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Abstract 
Background: Chimeric antigen receptor (CAR) T cells traditionally harbor viral vector-based 
sequences that encode the CAR transgene in the genome. These T cell products have yet to show 
consistent anti-tumor activity in patients with solid tumors. Further, viral vector manufacturing is 
resource intensive, suffers from batch-to-batch variability, and includes several animal 
components, adding regulatory and supply chain pressures. 
 
Methods: Anti-GD2 CAR T cells were generated using CRISPR/Cas9 within nine days using 
recombinant Cas9 protein and nucleic acids, without any viral vectors or animal components. 
The CAR was specifically targeted to the T Cell Receptor Alpha Constant gene (TRAC). T cell 
products were characterized at the level of the genome, transcriptome, proteome, and secretome 
using CHANGE-seq, scRNA-seq, spectral cytometry, and ELISA assays. Functionality was 
evaluated in vivo in an NSG xenograft neuroblastoma model. 
 
Results: In comparison to traditional retroviral CAR T cells, virus-free CRISPR CAR (VFC-
CAR) T cells exhibit TRAC-targeted genomic integration of the CAR transgene, elevation of 
transcriptional and protein characteristics associated with a memory phenotype, and low tonic 
signaling prior to infusion arising in part from the knockout of the TCR. Upon exposure to the 
GD2 target antigen, anti-GD2 VFC-CAR T cells exhibited specific cytotoxicity against GD2+ 
cells in vitro and induced solid tumor regression in vivo, with robust homing, persistence, and 
low exhaustion against a human neuroblastoma xenograft model.  
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Conclusions: This proof-of-principle study leveraging virus-free genome editing technology 
could enable flexible manufacturing of clinically relevant, high-quality CAR T cells to treat 
cancers, including solid tumors. 
 
Text 

Chimeric antigen receptor (CAR) T cell therapy is rapidly transforming the treatment of 
many cancers, with five products already approved by the Food and Drug Administration for 
some hematologic malignancies. However, solid tumors have presented a difficult challenge for 
the CAR T field, as clinical trials to date have yielded little to no responses and no improvement 
in survival1,2 due in part to poor T cell potency and/or persistence within patients3. New CAR T 
products, manufactured for high potency within solid tumors, are critically needed4–6. 

CAR T cells are traditionally manufactured using lentiviruses or �-retroviruses7,8 which 
confer high-efficiency editing; however, viral transduction methods broadly integrate their 
nucleic acid payloads into the host genome, risking insertional mutagenesis7,9. In addition, poorly 
specified integration of a CAR transgene can lead to heterogeneous and unpredictable CAR 
expression. Good manufacturing practice (GMP)-grade viral vectors and associated quality 
testing are also expensive and constitute a major supply chain bottleneck for the field10. Nonviral 
methods of CAR transduction include transposon-mediated integration11 and transient mRNA 
delivery through electroporation12. Like lenti- and retroviruses, transposons also integrate the 
CAR broadly throughout the genome, while mRNA-mediated delivery results in only transient 
CAR expression over a period of days, which can be problematic for achieving sustained 
remission13. Therefore, standard nonviral delivery methods present considerable challenges for 
precise and durable CAR gene transfer. 
 Recent strategies employing viral vectors and CRISPR/Cas9 genome editing14–16 have 
targeted the CAR transgene to a single genomic locus to reduce the risks of insertional 
mutagenesis and transgene silencing. Eyquem and colleagues inserted an anti-CD19 CAR into 
exon 1 of the T cell receptor alpha chain (TRAC), disrupting expression of the T cell receptor 
(TCR) while also driving CAR expression from the endogenous TRAC promoter17. These T cells, 
engineered through electroporation of Cas9 mRNA followed by delivery of a homology-directed 
repair (HDR) template within a recombinant adeno-associated viral (AAV) vector, were potent, 
retained a memory phenotype, and showed less exhaustion relative to conventional �-retroviral 
products. An AAV-mediated approach has also been combined with TALEN technology to 
engineer TRAC-targeted CAR T cells, with comparable effects on T cell phenotype18. These 
phenotypes correlate with improved outcomes for patients with hematological malignancies19–26. 
Strategies that lead to memory CAR T cell generation with lower exhaustion and terminal 
differentiation phenotypes have been hypothesized to be beneficial in treating solid tumors27. 
The use of AAVs to deliver the HDR template needed for CRISPR-mediated transgene 
insertion17,28 is however limited by supply chain challenges associated with viral vector 
production10. Additionally, vector integration into the genome with AAVs can occur when used 
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in conjunction with Cas928, and cellular response to the introduction of viral elements could 
affect T cell phenotypes. Therefore, alternate strategies for precise CAR transgene insertion that 
avoid viral vectors entirely could yield new opportunities to flexibly manufacture CAR T cell 
immunotherapies with desirable phenotypes.   

Completely virus-free CRISPR/Cas9-mediated gene transfer with transgenic TCR and 
anti-CD19 CARs has recently been demonstrated to be functional against some cancers29–31, but 
not for solid tumors. Here, we build upon these virus-free methods29,32 to integrate a 3.4 kb third-
generation anti-disialoganglioside (GD2) CAR transgene33 at the human TRAC locus to report a 
completely virus-free CRISPR CAR (VFC-CAR) T cell product featuring precise genomic 
integration of a CAR that has been validated in an in vivo solid tumor model. VFC-CAR T cells 
exhibit more transcriptional and protein expression characteristics associated with a memory-like 
phenotype relative to conventional �-retroviral (RV)-CAR T cells. These VFC-CAR T cells 
also show evidence of decreased TCR and CAR signaling prior to antigen exposure and 
comparable potency relative to conventional viral CAR T cells against GD2+ neuroblastoma in 
vivo.  
 
Results 
VFC-CAR T cells can be efficiently manufactured with low CAR expression heterogeneity. 
To avoid using HDR donor templates within viral vectors, we first cloned a third generation 
GD2-targeting CAR sequence33 into a plasmid containing homology arms flanking the desired 
cut site at the start of the first exon of the TRAC locus (figure 1A). The same third generation 
GD2-targeting CAR sequence was used to generate RV-CAR T cells as a comparison throughout 
this study (figure 1B). We next generated double-stranded DNA (dsDNA) HDR templates via 
PCR amplification off the plasmid and performed a two-step purification process to purify and 
concentrate the templates. Building on prior established protocols29, we performed two 
sequential purifications on the PCR amplicons to produce a highly-concentrated dsDNA HDR 
template. Primary human T cells from healthy donors were electroporated with the HDR 
templates and Cas9 ribonucleoproteins (RNPs) targeting the human TRAC locus. Cells were 
allowed to recover for 24 hours at high density in round-bottom 96-well plates. Next, the cells 
were cultured in xeno-free media and assayed on days 7 and 9 post-isolation to produce VFC-
CAR T cell products. We also include a virus-free CRISPR control (VFC-Ctrl) condition in 
which cells harbor the same disruption of the TRAC locus, but with a signaling-inert mCherry 
fluorescent protein inserted in place of the CAR (figure 1B).  

We profiled each cell product for viability and yield at various points throughout the 
manufacturing process. The viability of VFC-CAR and RV-CAR T cells were both high (>80%) 
by the end of manufacturing (online supplemental figure S1A). Cell proliferation and growth 
over nine days were robust for both groups (online supplemental figure S1A). We assessed 
gene editing at multiple points post-isolation and achieved higher levels of CAR integration 
when cells were edited at 48 hours after CD3/CD28/CD2 stimulation (online supplemental 
figure S1B). Using these templates, we achieved consistently high genome editing across over 4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.08.06.455489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455489
http://creativecommons.org/licenses/by-nc-nd/4.0/


Text with Figures, Page 4 

donors, with an average of 15% knockin efficiency. We improved targeting efficiency further by 
using alternate primer pairs in our PCR strategy, which increase the length of the homology arms 
from ~390 bp to ~550 bp on either side of the CAR. This product, while larger in size (3.4 kb), 
demonstrated up to 45% knockin efficiency, with an average of 34% CAR+ and TCR- cells, as 
measured by flow cytometry (figure 1C, D). Within the VFC-CAR samples, the TCR was 
consistently knocked out in >90% of T cells (figure 1E). The mean fluorescence intensity (MFI) 
of CAR expression was significantly elevated and showed greater range (~1.6 fold; figure 1F) in 
the RV-CAR samples in comparison to the VFC-CAR samples, indicating decreased CAR 
expression heterogeneity within the VFC-CAR product and consistent with prior findings with 
AAV-CRISPR-CAR T cells4.  
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Figure 1. Virus-free CRISPR (VFC)-CAR T cells are efficiently generated in one step by 
replacing the T cell receptor with the CAR. (A) Schematic showing the CAR genetic construct 
and virus-free strategy to insert the CAR into the first exon (grey box) of the human TRAC gene. 
No viral components are necessary, and the CRISPR-Cas9 ribonucleoprotein is delivered 
transiently via electroporation. The seed sequence of the gRNA is in blue and the protospacer 
adjacent motif (PAM) for SpCas9 is underlined. 14g2a: single chain variable fragment clone 
targeting GD2; SA: splice acceptor, 2A: self-cleaving peptide, pA: rabbit ß-globin polyA 
terminator. Arrows indicate positions of primers for in-out PCR assay shown in figure 2. (B) 
Schematic of T cell products used in this study with receptors and expressed transgenes. VFC-
CAR, virus-free CRISPR CAR T cell product generated by electroporation. RV-CAR, donor-
matched CAR T cell product generated by retroviral transduction with the same third generation 
anti-GD2 CAR shown in A; VFC-Ctrl, donor-matched control T cell product manufactured as in 
A but with an mCherry fluorescent protein instead of a CAR. (C) Representative density flow 
cytometry plots for transgene and TCR surface protein levels on the manufactured cell products. 
Y-axis shows CAR or mCherry levels and X-axis shows TCR levels on day 7 post-isolation (day 
5 post-electroporation for VFC-CAR and VFC-Ctrl, and day 4 post-transfection for control RV-
CAR). Thick colored boxes delineate cell populations selected for downstream analysis. (D) 
Boxplots show the percentage of CAR positive cells from gene editing for VFC-CAR cells and 
from retroviral transduction for RV-CAR cells in each sample The first VFC-CAR product 
featured homology arms (HA) of 383 (left) and 391 (right) bp, respectively. The homology arms 
on the second VFC-CAR product were extended to 588 (left) and 499 (right) bp, respectively. 
(E) Boxplots show the percentage of TCR negative cells from gene editing in VFC-CAR cells 
and in RV-CAR cells. RV-CAR TCR negativity likely results from endogenous repression of the 
TCR. (F) Mean fluorescence intensity (MFI) values for the CAR expression levels with 
associated histograms. Boxplots show the percentage of CAR positive cells in each sample. * 
indicates p≤0.05; ** indicates p≤0.01; *** indicates p≤0.001; **** indicates p≤0.0001.  
 
