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Abstract
The linkage between environment, a species’ fitness and its abundance is central to the theory of 
evolution. So far, all studies of this linkage have been heuristic and empirical due to an inability to 
determine fitness either experimentally (independent of abundance) or theoretically (from species-
environment interaction). One category of such studies involves the Abundant Centre Hypothesis 
which posits that a species’ abundance rises to a maximum at the centre of its range. We argue that 
the confusing mix of results from ACH studies arises from ignoring the central premise that the 
abundance distribution cannot be independent of the environment. First, we employed a theoretical 
framework to identify an environmental context (an elevational transect; 200-2800 m in the eastern 
Himalayas) likely to favour ACH. We then improved upon some previously identified conceptual 
and methodological shortcomings of ACH studies. Using systematically collected bird data (245 
species; 15867 records) from that transect we found that the community average abundance profile 
is symmetric, as expected by ACH. Notwithstanding which, the abundance profiles of individual 
species showed a small degree of asymmetry which was correlated with elevation. This elevational 
dependence may be due to the hard elevational limits at the lower and upper ends of the mountain, 
as expected from theoretical considerations. We also showed that the average abundance profile 
shape is close to gaussian, while ruling out uniform and inverted-quadratic shapes. This work 
demonstrates that selecting a particular category of environmental contexts can help in integrating 
theoretical tools into a field dominated by empirical studies. Such a union should spur the 
development of more detailed and testable theoretical models for better insights in an important 
field.

Introduction
The Environment-Traits-Fitness-Abundance linkage is a central tenet of the theory of evolution. 
Yet, complex geographical pattern of environmental parameters, intricate interplay of multiple traits
of a species, and our inability to “view the environment through a species’ eyes” make it difficult, if
not impossible, to translate an observed environment-trait(s) pattern into a fitness profile for most 
species. Furthermore, fitness cannot be inferred independently of abundance. Species abundance 
studies have remained entirely heuristic and empirical because of this inaccessibility of fitness from 
both theoretical and observational sides. The several hundred environment-abundance studies till 
date (of Abundant Centre Hypothesis and Niche modeling) have only yielded a confusing welter of 
results. We suggest that the absence of theoretical inputs, due to the complicated and intractable 
differential equations needed to model a typical, complex two-dimensional environmental gradient, 
has been a key factor for the lack of progress. Here, we show that inputs from tractable theoretical 
models can be utilised if appropriate environmental gradients are chosen for study.

Abundant Centre Hypothesis (ACH), that the abundance peak of a species coincides with the centre
of its distribution, is the most commonly tested macro-ecological pattern of the environment-
abundance paradigm (Brown, 1984; Sagarin & Gaines, 2002a; Murphy et al., 2006; Rivadeneira et 
al., 2010; Fenberg & Rivadeneira, 2011; Baldanzi et al., 2013; Freeman, 2017; Pironon et al., 2017; 
Burner et al., 2019; Wen et al., 2020). Niche modeling went further to determine correlations 
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between observed abundance and (a large number of) environmental variables (e.g. VanDerWal et 
al., 2009; Martínez-Meyer et al., 2012; Dallas et al., 2020). However, both kinds of studies have 
been almost entirely heuristic and empirical in nature.

An earlier review found support for ACH in only 39% of 145 direct tests conducted in 22 field 
studies (Sagarin & Gaines, 2002b); the situation has not improved in the last two decades. In an 
excellent review, Santini et al., 2019 identified a number of issues with the way ACH has been 
studied so far. These include confounding the geographic/geometric and environmental/ecological 
definitions of a species range, multiple climate variables with two-dimensional gradient (also 
Sagarin & Gaines, 2002a), confusion in terminology and definitions (also Borregaard & Rahbek, 
2010), data quality (heterogeneity and insufficient normalisation for effort and species ecology), 
incomplete sampling of species ranges, and difficulty in separating location-specific patterns from 
peculiarities of particular species (Borregaard & Rahbek, 2010).

