
8 Appendix A: Analysis of trajectories

Trajectories obtained from cell tracking (see Materials and Methods) consist of 2D coordinates

at discrete times (t1, t2, t3...) with a constant time interval, i.e. �t = ti+1 � ti = 0.002s for

videos captured at 500 fps. The trajectories were analysed using custom MATLAB scripts. First,

a smoothing filter was applied. For CR, a Savitzky–Golay filter with order 2 and frame length 201

was used to smooth out the helical trajectories such that a speed and angular velocity corresponding

to the net forward motion of the cell could be obtained. For PO, a Savitzky–Golay filter with order

2 and frame length 21 was used. A smaller frame length was used due to the fast timescale of the

shock behaviour and since PO has smoother trajectories than CR (Appendix 1 Figure 9). The cell

velocity at time ti was calculated as

v (ti) =
x (ti+1)� x (ti)

�t
, (1)

where x (ti) is the 2D coordinate of the centroid of the cell at time ti for the smoothed trajectories.

The angular velocity of the cell was defined as

⌦ (ti) =
arccos v̂ (ti�1) · v̂ (ti)

�t
, (2)

where v̂ (ti) is the normalised velocity vector at time ti. To reduce the noise of the angular velocity

data, the results reported are a moving mean across 25 frames.

Violin plots, which combine box plot and histogram data representations into one diagram,

were created using a MATLAB package [67]. The width of the violin plots correspond to the

probability density function and are scaled linearly for CR and logarithmically for PO.

Figure 9: Smoothing tracking data using a Savitzky-Golay filter (sgolayfilt). Example raw and

smoothed trajectories for CR (A) and PO (B).

8.1 Mean square displacement

The the mean square displacement (MSD) is defined as

MSD (⌧) =
1

N⌧

X

ti

|x (ti + ⌧)� x (ti) |2, (3)

28

where ⌧ is the delay and N⌧ the number of pairs of time points in the trajectory with �t = ⌧ .

The MSD was calculated for the raw 2D coordinate positions using the ‘@msdanalyzer’ MATLAB

package [68]. The MSD results reported here were calculated using 1/50th of the data points (i.e.

every 50th frame) due to the data array size constraints of the package.

8.2 Probability flux calculation and relative probability density

We calculated the probability fluxes using a method previously applied to trajectories of C. rein-

hardtii [24] and first introduced by [23]. The 2D positional space is divided into a grid of equally

sized square boxes with side length �x = rtrap/7. For each time point the position is assigned to

a box (i, j) , where i and j are the box positions in the x and y direction respectively. From these

coarse-grained trajectories, a time-series of transitions is obtained by constructing the following

array

A =

2

66664

(i, j)1 (i, j)2 t1,2

(i, j)2 (i, j)3 t2,3

...

(i, j)N�1 (i, j)N tN�1,N

3

77775
, (4)

where (i, j)n and (i, j)n+1 are the positions of consecutively visited boxes and tn,n+1 is the length

of time spent in the initial state (i, j)n before transitioning to the new state (i, j)n+1. In a small

number of cases, the two success states (i, j)n and (i, j)n+1 do not correspond to nearest neighbours.

In such cases, the intermediate boxes are determined by linear interpolation and the corresponding

extra transitions are inserted into the array A (equation 4) to ensure that all transitions in A are

between nearest neighbours.

The net transition rates between neighbouring boxes are calculated from the coarse-grained

trajectories using

!(i,j)(k,l) =
1

ttotal

�
N(i,j)(k,l) �N(k,l)(i,j)

�
, (5)

where N(i,j)(k,l) is the number of transitions from box (i, j) to box (k, l) and ttotal is the total

duration of the trajectory. The net transition rates are then used to calculate the probability flux

j(i,j) =
1

2�x

!(i,j)(i+1,j) + !(i�1,j)(i,j)

!(i,j)(i,j+1) + !(i,j�1)(i,j)

!
. (6)

This method is summarised in Appendix 1 Figure 10. Note that this calculation does not account for

diagonal transitions, however since they account for only < 5% of all nearest neighbour transitions,

we assume they have a minimal e↵ect on the results.

The 2D trajectory data was also used to calculate the relative probability density

c(i,j) =
Atrapn(i,j)

Abox
P

n(i,j)
, (7)

where n(i,j) is the number of trajectory points within box (i, j), Abox = �x2 is the box area and

Atrap = ⇡r2trap is the area of the trap [6].

29

Figure 10: Probability flux analysis method.

Figure 11: Method For Identifying CR States

A) CR cell velocity for a 10 s segment, with a run/stop threshold of 5 µm/s. B) CR cumulative

reorientation for the same 10 s segment. C) CR angular velocity for the same 10 s segment, with a

tumble threshold of 32.5 rad/s. D) CR states for the same 10 s segment.