Genomic analysis indicates specific targeting of the CAR transgene to the TRAC locus. 
After confirming robust CAR protein expression, we performed genomic analysis to measure the 
on-target specificity of the gene edit. Proper genomic integration of the CAR was confirmed via 
an “in-out” PCR amplification assay34 on the genomic DNA extracted from the manufactured 
cell products with primers specific to the TRAC locus and the transgene (figure 2A). Next-
generation sequencing of genomic DNA to profile TRAC alleles in the cell products without an 
integrated transgene confirmed high rates of genomic disruption at the TRAC locus for these 
residual alleles, with 93.06% indels for the VFC-CAR and VFC-Ctrl samples. Altogether, the 
combined genomic integration of the CAR or mCherry transgene and indels at the TRAC locus 
resulted in concomitant loss of TCR protein on the T cell surface in sample-matched assays 
(figure 2B, C). Genome-wide, off-target activity for our editing strategy was assayed by 
CHANGE-seq35. The top modified genomic site was identified to be the intended on-target site 
(figure 2D, E) with a rapid drop-off for off-target modifications elsewhere in the genome. The 
CHANGE-seq specificity ratio of our TRAC editing strategy is above average (0.056; 57th 
percentile) when compared to published editing strategies previously profiled by CHANGE-
seq35. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.08.06.455489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455489
http://creativecommons.org/licenses/by-nc-nd/4.0/


Text with Figures, Page 7 

 
Figure 2. VFC-CAR T cells are efficiently and specifically edited at the TRAC gene. (A) In-
out PCR indicates proper on-target genomic integration of the CAR transgene in VFC-CAR 
cells. Primer locations are shown in figure 1A by arrows upstream of the left homology arm and 
within the CD28 sequence of the CAR. Untransf., untransfected donor-matched T cells; NTC, no 
template control. (B) Percent of cells with indels at the TRAC gene in both VFC-CAR and VFC-
Ctrl conditions. VFC-CAR (blue) N=10; VFC-Ctrl (grey) N=8, both for one donor. (C) Level of 
TCR editing in VFC-CAR and VFC-Ctrl T cells measured by both flow cytometry (left) and 
deep sequencing of genomic DNA (presence of insertions and deletions, indels, at the TRAC 
locus, right). VFC-CAR (blue) N=10, VFC-Ctrl (grey) N=8. (D) Manhattan plot of CHANGE-
seq-detected on- and off-target sites organized by chromosomal position with bar heights 
representing CHANGE-seq read count. The on-target site is indicated with the blue arrow. (E) 
Visualization of sites detected by CHANGE-seq. The intended target sequence is shown in the 
top line. Cleaved sites (on- and off-target) are shown below and are ordered top to bottom by 
CHANGE-seq read count, with mismatches to the intended target sequence indicated by colored 
nucleotides. Insertions are shown in smaller lettering between genomic positions, deletions are 
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shown by (-). Output is truncated to top sites; additional sites are shown in online supplemental 
table S1. 
Cytokine profiling reveals high antigen-specific response for VFC-CAR T cells. After 
harvesting CAR T cells, we profiled secreted cytokines typically associated with a 
proinflammatory response. On day 9 of manufacturing prior to antigen exposure, RV-CAR T 
cells produced higher levels of IFNγ, TNFα, IL-2, IL-4, IL-10, IL-13, IL-6, IL-1β and IL-12p70, 
in comparison to both VFC-CAR and VFC-Ctrl T cells (figure 3A, individual replicates shown 
in online supplemental figure S2A). To determine cytokine production after antigen-induced 
stimulation, we performed a 24 hour co-culture between the engineered T cells and GD2+ 
CHLA20 neuroblastoma, then measured cytokines in the conditioned media. Interestingly, we 
found that in the presence of antigen stimulation, the previous trend had reversed: VFC-CAR T 
cells either matched or surpassed the level of cytokine production of the RV-CAR T cells (figure 
3A). This result suggests that cytokine secretion after a single antigen stimulation is comparable 
in VFC-CAR and RV-CAR T cells, but basal secretion in the absence of antigen stimulation is 
decreased in VFC-CAR T cells. 
  
VFC-CAR T cells exhibit low basal TCR and CAR signaling during manufacturing. To test 
the possibility that variation in cytokine production prior to cognate antigen exposure resulted 
from varying levels of basal signaling from the CAR and/or TCR during ex vivo culture, we 
assayed CD3ζ phosphorylation from both native CD3ζ  and the CD3ζ  portion of the CAR via 
western blot (figure 3B). We found elevated protein levels of both CAR and TCR-associated 
CD3ζ in RV-CAR T cells relative to VFC-CAR T cells, potentially indicative of both a higher 

CAR copy number in RV products and an intact TCR-CD3ζ complex in the absence of TRAC 

knockout36. We also observed higher levels of CD3ζ  phosphorylation in RV-CAR T cells from 
both CAR and TCR-associated protein, indicating elevated levels of basal signaling. In the 
absence of antigen exposure, elevated CAR/TCR signaling is likely present in the traditional RV-
CAR T cells, a phenotype that has been associated with an increased propensity for terminal 
differentiation and exhaustion in some CAR T cell products, and which has been specifically 
identified in the context of CAR T cell products dependent on γ−retroviral vectors37–39. VFC-

CAR and VFC-Ctrl cells both showed sharply decreased TCR-mediated CD3ζ signaling after 
TRAC knockout, and VFC-CAR T cells also showed minimal activity from CAR-associated 
CD3ζ. These results with our anti-GD2 CAR are consistent with prior findings of lower tonic 
signaling with an anti-CD19 CAR when CAR expression was driven by the endogenous TRAC 
promoter17. Both TCR and CAR-mediated basal signaling are diminished by our VFC strategy, 
in comparison to traditional RV products.  
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Figure 3. VFC-CAR T cells mount robust cytokine response upon exposure to cognate 
antigen, and decreased CAR and TCR-mediated signaling during manufacturing. (A, left) 
Cytokine production from conditioned media taken from T cell products at the end of 
manufacturing (pre-antigen exposure). Values are pooled from four donors. VFC-CAR (blue) 
N=24; RV-CAR (green) N=33; VFC-Ctrl (gray) N=22. (A, right) Cytokine production in 
conditioned media after a 24 hour co-culture of manufactured T cell products with the target 
antigen GD2 on CHLA20 neuroblastoma cells. Values are pooled from two donors. VFC-CAR 
(blue) N=8; RV-CAR (green) N=5; VFC-Ctrl (gray) N=8. The minimum and maximum for the 

color scale for each cytokine is as follows: IFN-y, 2000-30000 pg/mL. TNF-α, 10-1000 pg/mL. 
IL-2, 700-6000 pg/mL. IL-4, 0.2-20 pg/mL. IL-10, 0.5-150 pg/mL. IL-13, 300-1100 pg/mL. IL-
8, 25-1800 pg/mL. IL-6, 10-400 pg/mL. IL-p70, 0.1-4 pg/mL. IL-1β, 0.2-100 pg/mL. Individual 
replicates are shown in online supplemental figure S2. (B) Western blot from cell lysates 
containing equivalent fractions of transgene+ cells (40% of each sample) and stained for CD3ζ, 
phosphorylated (p) CD3ζ, and GAPDH. CD3ζ  domains from native CD3ζ  and GD2.28.40.ζ 
were distinguished by molecular weight (15 and 60 kDa, respectively). N=1 donor. 
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VFC-CAR T cells exhibit elevated surface memory markers. To further explore the 
differential state of viral and virus-free CAR T cell proteomes, we performed an 
immunophenotyping panel using spectral cytometry, assaying for markers of T cell memory and 
differentiation state, activation, trafficking, exhaustion, and senescence (online supplemental 
figure S3). For all markers, we gated cells first by size and shape, then by viability, CD45 
expression, and transgene expression to evaluate the multidimensional immunophenotypes 
within our products. We noted a dramatic decrease in CD3 expression in both VFC-CAR and 
VFC-Ctrl products relative to RV-CAR T cells, as expected following TCR knockout36. This 
finding corroborates the decrease in CD3ζ detected by western blotting (figure 4A). We next 
assessed expression of CD45RA and CD45RO, which are frequently used to distinguish 
naive/effector and memory subtypes40. Surprisingly, we found that a majority of cells expressed 
both markers, likely indicating a transitional cell state41; however, significantly more VFC-CAR 
and VFC-Ctrl T cells expressed the memory-associated CD45RO marker at high levels relative 
to RV-CAR T cells, indicating active formation of a central memory (Tcm) or effector memory 
(Teff) phenotype (figure 4B). There was a skew toward high levels of CD62L, another memory-
associated protein, in VFC products relative to viral products; this is consistent with phenotypes 
observed for TRAC-knockout CD19 CAR T cells17 (figure 4B, online supplemental figure 
S4A). The vast majority of cells in all groups expressed CD95, indicating that the cells have 
differentiated beyond a naive phenotype, as expected after activation by a CD2/CD3/CD28 
tetrameric antibody in the culture media42 (online supplemental figure S4A). We noted that 
viral and VFC-CAR cells expressed comparable levels of the memory-associated protein CCR7, 
and significantly more than VFC-Ctrl cells.   