Many of the issues listed are due to logistical and/or resource constraints. However, we have 
identified two core issues which arise from the entirely heuristic and empirical approaches 
employed so far: (i) None of the previous studies have asked if ACH should at all have been 
expected at their sites, (ii) Confusion in identifying the “centre” of a species distribution, largely 
due to the conflation of geography with environment. Figure 1 shows the global distribution of a 
species (from our study). Does the geometric centroid of the distribution have any relevance when it
may not even fall within it? However, the absence of a theory precludes the calculation of an 
ecological centroid. How will patchiness of occurrence within the distribution, possibly at mutliple 
scales, change the analysis and conclusion? Weighting the locations within the distribution by the 
abundance to determine its centroid creates logical circularity (Sagarin et al., 2006). Santini et al., 
2019 weighted the locations using inputs from niche models (which itself is entirely empirical) but 
that did not improve the conclusions. We concur with previous researchers that the only secure 
conclusion from the results till date is that ACH cannot be valid for all environment-species 
contexts (e.g. Sagarin et al., 2006; Gaston, 2009).

Our approach differs from previous ones in three ways:
First, we used an available theoretical framework (Kirkpatrick & Barton, 1997; hereafter KB97) to 
identify an environmental context (a steep elevational transect in a large mountain chain) for which 
ACH emerged as a prediction. Of course, every environment-species context will have an 
associated abundance distribution as a testable prediction. However, dealing with the symmetry 
implicit in ACH has observational and theoretical advantages. We also suspect that, generally, 
predictions of ACH may be associated with simpler and hence mathematically more tractable 
environmental contexts. This would allow theory and observations to progress together and sustain 
each other. Even the rejection of ACH by data could contribute to progress by identifying 
inappropriate assumptions in the model.

Then, we collected through field observations a large amount of primary abundance data (245 bird 
species; 15867 individuals) across a large environmental gradient (2600 m elevational transect in 
the eastern Himalayas) in a systematic manner (47 equispaced elevations under similar habitat 
visibility, 24 replicates matched for time of day across elevations; inside 3 years; by the same 
observer for uniformity).

Finally, we shifted the reference location for characterising range parameters from the periphery to 
the abundance peak. Range edges are associated with small, fluctuating, sink populations which are 
statistically unreliable (Hengelveld & Haeck, 1982; Brown, 1984; Lawton, 1993; Hoffmann & 
Blows, 1994), while the large number of records at the abundance peak makes its location 
statistically more stable.
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We used the following components to address some of the afore-mentioned issues:
1. Theoretical framework: We started with KB97 to link an environmental gradient to a 

particular abundance profile using standard ecological processes and the life-history traits of
the species. The formalism is applicable to a one-variable (univariate) environment with a 
gradient along one geographical dimension. Multiple environmental variables can 
effectively univariate if they are strongly correlated.

2. Study site: Effectively, our study site along an elevational transect had a one-dimensional 
environmental gradient and was univariate (with elevation being the predictor for multiple 
environmental variables). Its compact size (projected rectangle 6 km x 15 km) avoided the 
impact of confounding variables like zoo-geographical history, geographical climate 
variability, etc. The elevational transect spanned the entire local environmental range of 
many dozens of species.

3. Symmetry: KB97 predicted ACH (under certain assumptions) for the linear environmental 
gradient at the site.

4. A large and systematically collected abundance data set, as mentioned earlier.
5. Modified metric for ACH: Instead of coincidence between the geometric midpoint (of the 

outermost records) and the abundance peak, we tested ACH by the symmetry of half-range 
widths on either side of the abundance peak (Figure 2). This metric is more robust because 
(i) it shifts the reference location from the sparsest regions to the densest. Secondly, the two 
half-range widths (quantified in several ways) were estimated using all the data rather than 
the distance to just the two farthest records. 