9 Conversion into three motility macrostates

We started from raw track data, and assigned states in CR and PO using a combination of linear v

and/or angular ⌦ speeds. In both cases, we took moving averages to reduce frame-to-frame noise

(due to the high imaging frame rates).

9.1 States for Chlamydomonas reinhardtii : (run, stop, tumble)

We defined the ‘stop’ state as times when v <5 µm/s. A smoothing filter was applied to the binary

stop/move data to remove spurious state transitions. We then verified the stop states by visual

inspection. To identify ‘tumbles’, we use angular velocity to locate times when ⌦ >32.5 rad/s. We

filtered the dateset to correct for false tumbles by removing tumbles that were under 200ms, and for

false runs of very short duration found between successive tumbles. We again verified that tumble

30

Figure 12: Method For Identifying CR States

A) PO cell velocity for a 10 s segment, with a run/stop threshold of 5 µms�1. B) PO median

movement over 9-frame windows for the same 10 s segment. C) PO increases in cell median

movement for the same 10 s segment, with a shock threshold of 185 µm/s. D) PO states for the

same 10 s segment.

states corresponded with cell reorientation with visual inspection. Finally, frames that were neither

a ‘stop’ or a ‘tumble’, were designated ‘runs’, with ‘stops’ taking precedence over ‘tumbles’. The

workflow is summarised in Figure11.

9.2 States for Pyramimonas octopus: (run, stop, shock)

Here, only the linear speed is su�cient to assign states to PO, since they are associated with very

distinct speeds [13]. We defined the ‘stop’ state as times when the smoothed speed v <5 µm/s. A

smoothing filter was applied to the binary stop/move data to remove spurious state transitions.

We then verified the stop states by visual inspection.

To identify shocks, we first smoothed the data by computing a local median value and then

a moving mean. We then identified each local minimum and the subsequent local maximum, and

computed the increase between the two. Increases of ⌦ >185 µm/s were identified as shocks. The

start point of shocks were chosen as the point in time between the local minimum and maximum

where half of the total increase in displacement had occurred. Equivalently, the end of the shock was

defined as the point in time between the current displacement maximum and post-shock minimum

where half of the total decrease in displacement had occurred. Finally, frames that were neither a

‘stop’ or a ‘shock’, were designated ’runs’, with ‘stops’ taking precedence over ‘shocks’. Brief (¡0.2s)

‘run’ states between a ‘stop’ and a ‘shock’ were reclassified as ‘stop’ states to remove spurious state

transitions. The workflow is summarised in Figure 12.

31

9.3 State probability and transition rate analysis

We estimated transition probabilities between motility macrostates via a simple counting algorithm.

State probability is given by

pi =
niP
j nj

, (8)

where ni is the number of frames in which the cell is classified to be in state i.

Transition probability from state i to j is given by

pij =
nijP
k 6=i nik

, (9)

where nij is the number of transitions from state i to state j.

Transition rate from state i to j is defined as

qij =
pij
hTii

, (10)

where hTii is the mean duration of state i.

The survival probabilities for state i are defined by

P (Ti > ⌧) = pi
N (Ti > ⌧)

N (Ti > 0)
, (11)

where N (Ti > ⌧) is the number of instances where the duration of state i is longer than ⌧ .

9.4 Beat frequency during a run

The cilia beat frequency for each run period longer than 1 s was estimated using a fast Fourier

transform analysis of the raw speed (i.e. calculated using the raw centroid positions). A second

order Savitzky–Golay filter with frame length 45 was used to reduce the noise of the Fourier

transform and the beat frequency for each run was taken to be the highest peak within 30-90 Hz

(or if the highest peak was twice the frequency of the second highest peak, then the latter was

taken as the beat frequency).

32

	Introduction
	Results
	Microfluidic trapping of single motile algae
	Effect of physical confinement
	Effect of white light stimulation
	Behaviour is compressed into a trio of motility macrostates
	Algal cell motility is light-switchable
	Rapid chemical modification of motility triggered by droplet fusion

	Discussion
	Stereotypy and the `arrow of time' in long-term single-cell behaviour
	Non-equilibrium flux loops without curvature gradients
	Light-dependent algal motility and phototoxicity
	Future prospects of droplet microfluidics for assaying cell motility

	Author contributions
	Acknowledgments
	Resource availability
	Materials and Methods
	Cell culturing and maintenance
	Microfluidic chip fabrication
	Flow-focusing droplet generation
	Live-cell high-speed imaging
	Light-modulation experiments
	Bulk cell motility assay
	Paired-droplet fusion assay
	Image processing and cell tracking

	Appendix A: Analysis of trajectories
	Mean square displacement
	Probability flux calculation and relative probability density

	Conversion into three motility macrostates
	States for Chlamydomonas reinhardtii: (run, stop, tumble)
	States for Pyramimonas octopus: (run, stop, shock)
	State probability and transition rate analysis
	Beat frequency during a run