We also probed the activation-associated marker HLA-DR and five exhaustion-
associated markers: PD1, LAG3, TIM3, TIGIT, and CD39. High levels of HLA-DR expression 
were seen in all groups, demonstrating proper stimulation from the IL-2 and activator present in 
the cell culture media. Of the exhaustion markers, only PD1 showed a significant difference 
across sample types, with elevated expression in RV-CAR T cells relative to either VFC-CAR or 
VFC-Ctrl products (figure 4C).  While not fully exhausted at the end of the culture process, as 
evidenced by the ability to secrete more cytokine after antigen stimulation (figure 3A), RV-CAR 
T cells have progressed closer to terminal differentiation relative to VFC-CAR T cells. Other 
markers profiled included CD4, CD8, CD27, CD28, and CXCR3, and showed minimal or no 
differences among cell products. All products had negligible expression of the senescence marker 
CD57 (online supplemental figure S4A). 
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Figure 4. Immunophenotyping profile of VFC-CAR T products. Cells were assayed by 
spectral cytometry with a 21-color immunophenotyping panel on day 10 of manufacturing. (A) 
No significant differences were observed in CD4 and CD8 expression, or the CD4:CD8 ratio 
across cell types. CD3 was significantly decreased in TRAC edited products. (B) VFC-CAR T 
cells showed elevated levels of CD45ROhi cells relative to RV-CAR T cells, and elevated levels 
of CD62Lhi cells; no significant difference was observed for CCR7, a third marker of central 
memory. (C) RV-CAR T cells showed elevated levels of the exhaustion marker PD-1 relative to 
VFC T cells. For all panels, cells were gated on CD45+ transgene+ cells (either CAR or 
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mCherry). Gating strategies are shown in online supplemental figures S3. Additional markers are 
shown in online supplemental figure S4. VFC-CAR (blue) N=7; RV-CAR (green) N=7; VFC-
Ctrl (gray) N=8 across two donors. Significance was determined by ordinary one-way ANOVA; 
* indicates p≤0.05; ** indicates p≤0.01; *** indicates p≤0.001; **** indicates p≤0.0001.  
 
 
Single cell memory- and exhaustion-associated transcriptional signatures of VFC-CAR 
products. To further characterize the phenotypic differences between RV-CAR, VFC-CAR, and 
VFC-Ctrl T cells, we performed single-cell RNA-sequencing (scRNA-seq) on 79,317 cells (post-
quality control) from two different donors, both at the end of the manufacturing process and after 
24 hours of co-culture with GD2+ CHLA20 neuroblastoma cells (figure 5A). We observed no 
significant donor-specific or batch effects, as indicated by gross clustering patterns in the 
combined data set (online supplemental figure S5A). Further, no significant changes in 
transcript levels were found for genes at or within 5 kb of off-target sites predicted by 
CHANGE-seq, indicating that any potential genomic disruptions at these sites did not lead to 
immediately detectable changes in proximal transcripts. To distinguish edited transgene-positive 
and transgene-negative cells within each sample, we aligned reads to custom reference genomes 
containing an added sequence mapping to the CAR or mCherry transgenes. Subsequent 
transcriptional analyses were carried out on transgene-positive cells only within each sample 
(21,068 total transgene+ cells). Untransfected cells were also profiled for one donor. Only 
5/9623 untransfected cells contained any reads that mapped to the CAR transgene, indicating a 
false-positive rate of 0.05% in identifying transgene-positive cells. 
 We performed tSNE dimensionality reduction and graph-based clustering on all cells and 
identified clusters with gene expression patterns associated with various phenotypes, including 
memory-like and effector-like populations across CD4 and CD8 subsets (figure 5, online 
supplemental figure S6). Using established unbiased clustering methods43, we identified 22 
total clusters, of which 18 expressed T cell markers. The remaining 4 cancer-associated clusters 
arise residual cancer cells from our post-antigen samples and were removed from downstream 
analysis. The 18 T cell clusters exhibited more gradations of more stem-like, central and 
effector-like memory T cell formation, as well as populations with a mix of these phenotypes. 
Cluster identification was accomplished by assessing relative gene expression of markers 
associated with various T cell subtypes (online supplemental figures S7-S9) based on prior 
studies of human T cells40,44,45, including CAR T cells46. RNA-seq expression patterns for the 
protein markers profiled via immunophenotyping (figure 4, S4) are shown in online 
supplemental figure S10, and generally show concordance with protein-level expression. 
Consistent with our immunophenotyping results, we identified cells in transitional states of 
memory formation, expressing various combinations of markers associated with stemness, 
central memory, and effector function40,44–47 such as TCF7, LEF1 (figure 5B), CD95, IL7R, 
CD62L, CCR7, and others (online supplemental figure S7). Notably, some CD4 T cells were 
classified as belonging to memory or effector Th2 subsets (online supplemental figures S7, 
S8A). We also distinguished cells with effector-like phenotypes (e.g. high Granzyme B, GZMB; 
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figure 5B and online supplemental figure S8B). These cells had some expression of exhaustion 
markers including LAG3, TIM3, and CD39, although PD1 transcripts were notably absent 
(online supplemental figure S9). All products contained a heterogeneous population of cells 
that were progressing toward but had not yet reached terminal differentiation and exhaustion.  

The distribution of individual transgene+ cells within each cluster varied across the T cell 
samples (figure 5C, D). Prior to GD2 antigen exposure, 72% of VFC-CAR and 84% of VFC-
Ctrl T cells were in clusters with a memory-like phenotype (Early/stem-like/central/mixed 
memory, clusters 0, 3, 4, 5, 6, 7, 8, 9, 10, 12 in figure 5A), while only 34% of RV-CAR T cells 
did so. 42% of RV-CAR T cells at harvest had effector-like or partially exhausted phenotypes 
(clusters 2, 11, 13, 14, 17 in figure 5A), while 21% of VFC-CAR T cells and 18% of VFC-Ctrl T 
cells fell into these clusters (figure 5C).  As expected, the skew towards a memory-like 
phenotype did not persist for VFC-CAR or RV-CAR T cells after 24 hours of co-culture with 
GD2+ neuroblastoma cells in vitro. The distribution of transgene+ cells within each cluster 
shifted such that 44% and 48% of VFC-CAR and RV-CAR T cells, respectively, expressed 
effector-like transcriptional signatures after coculture, while 41% of VFC-CAR and 36% of RV-
CAR T cells retained memory-associated transcriptional signatures. In contrast, only 12% of 
VFC-Ctrl cells expressed effector-like transcriptional signatures after coculture, while 79% of 
VFC-Ctrl cells retained a memory-associated transcriptional signatures (figure 5D). Based on 
this single cell analysis, individual VFC-CAR and RV-CAR T cells can mount a robust effector 
response, while individual VFC-Ctrl cells lacking either a CAR or TCR retain their less-
differentiated phenotype when exposed to cancer cells.  
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Figure 5. Transcriptional signatures of single CAR T cells prior to and after target antigen 
exposure. (A) tSNE projection of single cell RNA-seq data from 15 samples of manufactured 
cell products, both pre- and post-antigen exposure; 79,317 single cells from RV-CAR, VFC-
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CAR, VFC-Ctrl and untransfected T cell products are shown. (B) Feature plots showing 
distribution of CD4, CD8A, the stemness-associated markers TCF7 and LEF1, and the effector-
associated marker GZMB. At right are the expression levels of single cells within each of the 
clusters for these markers. (C, D) Proportion of transgene+ cells from all pre-antigen samples (C) 
and post-antigen samples (D) within each annotated cluster. Each color represents a different 
cluster, shown in A; purple clusters are memory-associated; yellow clusters are effector-
associated; grey clusters could not be identified as pure T cell clusters due to a mix or lack of 
robust CD4/CD8 expression. At left, the distribution of transgene+ cells within the tSNE space 
in A are shown. 5/9623 untransfected cells featured reads mapping to the CAR or mCherry 
transgenes, indicating a false-positive rate of identifying transgene positive cells at 0.05%. 
 
VFC-CAR T cells demonstrate potent in vitro killing of GD2-positive cancer cells. After 
characterizing cellular phenotypes and gene expression at the end of the manufacturing process, 
we measured the in vitro potency of VFC-CAR T cells against two GD2-positive solid tumors: 
CHLA20 neuroblastoma and M21 melanoma (figure 6A). We performed a fluorescence-based 
cytotoxicity assay measuring loss of expression from fluorescently labeled cancer cells over time 
(figure 6B), and IncuCyte live cell analysis at 2-hour intervals over a 48 hour period (figure 
6C). We observed potent killing at a 5:1 effector:target ratio for both VFC-CAR and RV-CAR T 
cells, for both assays. These results corroborate our finding that VFC-CAR T cells produce 
proinflammatory cytokines and upregulate a cytotoxicity-associated gene signature at levels 
comparable to RV-CAR T cells and demonstrate potent target cell killing for multiple GD2+ 
cancers of variable origin. 
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Figure 6. VFC-CAR T cells demonstrate robust in vitro killing of GD2+ cancer cells.  (A) 
Flow cytometry histograms show GD2 surface expression on M21 and CHLA20 cell lines 
(black) compared to isotype controls (gray). (B) Graphs show the cytotoxic action of VFC-CAR 
and RV-CAR T cells against two GD2-positive tumor cell lines, CHLA20 and M21, containing a 
stably integrated H2B-mCherry fluorescent transgene. Cytotoxicity was measured as the change 
in the number of mCherry-positive objects for each image. The assay was performed using cells 
manufactured from one donor. (C) IncuCyte in vitro assay of T cell potency, averaged across 
four donors. AnnexinV was added as a marker of cell death; y-axis shows Akaluc-GFP-positive 
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cancer cells in each well of a 96-well plate. The ratio of T cells to cancer cells is 5:1. The 
consistent decrease in CHLA20 cells after 15 hours indicates high potency of both VFC-CAR 
and RV-CAR T cells. VFC-CAR (blue) N=12; RV-CAR (green) N=12; CHLA20 neuroblastoma 
alone (black) N=9. *indicates p≤0.05; ** indicates p≤0.01; *** indicates p≤0.001; **** indicates 
p≤0.0001. 
 