6. Multiple taxa: We targeted the entire bird community in a species-rich eastern Himalayan 
site in the expectation that the average over all species should cancel the asymmetries 
introduced into individual profiles by competitive interactions between species pairs, and so 
reflect the impact of the environment.

KB97 proposed a one-dimensional theoretical framework for the environment-abundance paradigm 
by incorporating several ecological processes like genetic diversity, directional selection of traits, 
vagility, etc, into the heat diffusion equation. Solving the equation under different sets of 
assumptions yields different abundance profiles. It predicts a gaussian1 abundance profile for (i) 
linearly increasing trait discrepancy (the difference between the traits of the local population and 
environmental optimum) along the environmental gradient (ii) quadratic relationship between 
fitness and trait discrepancy, and (iii) exponential relationship between abundance and fitness. Steep
elevational transects may be expected to result in linear trait discrepancies. So, we tested two linked
predictions of KB97 using records of all the birds encountered along an elevational transect on a 
single mountain in the eastern Himalayas. 

We tested the two predictions separately since they are related to two different assumptions in 
KB97:

i. abundance profiles are symmetric about the abundance peak, i.e. ACH.
ii. abundance profiles are gaussian (i.e. have a peak and long tails); and not ∩-quadratic (a 

peak but no tails) or uniform (neither peak nor tail).
If the data were to reject ACH either (i) one or more of the assumptions listed above are 
inappropriate or (ii) KB97 needs to incorporate one or more relevant ecological process.

However, testing ACH is a secondary objective, and only a tool to demonstrate that there are 
environmental contexts which can accommodate theoretical tools. Indeed, one should move on from
ACH-or-not question to understand profile shapes along different environmental gradients.

Methods

1 We prefer “gaussian” to “normal” to avoid the confusion with the english meaning of the latter
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See supplementary material for more details on each of the paragraphs below
We recorded bird abundance along a compact transect (elevation 200-2800 m asl, projected area 15 
km x 6 km) in Eaglenest wildlife sanctuary in the eastern Himalayas, Arunachal Pradesh, north-east 
India (Athreya, 2006; Mungee, 2018). Eaglenest hosts contiguous pristine habitats ranging from 
tropical-evergreen at 100 m elevation to temperate forests at 3250 m. A vehicle track provides 
access to 100-2780 m on the southern slope of the mountain.

The same observer recorded all the birds encountered in 200 m line transects (along the road) at 47 
elevations between 500m and 2800m, at elevational intervals of 50 m (Figure 3; Suppl. Table ST1). 
Each transect was sampled during a 5+5 minute traverse along the road, on 12 different days 
between 2nd May and 3rd July, 2012-2014 (Suppl. Figure S1). All individuals detected (visually and 
aurally) within 20 m from the path were recorded. Due to logistical issues at elevations below 500 
m in Eaglenest, we sampled 4 transects (12 replicates each) at 200 m elevation in neighbouring 
Pakke Tiger Reserve, 25 km away. The 200 m data was only used to determine if a species 
distribution extended below 500 m.

Statistical Parameters of Abundance Profiles
The abundance peak elevation was located using a cubic fit to the smoothed profile (Suppl. Figure 
S2). We calculated the root-mean-square-deviation from the peak on the lower (σLS) and upper (σHS) 
sides to define asymmetry as

AS is zero for symmetric profiles and ranges between –2 and +2. AS has a simple relationship with 
prevalent mathematical definitions of skewness while being less error-prone for our particular case 
(Suppl. Figure S3). For a bigaussian profile (Wallis et al., 2014; Suppl. Figure S2) – the asymmetric
counterpart of the gaussian – an identical value of A can be obtained by substituting σLS and σHS by 
other parameters like (i) abundance on either side of the peak, NL and NH, for the number 
asymmetry AN, and (ii) the distances over which abundance declines to 60.65% of the peak, σL60 and
σH60, for the asymmetry A60 in the inner regions of the distribution. Estimates of AS and AN are 
impacted by any section of the profile extending beyond the sampled range. AS is sensitive to the 
distance of the records from the peak while AN is not.

