation rate (ηd = 10−4s−1)
are considered. In (B), reversibility is set to its geometric mean for enzymes involved in central carbon metabolism
while toxicity (T = 10−1M) and the degradation rate (η = 10−3s−1) are set to moderate values and the ratio between
sub-pathways yields is proven to be of little influence.

Finally, we report thereafter the influence of the membrane leakage when assuming realistic internal and
metabolic constraints. In these cases again, cross-feeding interactions only arise when permeability reaches
very high values P > 10−6dm · s−1, and, as in the toxicity case, it may involve a black queen dynamics where
the stable coalition is composed of a generalist strategy focusing on the second part of the pathway and a
specialist exploiting only the second sub-pathway. Notice that when incorporating reversibility in the model,
it is not easy to find an algorithm that allows to find the demographic equilibrium of coalitions with sufficient
precision; thus, we do not report these dubious results here though they tend to point towards the emergence
of coalitions.
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Figure S10: Influence of the permeability rate when assuming realistic conditions for toxicity, reversibility and degra-
dation - ηd = 10−3s−1, T = 10−1M and Krev = 10−1 in (A). In (B), results coincide with a high degradation rate
(ηd = 10−2s−1) while in (C), we report results when a higher toxicity rate T = 10−2M is considered. Cross-feeding
interactions should generally be favored by evolution when permeability is high (although it is not possible to solve the
TEPs when reversibility is also involved).
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APPENDIX - Subset of PIPs obtained for the optimal pathway content

We here report PIPs that were obtained when testing the influence of enzyme efficiencies and the concentration
of the first enzyme:

Figure S11: PIPs showing the convergent stable strategy - CSS hereafter - for a first enzyme concentration (the enzyme
directly following the transporter) [Etot,0] = 100µM ,different average enzyme efficiencies (rows) and degradation rates
(columns). The point at the crossroads of green and red areas denote the CSS. Grey areas represent areas where no
strategy at all is viable, which means that no strategy is able to produce enough energy to compensate both for the
protein production cost and the minimumx flux ensuring that births compensate for deaths. Results are shown and
commented more in depth on figure S1, where CSSs are denoted as points.

We also report PIPs that were used to determine how the content between two parts of pathways should
establish with low selective constraints and how it should change in response to higher selective ones:

Figure S12: PIPs showing the convergent stable strategy for the set of generic parameters in the situation where an
organism can spread its proteome between upstream reactions and downstream ones. Axis denote the resident and the
mutant strategy, which are expressed as the investment in the first part of the pathway as the total concentration is
set to its optimum (found in section Text-S1). Results in Figure 1 of the article sums up these PIPs by showing only
the CSSs.

We report below the outcomes about optimal allocation obtained when considering toxicity, a low degra-
dation rate and high enzyme efficiencies:
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Figure S13: (A) shows the strat-
egy that evolved when consider-
ing different a low degradation
rate (η = 1e−3s−1) and various
toxicity rates (High: T = 1e −
2M and Low: T = 1e−1M) and
enzymes highly efficient, for dif-
ferent permeability levels of the
membrane - permeability only
concerns one nutrient, in the
middle of the chain. Results are
very similar than those obtained
when we did not consider toxic-
ity, except that the population
crashes with high toxicity and
permeability rates.

We report the underlying TEPs that helped draw Figure S7:

Figure S14: TEPs in the case of median enzyme efficiencies (kf = 106M−1s−1, kcat = 102s−1) and a high degradation
rate η = 10−2s−1. Evolution yields the same strategy in all these cases, that is the coexistence of two specialist
strategies where the second subtype cross-feeds on the first one.

We also report the TEP which helped draw the second figure of the article, when considering a degradation
rate ηd = 10−5s−1:
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Figure S15: This TEP shows the
results when considering only a
degradation rate, when the per-
meability rate is set to P =
10−5dm s−1, as in section Text
S3.2

Finally, we report the results which helped draw PIPs when realistic conditions were considered, that is to
say including reactions reversibility besides metabolite toxicity and a relatively low degradation rate. These
sets of PIPs were used to draw Figure S10 of SM, where plos on the left coincide with low permeability rates
while plots on the right coincide with the highest permeability rates:
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