VFC-CAR T cells induce regression of GD2-positive neuroblastoma in vivo. Because 
important clinical cell behaviors like homing, persistence and cytotoxicity within a tumor 
microenvironment cannot be easily assessed in vitro, we rigorously assessed CAR T cell potency 
in vivo in an established human GD2+ neuroblastoma xenograft model. After 9 total days of 
culture, multiple replicate wells of RV-CAR, VFC-CAR, or VFC-Ctrl T cells were pooled for 
injection into NOD-SCID-γc-/- (NSG) mice (Jackson Laboratory). Ten million T cells were 
delivered via tail vein injection to each NSG mouse with an established luciferase-expressing 
CHLA20 neuroblastoma solid tumor identified by bioluminescence (figure 7A). Tumor sizes 
were quantified over time by IVIS imaging and digital caliper. Both CAR-treated cohorts 
showed robust tumor regression in the first 3 weeks post-infusion (figure 7B, online 
supplemental figure S11A, B). These cohorts also showed significantly improved survival 
relative to VFC-Ctrl-treated mice; however, there was no significant difference in survival 
between VFC-CAR and RV-CAR treated mice by day 80 (p-value=0.4099, n.s.; figure 7C). The 
percentage of CAR-positive cells per dose was lower in VFC-CAR T cells versus RV-CAR T 
cells (18% vs. 40%), which may have contributed to a slight decrease in complete remission 
rates (5/8 RV-CAR vs. 4/9 VFC-CAR). Inconsistencies in initial tumor burden may have 
affected remission. None of the VFC-Ctrl mice showed tumor regression, and all seven mice 
died of tumor progression by day 60, implying that disease control was antigen-specific. We also 
assessed persistence, memory and exhaustion phenotypes in CAR T cells isolated from the 
spleens and tumors of CHLA20-bearing mice as they reached euthanasia criteria. RV and VFC-
CAR T cells persisted in both the spleens and tumors of the treated mice, but not for VFC-Ctrl T 
cell treatments. For the non-responding mice, VFC-CAR and RV-CAR T cells were robustly 
detected in tumors upon euthanasia of the treated mice, but almost no VFC-Ctrl T cells could be 
detected in their tumor counterparts (12%, 29%, and 0.058±0.046% human CD45+ cells within 
the tumor for VFC-CAR, RV-CAR, and VFC-Ctrl, respectively, figure 7E). These data indicate 
successful trafficking of VFC-CAR T cells to the tumor.  (figure 7D, E, online supplemental 
figure S11C, D). 
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Figure 7. VFC-CAR T cells induce robust regression of GD2+ neuroblastoma solid tumors 
in vivo with high persistence. (A) Schematic of the in vivo mouse dosing strategy using NSG 
mice harboring GD2-positive CHLA20 neuroblastoma tumors. (B) Representative IVIS images 
of NSG mice with CHLA20 tumors that were treated with either 10 million VFC-CAR, RV-
CAR, or VFC-Ctrl T cells. (C) Kaplan-Meyer survival curve for mice. VFC-CAR (blue) N=10; 
RV-CAR (green) N=8; VFC-Ctrl (gray) N=7. (D) Box plots show presence of CAR+CD45+ 
human T cells in mouse spleens, as measured by flow cytometry. (E) Flow cytometry plots show 
that human CD45+CAR+ VFC-CAR and RV-CAR T cells are found in tumors, but VFC-Ctrl 
cells are not.  
 

Finally, to test the hypothesis that variations in gene transfer efficiency affected potency 
in vivo, we matched the absolute number of CAR-positive cells infused between virus-free and 
retroviral products in a separate xenograft study (figure 8A). NSG mice harboring human GD2+ 
CHLA20 xenograft tumors were infused with 10 million cells from three different T cell 
products. The percentage of CAR positive cells were equivalent (40%) in both the VFC-CAR 
and RV-CAR products. The VFC-Ctrl product had 38% transgene-positive cells. After one 
month, all four mice treated with RV-CART cells had higher adverse clinical scores indicative of 
xenogenic graft-vs-host-disease (xeno-GvHD; figure 8A, D). The lack of xeno-GvHD in the 
mice treated with VFC-CAR and VFC-Ctrl products indicates a functional knockout of TCR 
signaling by our CRISPR-Cas9 editing strategy. In contrast, three of the four mice treated with 
VFC-CAR products were event-free (no palpable tumor or GvHD) and survived past 96 days 
(figure 8B-D). We again assessed persistence, memory and exhaustion phenotypes in human 
lymphocytes recovered from the spleen and tumors of CHLA20-bearing mice as mice reached 
euthanasia criteria, up to 100 days after the initial T cell infusion. CAR+ or control mCherry+ T 
cells persisted in the spleens for all products (6.7±11.6%, 40±28%, and 26±12.4% human 
CD45+ cells within the spleen for VFC-CAR, RV-CAR and VFC-Ctrl, respectively). Of these 
cells, RV-CAR cells expressed higher levels of the exhaustion markers PD-1, LAG-3, and/or 
TIM-3 relative to VFC-CAR and VFC-Ctrl cells (figure 8E). Significantly higher numbers of 
RV-CAR T cells were differentiated toward effector memory and terminal effector cell states in 
vivo (figure 8F). We also observed elevated levels of the memory-associated proteins CCR7 and 
CD62L, and significantly lower expression of CD95 in VFC-CAR T cells relative to RV-CAR T 
cells (online supplemental figure S11D). These results in vivo mirror the significant skew 
toward effector phenotypes in RV-CAR cells seen in vitro with single cell RNA-seq and 
immunophenotyping assays.  Altogether, these findings demonstrate comparable potency of 
VFC-CAR T cells to standard RV-CAR T cells, establishing the potential clinical relevance of 
VFC-CAR T cells for treating solid tumors. 
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Figure 8. Virus-free CART cells exhibit in vivo potency against GD2+ solid tumors with 
high event-free survival and low exhaustion. (A, left) Representative IVIS images of NSG 
mice with CHLA20 tumors that were treated with either 10 million VFC-CAR, RV-CAR, or 
VFC-Ctrl T cells. VFC-CAR and RV-CAR products were 40% CAR-positive for a total dose of 
4 million CAR+ cells per mouse. VFC-Ctrl products were 38% mCherry-positive for a total dose 
of 3.8 million transgene+ cells per mouse. GD2+ solid tumors were established in the side flank 
of each mouse as detected by IVIS imaging at day -1. At day 0, three different CART products as 
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shown below were infused into the tail vein. (A, right) Pictures of RV-CAR T-treated mice 
showing xeno-GvHD symptoms from the intact TCR function within the RV-CAR T cells. None 
of the mice infused with VFC products displayed signs of xeno-GvHD. (B) Kaplan-Meier curve 
for total probability of survival. VFC-CAR (blue) N=4; RV-CAR (green) N=4; VFC-Ctrl (gray) 
N=4. (C) Kaplan-Meier curve for probability of event-free survival, defined as the absence of a 
palpable tumor or development of an individual clinical score of 4 or above. (D) Individual 
adverse clinical score of each mouse treated. Higher score indicates more adverse symptoms 
observed in the mice, such as elevated weight loss, hunched posture, ruffled fur, scaly or flaky 
skin, and decreased activity. (E) Donut plots show expression of exhaustion markers associated 
detected within T cells collected from mouse spleens. RV-CAR, N= 6; VFC-CAR,  N=7, VFC-
Ctrl, N=6. (F) T cell differentiation immunophenotypes detected within mouse spleens. RV-CAR 
T cells showed significantly higher proportions of more differentiated effector memory (Tem) and 
terminal effector (Teff) T cells relative to VFC T cells. 
 
Discussion 

Historically, CAR T cells have exhibited frustratingly limited success against solid 
tumors. While anti-GD2 CAR T cells were the first to mediate regression of a solid tumor48 in 
patients, the effects ultimately were not durable due in part to poor T cell persistence27. The third 
generation CAR used in this study failed to mediate meaningful anti-tumor responses in patients 
when delivered as a retroviral construct49; therefore, we sought to determine whether a TRAC-
CAR replacement strategy, previously shown to be successful in the context of a CD19 CAR, 
could improve outcomes. Extensive work has focused on overcoming the immunosuppressive 
tumor microenvironment; however, there is an urgent need for new engineering strategies to 
make the cell product itself more potent, whether through armored CARs, T cell selection 
procedures, combinatorial therapies, or other approaches50–52. Leveraging prior work on 
hematological malignancies where anti-CD19 AAV-CAR T cells were generated using AAV and 
Cas917, we develop a completely virus-free workflow that can accommodate a large CAR 
template (~3.4kb) targeting a solid tumor antigen, GD2. Our findings suggest that manufacturing 
high-quality and defined genome-edited, VFC-CAR T cells to treat solid tumors is feasible.  

Our manufacturing process produced similar yields across five donors and resulted in 
stable, genomically-integrated, durable CAR expression (>100 days in vivo) without the use of 
any viral vectors or animal-derived components during gene transfer or scale up. The decrease in 
T cell viability linked to electroporation53 is transient in our workflow with cells recovering to 
>80% viability just one week after electroporation, satisfying typical regulatory specifications54. 
Our use of high-density culture to improve T cell aggregation may stimulate pro-survival cell-
cell signaling to overcome stress arising from electroporation. Furthermore, cell proliferation is 
likely to have an added benefit, as homologous recombination is active in the S and G2 phases of 
the cell cycle and increases in HDR have been observed in cycling cells55. We also modify the 
manufacturing process to generate the HDR repair template by performing two sequential Solid 
Phase Reversible Immobilization-based purification steps on the PCR products; this procedure 
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concentrates the template. We do not rely on excipients to increase editing efficiency, which 
have been proposed recently56, and thereby provide a streamlined gene transfer process.  

In retroviral and transposon-based CAR T products, vector copy numbers can vary,57,58 
and genomic integration is scattered across >10,000 sites in the human genome3. CAR 
expression in retroviral and transposon-based products therefore can be affected by both the copy 
number and various chromatin contexts of each vector integrant across the various cells in a 
product. In contrast, our strategy inserts the CAR at a single site (TRAC) at a copy number of 1 
or 2, where the CAR transgene is driven by the endogenous TRAC promoter. CRISPR strategies 
with AAV donor templates can integrate, at 5-20% frequencies, the entire AAV vector into the 
Cas9-induced DNA double-strand break59 and therefore may disrupt TRAC regulation. Hence, 
variable CAR expression within a cell product may depend on the degree of AAV vector 
integration. Usage of a virus-free CRISPR strategy can reduce variability in CAR expression 
(figure 1F). Undesired genomic alterations and adverse events arising from genome editing are 
low: the on-target specificity of our editor is above average when compared to many other 
editing strategies35, with no detectable transcriptional changes in genes at or proximal to 
predicted off-target sites in the edited cells. Our strategy to use Cas9 as RNPs versus encoded on 
mRNAs17,60–62 reduces the lifetime of active Cas9 proteins within the cell (hours for RNP versus 
days for mRNA). Transient induction of DNA double-strand breaks by Cas9 RNPs in our 
strategy likely contributes to the high specificity of genomic modifications to the TRAC on-target 
site, as increased off-target effects have been previously seen with prolonged presence of Cas9 
within cells63. Our virus-free editing strategy can accommodate third-generation CAR sequences 
requiring the use of 3-4 kb nucleic acid templates. Transgene knockin with templates greater 
than 2 kb has historically been inefficient, although a recent report demonstrated efficient 
knockin of 2-3.6 kb templates31. 