We calculated the Pearson and Spearman’s correlation coefficient for asymmetry and modal 
elevation, and also the linear regression between them. 

We estimated the errors of all profile, regression and correlation parameters by simulating 400 
profiles for each species and processing them in the same manner as the observed data. The Monte 
Carlo simulations used the smoothed observed distribution as the model, poisson overdispersion 
factor 2.0 (Suppl. Figure S4) and a negative binomial random number generator (Lindén & 
Mäntyniemi, 2011; rnbinom in R; R Core Team, 2020). The Poisson overdispersion factor also takes
care of the detectability of birds.

We quantified profile shapes using kurtosis (K) which is characteristic of each family of curves 
independent of their mean and SD: KG = 3.0 for gaussian, KQ= 2.14 for ∩-quadratic, and KU = 1.8 
for uniform profiles. Kurtoses, which depend on the 4th power of the coordinate, typically have large
errorbars. Therefore, we calculated kurtosis for the species-averaged community profiles in 3 
elevational bands (800-1450 m, 1451-1820 m, and 1821-2400 m). The expected values for the 
smoothed and species-averaged community profiles are KCG = 3.0 (gaussian), KCQ = 2.23 and KCU = 
1.93 (uniform).

Only species which statisfied the following criteria were included in the analysis:

AS=2
(σHS−σLS )
(σHS+σLS)
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i. Total abundance ≥ 30
ii. Number of elevations with non-zero records ≥ 5
iii. Profile shape: unimodal when smoothed with full-width up to 1.5 x SD
iv. The level of the smoothed abundance profile at the sampling edge is:

◦ less than 5% of the peak – not truncated: AS, AN, A60, and kurtosis
◦ between 60% and 5% of the peak - partially truncated: only A60

All analyses were done using scripts written for the computing platform R (R Core Team, 2020). 

Results
Of the 245 species (15867 individuals) recorded, 44 satisfied the criteria for all 3 asymmetry 
metrics, and we calculated only A60 for another 19 species. Example profiles are shown in Suppl. 
Figure S5.

The statistics of the community averaged asymmetry metrics are shown in Table 1. The mean 
asymmetries varied between 1.6% and 9.9% for the three metrics but symmetry cannot be ruled at 
the 95% confidence level in any of them. The 95% confidence interval of only 5 out of 63 species 
did not include A = 0. This is consistent with the expectation of 3±3.5 outliers purely from 
stochasticity.

The distributions of error-normalised asymmetry metrics zi = Ai/εi , where Ai is the asymmetry for 
the i-th species and εi its error estimate, are shown in Figure 4 (also Table 1). Most of the values lie 
betweeen ±2 which suggests that the dispersion seen in the plot is consistent with that due to 
measurement errors. The SD was expected to be ~1.0 for dispersion dominated by measurement 
errors, which is approximately the case. The SDs are 0.80 for A60 (only data from near the 
abundance peak) and 1.29 for AS (all data).

The correlation coefficient and linear regression for the asymmetry-elevation relationship are shown
in Table 2 and Figure 4. Both correlation and regression analysis show a significant dependence of 
AS on elevation at the 95% confidence level, but not for AN and A60.

The average community profiles in the 3 elevational bands are shown in Figure 5a. The kurtoses of 
their half profiles (on either side of the peak) are plotted in Figure 5b. The mean kurtosis for the six 
half-profiles was 3.81 (CI95 [2.85, 4.76]), which is consistent with a gaussian profile (KCG = 3.0). 
These measurements rejected ∩-quadratic (KCG = 2.23) and uniform (KCU = 1.93) distributions with 
p < 0.01.

Kurtosis values suggest that the average profile is leptokurtic, i.e. the peak is sharper than for a 
gaussian, but the tails are heavier. This is also consistent with (i) higher SD for error-normalised AS 
than for A60 (Table 1), and (ii) Figure 6 which shows that a gaussian profile which matches the 
observed peak is narrower than that which matches the observed SD.

Discussion
We have presented a study of the abundance profiles of bird species in a montane ecosystem in the 
eastern Himalayas with contiguous primary forest spanning 500-2800 m within a compact region 
(15 x 6 km2 projected area). Departing from the previous heuristic approach we derived ACH as the 
prediction of a theoretical model applied to an appropriate environmental structure. We recast ACH 
in terms of the symmetry of a distribution on either side of its abundance peak. We suggest that this 
is ecologically and methodologically more appropriate than the coincidence of the abundance peak 
with the geometric centroid of the range defined by the outermost records. We also characterised the
range with the more robust root-mean-square-deviation rather than the less reliable width between 
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the outermost records. We found that the mean asymmetry for the community of birds was 
consistent with zero and the deviaton of individual species profiles from symmetry was consistent 
with the estimated errors. i.e. the data is consistent with Abundant Centre Hypothesis. There was a 
negative correlation between the outermost asymmetry metric and elevation. The abundance 
profiles averaged over species were consistent with a gaussian or leptokurtic profile, while ruling 
out ∩-quadratic and uniform profiles at a high degree of statistical significance.

Grafting a Theoretical Framework onto ACH
Despite its insightful and yet simple formulation we have not found any study of ACH in which 
KB97, or any other model, has been tested with real data. We suspect that this is due to the daunting
nature of the differential equations governing spatial distribution of individuals when applied to 
complex multi-variate environmental patterns in a two-dimensional landscape. Here we tried the 
alternative strategy of first identifying a “simple” environmental gradient for which KB97 yielded a 
simplified model and testable predictions. Indeed, ACH emerged as a prediction of the theoretical 
framework for the particular environmental gradient, of course, under some assumptions (which are
discussed below)

Single Trait v/s Fitness of the Individual and Multiple Variables
KB97 describes the spatial pattern of distribution of the values of a single trait (i.e. of the 
individuals with those trait values) across a single-variable environmental gradient. However, the 
fitness of an organism is influenced by mutiple traits responding to multiple environmental 
variables. This should not be an issue for several reasons: (i) if the fitness due to a trait results in 
gaussian abundance profile, it can easily be shown analytically that a combination of traits will also 
result in gaussian abundance profile. Indeed simulations have shown that smooth gradients of 
mutliple environment variables (and hence multiple response traits) in a 2-dimensional landscape 
can lead to a smooth unimodal abundance profile (e.g. Brown et al., 1995), and (ii) multiple 
variables can be reduced to the univariate case if the different variables are strongly correlated to 
each other.

Multiple environmental factors along an (especially steep) elevational transect are likely to be 
strongly correlated with elevation. This was certainly true at our study site: a principal component 
analysis of mean annual temperature, mean annual precipitation, plant productivity, and air 
density/partial pressure of oxygen yielded a first principal component (PC1) which accounted for 91
% of the variance, and R2 = 0.95 for the linear regression of PC1 and elevation (Mungee & Athreya,
2020); i.e. the elevation was an excellent single variable to represent the multi-component 
environment.

One-dimensional Landscape
KB97 describes a one-dimensional profile along a single variable environmental gradient. However,
all species ranges are manifestly two-dimensional in geography and respond to multiple 
environmental variables. A two-dimensional version of KB97 would be much more difficult to 
solve and of limited utility as an analytical tool. Nevertheless, one can apply one-dimensional 
analysis (with a suitable change of coordinate system) if the environmental gradient is much lower 
in the second dimension. This is true of elevational transects, with the environmental gradient very 
steep perpendicular to an elevation contour and essentially zero along it (e.g. Freeman & Beehler, 
2018). For example, in a geographical region spanning just 75 km x 75 km around our study site the
elevation changes from 100 m to 5000 m (30OC change in mean temperature) while the highly 
folded 2000-m elevation contour traverses 1500 km of essentially unchanging environment.