There is a paucity of knowledge regarding the signaling effects of CAR expression in T 
cell products64. We show evidence of decreased receptor signaling in the VFC-CAR T cell 
product at the level of the secretome and CD3ζ phosphorylation. Our results indicate that, in 
addition to altering the design of the CAR itself, the locus of insertion and the absence of TCR 
expression can affect receptor signaling. Reduced CAR and TCR tonic signaling during 
manufacturing could be notably important for allogeneic workflows involving stem cell sources 
(e.g., induced pluripotent stem cells65–67, hematopoietic stem cells68, umbilical cord blood69, 
etc.), where developmental signaling for proper specification towards effector cell types may be 
disrupted by receptor signaling during differentiation. We show evidence of heterogeneity in 
differentiation state at the protein and transcriptomic levels, which may in part be influenced by 
changes in CAR and TCR signaling throughout manufacture. Our large-scale scRNA-seq dataset 
profiling CAR T cells with varied receptor signaling profiles, both with and without antigen 
exposure and across multiple donors in this study, could be a useful resource for analyzing the 
effects of CAR transgenes within human immune cell products. This scRNA-seq dataset is the 
first such resource profiling CRISPR-generated CAR T cell products, to our knowledge. 
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The phenotype of the VFC-CAR T cell product could be advantageous for future clinical 
purposes. Cytokine production is lower in VFC-CAR T cells prior to antigen exposure, but 
equivalent to or higher than RV-CAR T cells post-antigen exposure, suggesting a higher 
dynamic range of antigen-driven potency. The VFC-CAR T cells also demonstrate increased 
expression of various memory-associated proteins, including CD62L and CD45RO, and 
decreased expression of the exhaustion marker PD1, relative to RV-CAR T cells. Prior to 
cognate antigen exposure, TRAC knockout may play a role in memory formation and 
maintenance of a less differentiated phenotype, as measured at the transcriptional level.  This 
quality attribute is directly correlated with improved rates of durable remission with CD19 CAR 
T cells for hematologic malignancies19,70. Prior work with hematopoietic stem/progenitor cells 
indicated that the AAV template itself elicited both immune and stress responses, along with 
transcriptional downregulation of cell cycle processes that could interfere with stem cell 
maintenance71. Switchable anti-CD19 CARs have demonstrated increased CD62L+ memory 
formation upon turning off CAR signaling, indicating that prolonged or tonic CAR signaling can 
interfere with memory formation72. These studies are consistent with prior work where 
overstimulation of TCR signaling and CD28 co-stimulatory signaling can affect unmodified T 
cell differentiation in vivo, as memory responses in vivo with unmodified T cells are formed 
through acute, high-load antigen stimulation followed by a “rest” phase73. Future studies may 
also reveal additional mechanistic connections between these observations.   

After injection into a GD2-positive human neuroblastoma xenograft model, VFC-CAR T 
cells induce strong regression of solid tumors compared to mock-edited T cells, and at levels 
comparable to RV-CAR T cells. In our first in vivo experiment, comparable tumor regression 
rates occurred despite the substantially lower proportion of CAR+ cells in the VFC-CAR 
product. In our second in vivo experiment, we observed that cell-for-cell, an VFC-CAR T cell 
product could lead to a potent in vivo response with longer event-free survival. The TCR 
knockout by our editing strategy is functionally validated in this second study, as xenogenic 
GvHD was significantly delayed or eliminated altogether for the mice treated VFC-CAR and 
VFC-Ctrl products.  

Finally, relative to conventional T cell manufacturing, a virus-free manufacturing process 
could have several advantages at clinical scale. First, it could reduce batch-to-batch variability, 
supply chain challenges, and costs associated with vector production8,74. Second, it could 
alleviate a number of regulatory considerations related to the need for monitoring replication 
competency of the vector and the levels of xenogeneic components in the clinical cell product, 
notably plasmid DNA and serum during the gene transfer and scale up process that can introduce 
infectious agents or toxic components75. Third, it could eliminate the potential for integration of 
viral elements into the human genome, which can generate a high degree of gene perturbation, 
up to 104-105 different insertional sites within a single product73. Integration of the vector, in 
particular, presents risks of insertional oncogenesis76, transgene silencing or overexpression, and 
adverse immune response to the vector, which could result in the rejection of therapeutic cells. 
While off-target analysis of genome editors is necessary for any clinical translation of our 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2021. ; https://doi.org/10.1101/2021.08.06.455489doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.455489
http://creativecommons.org/licenses/by-nc-nd/4.0/


Text with Figures, Page 24 

approach, there are now many experimental and computational  tools that can readily be used for 
this purpose35,77 and next-generation high-fidelity Cas9 enzymes78 could be used to further 
decrease the potential for any off-target effects. Overall, a virus-free genome editing workflow 
has high potential to enable the rapid and flexible manufacture of highly defined and highly 
potent CAR T cell products for the treatment of solid tumors.  
 
Methods 
  
Cell lines. CHLA20 human neuroblastoma cells were a gift from Dr. Mario Otto and M21 
human melanoma cells were a gift from Dr. Paul Sondel (University of Wisconsin-Madison).  
These cells were maintained in Dulbecco’s Modified Eagle Medium high glucose (Gibco) 
supplemented with 10% Fetal Bovine Serum (Gibco) and 1% Penicillin-Streptomycin (Gibco). 
H2B-mCherry-positive lines of M21 and CHLA20 cells were generated via lipofection for the 
fluorescence in vitro assay. AkaLUC-GFP CHLA20 cells were a gift from Dr. James Thomson 
(Morgridge Institute for Research). Phoenix cells (ATCC) for viral preparation were maintained 
in DMEM (high glucose) supplemented with 10% Fetal Bovine Serum (Gibco) and selected 
using 1 µg/mL diphtheria toxin (Cayman Biologics) and 300 µg/mL hygromycin (Thermo Fisher 
Scientific) prior to use. Selection for transgene positive cells was confirmed by flow cytometry 
for mouse Lyt2 expression (Biolegend) (>70%+). 3T3 cells were maintained in Dulbecco’s 
Modified Eagle Medium (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco) and 1% 
Penicillin-Streptomycin (Gibco). Cell authentication was performed using short tandem repeat 
analysis (Idexx BioAnalytics, Westbrook, ME) and per ATCC guidelines using morphology, 
growth curves, and Mycoplasma testing within 6 months of use with the e-Myco mycoplasma 
PCR detection kit (iNtRON Biotechnology Inc, Boca Raton, FL). Cell lines were maintained in 
culture at 37°C in 5% CO2. 
 
Plasmid constructs. VFC-CAR: A 2kb region surrounding the TRAC locus was amplified by 
PCR from human genomic DNA and cloned into a pCR blunt II TOPO backbone (Thermo 
Fisher Scientific). The CAR transgene from a pSFG.iCasp9.2A.14G2A-CD28-OX40-CD3ζ RV-
CAR plasmid (gift from Dr. Malcolm Brenner, Baylor College of Medicine) was then cloned 
into the TOPO TRAC vector using Gibson Assembly (New England Biolabs (NEB)). The 
plasmid sequence was verified by Sanger sequencing. The VFC-Ctrl (mCherry) construct was 
designed in house, synthesized, and sequence-verified (GenScript). All plasmids were grown in 
5-alpha competent E. coli (NEB) and purified using the PureYield MidiPrep system (Promega).  
  
Double-stranded DNA HDR template production. Plasmid donors were used as PCR 
templates for VFC products. In brief, VFC-CAR and VFC-Ctrl plasmids were MidiPrepped 
using the PureYield MidiPrep system (Promega). PCR amplicons were generated from plasmid 
templates using Q5 Hot Start Polymerase (NEB) and pooled into 100 µl reactions for Solid Phase 
Reversible Immobilization (SPRI) cleanup (1X) using AMPure XP beads according to the 
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manufacturer’s instructions (Beckman Coulter). Each 100 µl starting product was eluted into 5 µl 
of water. Bead incubation and separation times were increased to 5 minutes, and elution time 
was increased to 15 minutes at 37°C to improve yield. PCR products from round 1 cleanup were 
pooled and subjected to a second round of SPRI cleanup (1X) to increase total concentration; 
round 2 elution volume was 20% of round 1 input volume. Template concentration and purity 
was quantified using NanoDrop 2000 and Qubit dsDNA BR Assays (Thermo Fisher Scientific), 
and templates were diluted in water to an exact concentration of 2 µg/µl according to Qubit 
measurements. 
  
SpCas9 RNP preparation. RNPs were produced by complexing a two-component gRNA to 
SpCas9. In brief, tracrRNA and crRNA were ordered from IDT, suspended in nuclease-free 
duplex buffer at 100 µM, and stored in single-use aliquots at -80°C. tracrRNA and crRNA were 
thawed, and 1 µl of each component was mixed 1:1 by volume and annealed by incubation at 
37°C for 30 minutes to form a 50 µM gRNA solution in individual aliquots for each 
electroporation replicate. Recombinant sNLS-SpCas9-sNLS Cas9 (Aldevron, 10 mg/ml, total 0.8 
µl) was added to the complexed gRNA at a 1:1 molar ratio and incubated for 15 minutes at 37°C 
to form an RNP. Individual aliquots of RNPs were incubated for at least 30 seconds at room 
temperature with HDR templates for each sample prior to electroporation. 
  
Isolation of primary T cells from healthy donors. This study was approved by the Institutional 
Review Board of the University of Wisconsin-Madison (#2018-0103), and informed consent was 
obtained from all donors. Peripheral blood was drawn from healthy donors into sterile syringes 
containing heparin, and transferred to sterile 50 mL conical tubes. Primary human T cells were 
isolated using negative selection per the manufacturer’s instructions (RosetteSep Human T Cell 
Enrichment Cocktail, STEMCELL Technologies). T cells were counted using a Countess II FL 
Automated Cell Counter (Thermo Fisher Scientific) with 0.4% Trypan Blue viability stain 
(Thermo Fisher Scientific). T cells were cultured at a density of 1 million cells/mL in 
ImmunoCult-XF T cell Expansion Medium (STEMCELL) supplemented with 200 U/mL IL-2 
(Peprotech) and stimulated with ImmunoCult Human CD3/CD28/CD2 T cell Activator 
(STEMCELL) immediately after isolation, per the manufacturer’s instructions. 
  