Coastlines have been treated as one-dimensional systems for ACH studies as their length is typically
orders of magnitude larger than the width (Sagarin & Gaines, 2002a; Defeo & Cardoso, 2004; Sorte
& Hofmann, 2004; Gilman, 2005; Wares & Castañeda, 2005; Samis & Eckert, 2007; Tuya et al., 
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2008; Rivadeneira et al., 2010; Baldanzi et al., 2013). We suggest that this is inappropriate – 
transects parallel to the coast are geographically one-dimensional, but not for the purpose of ACH. 
Coastal ranges of the species in these studies spanned several thousand kilometers with complex 
variations in multiple abiotic, biotic and anthropogenic factors, and lacked a “unifying” feature like 
elevation in the mountains. However, in exact analogy with the elevational contours of a montane 
ecosystem, a transect perpendicular (and not parallel) to the coastline is suitable for testing ACH.

Symmetry
KB97 linked the symmetry of the environmental gradient to that of the abundance profile – this 
linkage is at the core of the environment-abundance paradigm. In their model, the trait discrepancy 
is linear and antisymmetric (not asymmetric; its modulus is symmetric). They explicitly imposed 
the symmetry by making fitness the square of the discrepancy. In terms of analysis and logistics, the
amount of data needed to invalidate a prediction of symmetry is far less than that for falsifying a 
particular abundance profile. Symmetry can be disproved by showing that some (any) metric is not 
the same on the two sides of the putative symmetry location (here, the abundance peak). In contrast,
testing a predicted profile with data requires sufficient data at multiple locations along the 
environmental gradient. Therefore, at this early stage of testing theories it would be simplest to 
identify environmental gradients for which the models predict symmetric abundance profiles. 
Symmetric abundant profiles may more frequent, or at least easier to identify, in compact one-
dimensional and univariate landscapes than in continental-scale, two-dimensional and multivariate 
landscapes.

Trait to Fitness
This is the major hindrance in translating environment and traits to fitness since identifying the 
environmental optimum for a single trait – let alone multiple traits for dozens of species – is far 
beyond the scope of present-day knowledge. However, symmetry can mitigate this handicap to 
some degree. Invoking Occam’s razor we construct a “consistency” argument as follows: a 
symmetric fitness profile is far more likely to lead to a symmetric abundance profile, than an 
arbitrary asymmetric fitness profile. Therefore, the detection of symmetric abundance profiles in a 
transect with symmetric (linear) environmental gradient is more likely to have passed through a 
symmetric fitness function. This argument is somewhat circular, but self-consistent and the best that
can be done in the present day for a quantity (fitness) that can neither be measured directly nor 
calculated theoretically.

Abundance v/s Occupancy and Completeness of Sampling
Sagarin & Gaines, 2002b found that 21 out of 23 separate studies of ACH did not sample the full 
range of the species investigated. Logistically, this is not surprising: if sampling a range requires N 
grids along one dimension, it needs N2 grids in two dimensions (usually with greater accessiblity 
issues). 

While agreeing that the full range has to be sampled (Santini et al., 2019), we offer a more nuanced 
and contextual interpretation of “full”. We sampled only a tiny part of a species range in our study 
(e.g. Figure 1) but we covered its entire local elevational (hence local environmental) range. Our 
objective was not a description of the entire range of environments occupied by the species (which 
we cannot with this data) but to co-opt theoretical tools to educe quantitative principles of the 
environment-abundance linkage. 