T cell culture. Bulk T cells were cultured in ImmunoCult-XF T cell Expansion Medium at an 
approximate density of 1 million cells/mL. In brief, T cells were stimulated with ImmunoCult 
Human CD3/CD28/CD2 T cell Activator (STEMCELL) for 2 days prior to electroporation. On 
day 3, (24 hours post-electroporation), VFC-CAR and VFC-Ctrl T cells were transferred without 
centrifugation to 1 mL of fresh culture medium (with 500 U/mL IL-2, no activator) and allowed 
to expand. T cells were passaged, counted, and adjusted to 1 million/mL in fresh medium + IL-2 
on days 5 and 7 after isolation. RV-CAR T cells were spinoculated with the RV-CAR construct 
on day 3 and passaged on day 5 along with the VFC-CAR and VFC-Ctrl T cells. Prior to 
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electroporation or spinoculation, the medium was supplemented with 200 U/mL IL-2; post-gene 
editing, medium was supplemented with 500 U/mL IL-2 (Peprotech). 
  
T cell nucleofection. RNPs and HDR templates were electroporated 2 days after T cell isolation 
and stimulation. During crRNA and tracrRNA incubation, T cells were centrifuged for 3 minutes 
at 200g and counted using a Countess II FL Automated Cell Counter with 0.4% Trypan Blue 
viability stain (Thermo Fisher). 1 million cells per replicate were aliquoted into 1.5 mL tubes. 
During the RNP complexation step (see RNP production), T cell aliquots were centrifuged for 10 
min at 90g. During the spin step, 2 µl of HDR template (total 4 µg) per condition were aliquoted 
to PCR tubes, followed by RNPs (2.8 µl per well; pipette should be set to a higher volume to 
ensure complete expulsion of viscous solution). Templates and RNPs were incubated at room 
temperature for at least 30 seconds. After cell centrifugation, supernatants were removed by 
pipette, and cells were resuspended in 20 µl P3 buffer (Lonza), then transferred to PCR tubes 
containing RNPs and HDR templates, bringing the total volume per sample to 24 µl. Each 
sample was transferred directly to a 16 well electroporation cuvette. Typically, no more than 8 
reactions were completed at a time to minimize the amount of time T cells spent in P3 buffer. T 
cells were electroporated with a Lonza 4D Nucleofector with X Unit using pulse code EH115. 
Immediately after electroporation, 80 µl of pre-warmed recovery medium with 500 U/mL IL-2 
and 25 µl/mL ImmunoCult CD3/CD28/CD2 activator was added to each well of the cuvette. 
Cuvettes were rested at 37°C in the cell culture incubator for 15 minutes. After 15 minutes, cells 
were moved to 200 µl total volume of media with IL-2 and activator (see above) in a round 
bottom 96 well plate. 
  
Retrovirus production. CAR retrovirus was manufactured using Phoenix cells (ATCC). In 
brief, pSFG.iCasp9.2A.14G2A-CD28-OX40-CD3ζ plasmid was MidiPrepped using the 
PureYield MidiPrep system (Promega). One day prior to transfection, selected Phoenix cells 
were plated on 0.01% Poly-L-Lysine coated 15 cm dishes (Sigma Aldrich) at a density of 76,000 
cells/cm2, or ~65% confluency. On transfection day, media was replaced 1 hour prior to 
transfection of 10 µg pSFG.iCasp9.2A.14G2A-CD28-OX40-CD3ζ plasmid/plate using iMFectin 
according to the manufacturer’s instructions (GenDEPOT). Media was replaced 18-24 hours 
later with 10 mL of 50 mM HEPES buffered DMEM + 10% FBS (Gibco).  48 hours later, media 
was collected, stored at 4°C, and replaced. A second aliquot of media was collected 24 hours 
later; media aliquots were pooled and centrifuged for 10 min at 2000g to pellet contaminating 
cells, and supernatants were transferred to a clean conical tube. 1/3 volume Retro-X concentrator 
(Takara) was added, and supernatants were refrigerated at 4°C for 12-18 hours, then 
concentrated according to the manufacturer’s instructions. Viruses were tested on 3T3 cells prior 
to use; yields from one 15 cm dish were used for 5 replicate wells of 160,000 T cells per 
transduction. Viruses were either used immediately for T cell spinoculation or stored at -80°C in 
single use aliquots. 
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Retroviral transduction. T cells for RV infection were cultured similarly to VFC-CAR and 
VFC-Ctrl T cells, with two exceptions: 1) T cells were passaged and resuspended without 
ImmunoCult CD2/CD28/CD3 activator on day 2 post-isolation, and spinoculated on Day 3. RV-
CAR T cells returned to the regular passaging schedule on day 5 post-isolation. Prior to 
spinoculation, non-tissue culture treated 24 well plates were coated with Retronectin according 
to the manufacturer’s instructions (Takara/Clontech). On day 3 post-isolation, T cells were 
centrifuged at 200 g for 3 minutes, counted, and resuspended to a concentration of 200,000 
cells/mL, then stored in the incubator until plates were prepared. Virus was added to retronectin-
coated plates in a volume of 400 µl virus in ImmunoCult-XF Medium and centrifuged at 2000g 
for 2 hours at 32°C. 160,000 T cells in 800 µl were added to each well and spinoculated at 2000g 
for 60 minutes at 32°C, brake off. T cells were then transferred to the incubator and left 
undisturbed for two days. 
 
Flow cytometry and fluorescence-activated cell sorting. CAR was detected using 1A7 anti-
14G2a idiotype antibody (gift from Paul Sondel) conjugated to APC with the Lightning-Link 
APC Antibody Labeling kit (Novus Biologicals). T cells were stained in BD Brilliant Stain 
Buffer (BD Biosciences). Flow cytometry was performed on an Attune NxT Flow cytometer 
(Thermo Fisher Scientific) and an Aurora Spectral Cytometer (Cytek), and fluorescence-
activated cell sorting was performed on a FACS Aria (BD). T cells were stained and analyzed on 
day 7 of manufacture for CAR and TCR expression, and day 10 of manufacture for the full 
Aurora immunophenotyping panel, using fresh cells. Downstream analyses of all spectral 
cytometry data were performed in FCS Express 7 Software. All flow cytometry antibodies are 
listed in online supplemental table S2. 
  
In-out PCR. Genomic DNA was extracted from 100,000 cells per condition using DNA 
QuickExtract (Lucigen), and incubated at 65°C for 15 min, 68°C for 15 min, and 98°C for 10 
min. Genomic integration of the CAR was confirmed by in-out PCR using a forward primer 
upstream of the TRAC left homology arm, and a reverse primer binding within the CAR 
sequence. Primer sequences are listed in online supplemental table S3. PCR was performed 
according to the manufacturer’s instructions using Q5 Hot Start Polymerase (NEB) using the 
following program: 98°C (30 s), 35 cycles of 98°C (10 s), 62°C (20 s), 72°C (2 min), and a final 
extension at 72°C (2 min). 
 
Next Generation Sequencing of genomic DNA. Indel formation at the TRAC locus was 
measured using Next Generation Sequencing (Illumina). Genomic PCR was performed 
according to the manufacturer’s instructions using Q5 Hot Start polymerase (NEB); primers are 
listed in online supplemental table S3. Products were purified using SPRI cleanup with 
AMPure XP beads (Beckman Coulter), and sequencing indices were added with a second round 
of PCR using indexing primers (Illumina), followed by a second SPRI cleanup. Samples were 
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pooled and sequenced on an Illumina MiniSeq according to the manufacturer’s instructions. 
Analysis was performed using CRISPR RGEN (rgenome.net). 
  
Genome-wide, off-target analysis. Genomic DNA from human primary CD4+/CD8+ T cells 
was isolated using the Gentra Puregene Kit (Qiagen) according to the manufacturer's 
instructions. CHANGE-seq was performed as previously described23. Briefly, purified genomic 
DNA was tagmented with a custom Tn5-transposome to an average length of 400 bp, followed 
by gap repair with Kapa HiFi HotStart Uracil+ DNA Polymerase (KAPA Biosystems) and Taq 
DNA ligase (NEB). Gap-repaired tagmented DNA was treated with USER enzyme (NEB) and 
T4 polynucleotide kinase (NEB). Intramolecular circularization of the DNA was performed with 
T4 DNA ligase (NEB) and residual linear DNA was degraded by a cocktail of exonucleases 
containing Plasmid-Safe ATP-dependent DNase (Lucigen), Lambda exonuclease (NEB) and 
Exonuclease I (NEB). In vitro cleavage reactions were performed with 125 ng of exonuclease-
treated circularized DNA, 90 nM of SpCas9 protein (NEB), NEB buffer 3.1 (NEB) and 270 nM 
of sgRNA, in a 50 μL volume. Cleaved products were A-tailed, ligated with a hairpin adaptor 
(NEB), treated with USER enzyme (NEB) and amplified by PCR with barcoded universal 
primers NEBNext Multiplex Oligos for Illumina (NEB), using Kapa HiFi Polymerase (KAPA 
Biosystems). Libraries were quantified by qPCR (KAPA Biosystems) and sequenced with 151 
bp paired-end reads on an Illumina NextSeq instrument. CHANGE-seq data analyses were 
performed using open-source CHANGE-seq analysis software 
(https://github.com/tsailabSJ/changeseq). 
 
Cytokine Analysis. Cytokine analysis was performed using a V-PLEX Proinflammatory Panel 1 
Human Kit (Meso Scale Discovery, Catalog No K15049D-2) according to the manufacturer’s 
protocol. The following cytokines were measured: IFN�, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-
12p70, IL-13, and TNF-α. In brief, media was collected from the final day of cell culture before 
injection into mice and flash frozen and stored at -80°C. For co-culture samples, 250,000 T cells 
were co-cultured with 50,000 cancer cells in 250 µl ImmunoCult XF T cell expansion medium 
for 24 hours prior to media collection. On the day of the assay, media was thawed and 50 µl of 
media was used to perform all measurements in duplicate. Figures were produced using 
GraphPad PRISM 8. Data were normalized by calculating cytokine production per cell based on 
the total concentration of cells calculated at media collection. 
 
Immunoblotting. Equivalent number of T cells (1x10e6) were lysed in Laemmli Sample Buffer 
with β-mercaptoethanol (Bio-Rad, CA). Total cell lysate for each sample were resolved on 12% 
SDS-PAGE gels and transferred to polyvinylidene fluoride membranes (Millipore, Billerica, 
MA). The membranes were blocked in LI-COR blocking buffer (LI-COR, NE), Immunoblotting 
was performed by incubating the membranes with anti-human CD247 (Mouse, BD Biosciences), 
anti-human CD247 pTyr142 (Mouse, BD Biosciences), and anti-human GAPDH (Rabbit, Cell 
Signaling Tech, MA), according to the manufacturer’s recommendations. The membranes were 
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then washed with TBST and incubated with fluorescent secondary antibodies (LI-COR, NE) and 
the immunoreactive bands were visualized using the Odyssey ® CLx imaging system (LI-COR, 
NE). 
 
In Vitro Cytotoxicity Assays. For figure 6C: 10,000 AkaLUC-GFP CHLA20 cells were seeded 
in triplicate per condition in a 96 well flat bottom plate. 48 hours later, 50,000 T cells were added 
to each well. 1 µl (0.05 µg) of CF® 594 Annexin V antibody (Biotium) was added to the wells. 
The plate was centrifuged at 100g for 1 minute and then placed in The IncuCyte® S3 Live-Cell 
Analysis System (Sartorius, Catalog No 4647), stored at 37°C, 5% CO2. Images were taken 
every 2 hours for 48 hours. Green object count was used to calculate the number of cancer cells 
in each well. Red object count was used to calculate the number of objects staining positive for 
Annexin V, an early apoptosis marker. Fluorescent images were analyzed with IncuCyte Base 
Analysis Software. For figure 6B: 10,000 H2B-mCherry CHLA20 cells or 10,000 H2B-
mCherry M21 cells were seeded in triplicate per condition in a 96 well flat bottom plate. 24 
hours later, 50,000 T cells were added to each well. The 96 well plate was placed in a live cell 
imaging chamber at 37°C and 5% CO2 and imaged on a Nikon Epifluorescent scope, with 
images taken every 12 hours for 48 hours. The change in protocol was made in March 2020 due 
to institutional COVID-19 biosafety precautions. 
  
Single cell RNA sequencing. 24 hours prior to assay, 200,000 AkaLUC-CHLA20 cells were 
plated in 12 well plates and cultured overnight. One week after electroporation (day 9 post-
isolation), T cells were counted and pooled into a single bank for characterization studies 
(scRNA-seq, IncuCyte cytotoxicity assay and in vivo experiments). Media was aspirated from 
cancer cells, and 1 million T cells in ImmunoCult-XF Medium + 500 U/mL IL-2 were seeded on 
the cancer cells, then cultured for 24 hours. A parallel T cell-only single culture (termed “pre-
antigen”) was set up at the same density in a separate 12 well plate. The next day, co-cultured 
cells were trypsinized for donor 1 and washed off the plate with media, and cells were 
singularized with a 35 µM cell strainer prior to scRNA-seq (Corning). For donor 2, to improve 
the total purity of the T cell populations and remove contaminating cancer cells from analysis, 
co-culture cells were stained for CD45 and CAR, and FACS sorted into CD45+CAR+ and 
CD45+CAR- fractions prior to sample submission. Cells were counted with a Countess II FL cell 
counter using trypan blue exclusion (Thermo Fisher Scientific), and samples were prepared for 
single cell RNA sequencing with the 10X Genomics 3’ kit (v3 chemistry) according to the 
manufacturer’s instructions. Libraries were sequenced using the Illumina NovaSeq 6000 system.  
 
Single cell RNA-sequencing analyses. Alignment, Data Quality Control, Integration, 
Clustering, and Annotation: FASTQ files were aligned with Cellranger v3.0.1 to custom 
reference genomes that included added sequences for the transgene(s) used in each culture 
condition (e.g., the TRAC VFC-CAR donor sequence, VFC-Ctrl mCherry donor sequence, etc.). 
Downstream analyses were performed using the Seurat package v4.0.1 in R software v4.0.343. 
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Several quality control measures were used to filter data prior to downstream processing. First, 
each dataset was filtered to include only cells with 200 or more unique genes, and genes 
expressed in three or more cells. To further preserve cell quality, any cells with greater than 15% 
mitochondrial RNA reads or less than 500 detected genes were also excluded. Additionally, 
maximum RNA and gene count thresholds were applied to each sample to filter out potential 
doublet or multiplet captures. Specific maximum thresholds were determined sample-by-sample, 
ranging from 80,000-100,000 and 7500-8500 for RNA counts and gene counts, respectively. 
Subsequent analyses were performed in Seurat using default settings, unless otherwise noted. 
Each sample was log-normalized (NormalizeData) and 2000 variable features were selected 
using FindVariableFeatures. All datasets were integrated using reference-based integration and 
Reciprocal Principal Component Analysis (RPCA) was used to identify integration anchors. In 
brief, the workflow was performed as follows: Each dataset was separately scaled (ScaleData) 
and dimensionally reduced using Principal Component Analysis (PCA) (RunPCA), setting the 
‘features’ parameter in both functions equal to a vector containing all genes. Next, integration 
anchors were identified using the two untransfected controls as the references for anchor 
selection (FindIntegrationAnchors, reduction = ‘rpca’, dims = 1:50). Datasets were then 
integrated using all genes and the selected anchors (IntegrateData, dims = 1:50, features.integrate 
= all_genes variable). Following integration, the data were scaled (ScaleData) and dimensionally 
reduced with PCA (RunPCA) and T-distributed stochastic neighbor embedding (t-SNE) 
(RunTSNE; dims = 1:50). The data were then clustered (FindNeighbors, dims = 1:50; 
FindClusters). Cell-level annotations were derived using the Seurat multi-modal reference 
mapping pipeline with a human PBMC reference cell atlas43. One notable caveat of this pipeline 
is that all cells in the query dataset are forcibly mapped to the reference cell type that matches 
most closely. Consequently, it is conceivable that novel cell types present in the query dataset are 
lost to other cell labels. These cell-level annotations were then used to inform labeling of t-SNE 
clusters, in conjunction with manual review of canonical feature expression and differentially 
expressed genes for each cluster. Clusters 15, 19, 20, and 21 were largely composed of co-
culture samples and lacked expression of canonical T cell markers. It was determined that these 
clusters represented contaminating CHLA20 cancer cells, which we subsequently removed from 
the dataset.  Downstream comparisons of sample types were performed on transgene+ cells only. 
All analysis scripts will be deposited in the Saha Lab GitHub repository upon publication.  
  
In vivo human neuroblastoma xenograft mouse model. All animal experiments were approved 
by the University of Wisconsin-Madison Animal Care and Use Committee (ACUC). Male and 
female NSG mice (9-25 weeks old) were subcutaneously injected with 10 million AkaLUC-GFP 
CHLA20 human neuroblastoma cells in the side flank to establish tumors. Six days later (Day 0), 
established tumors were verified by bioluminescence with the PerkinElmer In Vivo Imaging 
System (IVIS), and 10 million T cells were injected through the tail vein into each mouse. Mice 
were followed for weight loss and overall survival. On imaging days, mice were sedated using 
isoflurane and received intraperitoneal injections of ~120 mg/kg D-luciferin (GoldBio). Fifteen 
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minutes later, mice were imaged via IVIS. Imaging was repeated every 3 to 4 days, starting 1 day 
before initial T cell injection (Day -1). Mice were injected with 100,000 IU of human IL-2 
subcutaneously on day 0, day 4, and with each subsequent IVIS reading. In order to quantify the 
total flux in the IVIS images, a region of interest (ROI) was drawn around the bottom half of 
each mouse with the total flux being calculated by Living Image® software (PerkinElmer; Total 
flux = the radiance (photons/sec) in each pixel summed or integrated over the ROI area (cm2) x 
4π). The absolute minimum total flux value was subtracted from each image to minimize 
background signal. For donors 1, 3, 4, and 5 mice were maintained until tumors reached 20mm 
in any dimension by digital caliper as defined by the ACUC. 
  
Flow cytometric analysis of splenic and tumor-infiltrating T cells. For donor 2, all mice were 
euthanized on day 25. Tumors and spleens were removed, mechanically dissociated, and passed 
through a Corning® 35µm cell strainer.  Cell suspensions were centrifuged at 300g for 10 
minutes, and then digested with ACK lysing buffer (Lonza). The cells were then washed and 
centrifuged at 300g for 10 minutes, and resuspended in 10 ml PBS, 10 µl of which was added to 
10 ml of ISOTON® diluent and counted on the COULTER COUNTER® Z1 Series Particle 
Counter (Beckman Coulter).  From this count, 1x106 cells were added to flow cytometry tubes in 
staining buffer (PBS with 2% FBS) and stained with antibodies for hCD45, mCD45, scFV 14g2a 
CAR, and PD-1 (see Supplementary Table 2 for antibody information). The cells were then 
washed with PBS, centrifuged at 300g for 10 minutes, and 0.5ul of Ghost Dye™ Red 780 
viability dye (Tonbo Biosciences) was added for 20 minutes at room temperature.  Cells were 
then washed with staining buffer, spun down, and resuspended in 400 µl of staining buffer. Cells 
were run on an Attune™ NXT flow cytometer (Thermo Fisher Scientific).  Subsequent analyses 
were performed using Flowjo™ software (BD). For donors 3 and 4, spleens and tumors were 
analyzed as mice reached euthanasia criteria. 
  
Statistical analysis. Unless otherwise specified, all analyses were performed using GraphPad 
Prism (v.8.0.1), and error bars represent mean ± SD; ns = p>=0.05, * for p<0.05, ** for p<0.01, 
*** for p<0.001,**** for p<0.0001. For Fig. 2b, error bars show SEM. Statistical analyses for 
cytokine data were performed using a two-tailed Mann-Whitney test in GraphPad Prism. 
Statistical analyses for flow cytometry data were performed using a one-way ANOVA test in 
GraphPad prism. All box plots show median (horizontal line), interquartile range (hinges), and 
smallest and largest values (whiskers). Statistical significance for Fig. 7C was calculated using 
the Mantel-Cox Test.  
 
Data Availability. The data that support the findings of this study will be made available in the 
public domain upon publication.  
 
Data Reporting. The Reporting Summary document includes information about the statistics, 
software, data, and sample preparation methods used for this study.  For in vivo experiments, 
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established tumor burden was verified by IVIS luciferase imaging prior to infusion. Mice were 
arranged according to tumor burden and distributed evenly across conditions. The experiments 
were not randomized and the investigators were not blinded during experiments and outcome 
assessment.  
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Online Supplemental Figure S1. Characterization of T cell products during manufacturing. 
(A) Left, Viability of cells throughout the manufacturing timeline, pooled for 4 donors. Right, 
Cell counts throughout the manufacture calendar, pooled for 4 donors. VFC-CAR (blue) N=36; 
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RV-CAR (green) N=27; VFC-Ctrl (gray) N=25. (B) Left, Percent of CAR+ cells as measured by 
flow cytometry when electroporated on day 2 or day 3 post-isolation. Right, Percent of TCR- 
cells as measured by flow cytometry when electroporated on day 2 or day 3 post-isolation. * 
indicates p<=0.05. 
 
 

 
Online Supplemental Figure S2. VFC-CAR T cells mount a robust cytokine response upon 
exposure to cognate antigen (individual replicates from figure 3A.) (A) Cytokine production 
from conditioned media taken from T cell products at the end of manufacturing (pre-antigen 
exposure). Values are pooled from four donors. VFC-CAR (blue) N=24; RV-CAR (green) 
N=33; VFC-Ctrl (gray) N=22. (B) Cytokine production in conditioned media after a 24 hour co-
culture of manufactured T cell products with the target GD2-antigen on CHLA20 neuroblastoma 
cells. Values are pooled from two donors. VFC-CAR (blue) N=8; RV-CAR (green) N=5; VFC-
Ctrl (gray) N=8. Statistical significance was calculated with a two-tailed Mann-Whitney test. * 
indicates p<=0.05; ** indicates p<=0.01; *** indicates p<=0.001; **** indicates p<=0.0001.  
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Online Supplemental Figure S3. Immunophenotyping gating strategy. Cells were assayed by 
spectral cytometry with a 21-color immunophenotyping panel on day 10 of manufacture. (A) 
Cells were gated for lymphocytes, singlets, live cells, and CD45+ cells. (B) Subsequent gates for 
transgene+ cells were determined using fluorescence-minus-one (FMO) controls for each marker 
(left of each panel), with a representative full stain shown at right for each color.  (C) Gating 
strategy for downstream immunophenotyping analysis of memory and effector states. Gates for 
each color were established using FMO controls, at left for each panel. All panels in blue boxes 
show representative data from one replicate of VFC-CAR T cells. Panel in green shows 
representative data from one replicate of RV-CAR T cells. Panel in grey shows representative 
data from one replicate of VFC-Ctrl T cells. All antibodies were titrated at 5 different 
concentrations to determine optimal staining conditions. SSC-A, side scatter area. FSC-A, 
forward scatter area. SSC-H, side scatter height. FSC-H, forward scatter height.  
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Online Supplemental Figure S4. CAR T cell immunophnotypes. Cells were assayed by 
spectral cytometry with a 21-color immunophenotyping panel on day 10 of manufacture. (A) 
Additional markers are shown in figure 4. Gating strategies are shown in online supplemental 
figure S3. VFC-CAR (blue) N=7; RV-CAR (green) N=7; VFC-Ctrl (gray) N=8 across two 
donors. Significance was determined by ordinary one-way ANOVA; * indicates p≤0.05; ** 
indicates p≤0.01; *** indicates p≤0.001; **** indicates p≤0.0001.  
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Online Supplemental Figure S5. Transcriptional signatures of single CAR T cells. (A) tSNE 
projection of single cell RNA-seq data from 15 samples of manufactured cell products, both pre- 
and post-antigen exposure. Gross clustering patterns indicate similar cell populations across 
donors; each tSNE plot shows aggregate cells for each cell type both prior to and after antigen 
exposure, separated by donor. (B) Violin plots show expression of the pan-T cell markers CD3E, 
CD8A, and CD4. Clusters 15, 19, 20, and 21 showed decreased expressed of all three markers 
and were determined to be contaminating cancer cells from co-culture samples; these clusters are 
not shown on the tSNE plots and are excluded from all downstream analyses. Clusters 0, 5, 6, 8, 
9, 13, and 17 were determined to contain CD8+ cytotoxic T cells; clusters 2, 3, 4, 7, 10, 12, and 
14 were determined to contain CD4+ helper T cells. Clusters 1, 16 and 18 were determined to 
have mixed or low CD4/CD8 expression and were not annotated; they are designated as “other” 
in figure 5C and D. Expression level refers to log normalized data. 
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Online Supplemental Figure S6. Transcriptional signatures of single CAR T cells prior to 
and after target antigen exposure. (A) Proportion of transgene+ cells from all pre-antigen 
samples within each annotated cluster. (B) Proportion of transgene+ cells from all post-antigen 
samples within each annotated cluster. Each color represents a different cluster, shown in figure 
5A. Purple clusters are memory-associated; yellow clusters are effector-associated; grey clusters 
could not be identified as pure T cell clusters due to a mix or lack of robust CD4/CD8 
expression. Bar charts are the same as those shown in figure 5C and D, separated by CD8 and 
CD4-specific clusters. Similar patterns of memory vs. effector formation were observed in both 
cytotoxic and helper T cells, with VFC-CAR and VFC-Ctrl cells skewing towards a memory 
phenotype prior to antigen exposure, and VFC-CAR and RV-CAR T cells acquiring an effector 
phenotype after antigen exposure. 
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Online Supplemental Figure S7. Memory-associated gene expression in single cell RNA-
sequencing. (A) Violin plots show expression of six markers of early/stem cell memory 
phenotypes (LEF1, TCF7, IL7R, FOXP1, ID3, and BCL2). (B) Violin plots show expression of 
three markers of central memory T cells (CD62L, CCR7, and CD27). (C) Violin plots show 
expression of four markers of effector memory T cells (ID2, T-bet, Blimp-1, and GNLY). 
Clusters 0, 3, and 4 were determined to predominantly express early/stem-like memory markers. 
Clusters 5, 7, and 12 were determined to express a mix of stem-like and central memory markers. 
Clusters 6, 8, and 9 were determined to express a mix of stem-like, central, and effector memory 
markers. Cluster 10 was determined to express a predominantly Th2 memory phenotype. 
Clusters 2 and 14 were determined to express a Th2 effector phenotype. Clusters 11, 13, and 17 
were determined to express an effector phenotype along with some exhaustion markers. Clusters 
1, 16, and 18 showed low or mixed CD4/CD8 expression and were not annotated. Clusters 15, 
19, 20 and 21 were determined to be cancer cells and were not included in downstream analyses. 
Expression level refers to log normalized data. 
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Online Supplemental Figure S8. T helper 2 (Th2) and terminal effector gene expression in 
single cell RNA-sequencing. (A) Violin plots show expression of eight markers of Th2 helper T 
cells (IL4, IL5, IL13, GATA3, STAT6, GFI1, MAF, and IRF4). (B) (B) Violin plots show 
expression of three markers of terminal effector T cells (GZMB, PRF1, and CXCR3).  Clusters 
0, 3, and 4 were determined to predominantly express early/stem-like memory markers. Clusters 
5, 7, and 12 were determined to express a mix of stem-like and central memory markers. Clusters 
6, 8, and 9 were determined to express a mix of stem-like, central, and effector memory markers. 
Cluster 10 was determined to express a predominantly Th2 memory phenotype. Clusters 2 and 
14 were determined to express a Th2 effector phenotype. Clusters 11, 13, and 17 were 
determined to express an effector phenotype along with some exhaustion markers. Clusters 1, 16, 
and 18 showed low or mixed CD4/CD8 expression and were not annotated. Clusters 15, 19, 20 
and 21 were determined to be cancer cells and were not included in downstream analyses. 
Expression level refers to log normalized data. 
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Online Supplemental Figure S9. Exhaustion-associated gene expression in single cell RNA-
sequencing. (A) Violin plots show expression of fifteen markers of exhaustion in T cells (PD1, 
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LAG3, TIM3, CD39, BATF, CTLA4, BTLA, HAVCR1, IRF4, NFATC1, NFATC2, EOMES, 
T-bet, TIGIT, ADORA2A). Clusters 0, 3, and 4 were determined to predominantly express 
early/stem-like memory markers. Clusters 5, 7, and 12 were determined to express a mix of 
stem-like and central memory markers. Clusters 6, 8, and 9 were determined to express a mix of 
stem-like, central, and effector memory markers. Cluster 10 was determined to express a 
predominantly Th2 memory phenotype. Clusters 2 and 14 were determined to express a Th2 
effector phenotype. Clusters 11, 13, and 17 were determined to express an effector phenotype 
along with some exhaustion markers. Clusters 1, 16, and 18 showed low or mixed CD4/CD8 
expression and were not annotated. Clusters 15, 19, 20 and 21 were determined to be cancer cells 
and were not included in downstream analyses. Expression level refers to log normalized data. 
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Online Supplemental Figure S10. Single Cell RNA sequencing immunophenotyping. tSNE 
plots as shown in figure 5, colored for expression levels of all markers assayed for protein-level 
expression (figures 4 and S4). (A) Feature plots show expression of the pan T cell markers 
CD45, CD3E and TRAC. (B) Feature plots show expression of the memory and differentiation 
markers CD95, CD62L, CCR7, CD27, and CD28. (C) Feature plots show expression of the 
exhaustion markers PD1, LAG3, TIM3, TIGIT, and CD39. (D) Feature plot shows expression of 
the activation marker HLA-DR. (E) Feature plot shows expression of the T cell 
trafficking/inflammatory marker CXCR3. (F) Feature plot shows expression of the senescence 
marker CD57. 
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Online Supplemental Figure S11. Bioluminescence, tumor growth, weight gains, T cell 
persistence, and memory formation after T cell treatment in vivo. (A) Flux measurements for 
individual luciferase-positive tumors for all mouse experiments. VFC-CAR, N=10. RV-CAR, 
N=8. VFC-Ctrl, N=7. (B) Left, individual mouse percent weight change throughout the 
experiment. Right, average percent weight change in mice per treatment condition. (C) Flow 
cytometric gating strategy used to assay mouse spleens for human T cells and CAR-positive 
cells. (D) Boxplots showing the expression levels of naïve (Tn), stem cell memory (Tscm) and 
central memory (Tcm) markers on human T cells found in mouse spleens. For 
immunophenotyping: RV-CAR, N=6. VFC-Car, N=7. VFC-Ctrl, N=6. 
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