Grid occupancy data from multi-decade surveys such as the North American Breeding Bird Survey 
or the British Bird Survey (Blackburn et al., 1999; Péron & Altwegg, 2015; Osorio-Olvera et al., 
2020) were used to circumvent the resources needed for sampling abundance of wide-ranging 
species but they are impacted by issues of data heterogeniety and quality (discussed in Santini et al.,
2019). We estimated a high dispersion of factor 2-3 in the relationship between occupancy and 
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abundance from a plot in Gaston, 2009. This translates to an uncertainty of 60-78% of the total 
range in locating the abundance peak for a gaussian profile. Sagarin & Gaines, 2002a have reported 
differences of up to 50% between published ranges (largely determined by occupancy information) 
and their own estimates from systematic sampling.

We note even with our large field effort collecting abundance data we only had 44 species for 
analysis. This is similar to the bird study in New Guinea in which 5000 records yielded only 7 
profiles which were completely contained within the sampled range (Freeman & Beehler, 2018).

Compact Transect
The 500-2800 m transect in our study fit into a projected area of just 15 x 6 km2, all on the 
southern-most slope of the east-west oriented Himalayas. The temperature difference across this 
elevational transect corresponds to a north-south (i.e. latitudinal) transect of 2300 km. At these 
continental scales, many other aspects of zoo-geography, ecological history, regional differences in 
climate and a patchwork of species-specific “no-go” areas can confound the picture, precluding a 
simple theoretical model. Our compact site is far less likely to have been influenced by these 
factors, except for their dependence on elevation, which is our surrogate environmental variable.

Appropriate Metrics for Range Widths
The geometric midpoint of the outermost records (hereafter, Min-Max) has no ecological relevance 
in a non-linear environmental gradient. Vagrants far from the bulk of the population are a regular 
feature of organisms impacted by ocean and wind currents and human agency. In montane 
landscapes, an insect can fly, or be blown by wind, across the short distance of its entire range, and 
beyond, in just one hour. Furthermore, Min-Max data can change considerably with sampling effort 
and vagrant records. Therefore, any metric referenced to the range edge is likely to be error-prone 
and may not even be of ecological relevance to the bulk of the species (Gaston, 1990). Suppl. 
Figure S6 shows results from simulations which attempted to locate the peak of a gaussian (i) by 
fitting it and (ii) as the midpoint of Min-Max. The fit approach is insensitive to vagrants and 
becomes more accurate with sample size. On the other hand, the midpoint approach is very 
sensitive to the fraction of vagrants and does not improve with sample size.

In characterising distribution widths, RMSD scores over Min-Max in several ways: (i) it is defined 
with respect to a more stable location (abundance peak), (ii) it makes use of the full data set (instead
of just two records), (iii) it can be defined even for infinite profiles (e.g. gaussian) which are easier 
to deal in theoretical models, and most of all (iv) KB97 quantitatively links RMSD of the 
abundance profile to phenotypic and genetic variance, selection dynamics, heritability, fecundity, 
intergenerational dispersal and slope of the environmental gradient. Comparing multiple species 
along the same environmental gradient should help in identifying the role of different traits in 
determining profile shapes. 

Environmental Gradient v/s Interspecific Competition
All communities are shaped by a combination of external filters, like environmental factors, and 
internal filters like competition (e.g. Violle et al., 2012). The former causes a convergence of 
species traits towards the local community optimum while the latter increases the dispersion of 
traits within the community. Taking this forward, KB97 describes the impact of the environment 
without considering species-specific peculiarities and interspecific interaction. Interspecific 
competition is likely to be a very important determinant of species distribution limits (e.g. Case & 
Taper, 2000; Price & Kirkpatrick, 2009). Consider two competing species with a zone of overlap 
(Suppl. Figure S7) . Since the impact of any competition is density dependent (Keddy, 1989) one 
would expect the impact on each species to be higher in the zone of overlap (e.g. Legault et al., 
2020). While the precise details of the modification of the original shape may differ from the 
schematic representation of Figure S3, it is reasonable to assume that the interaction will introduce 
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an asymmetry, but in opposite directions for the two species and with the nett asymmetry for the 
species pair zero. Therefore, the average asymmetry for the entire community should be a measure 
of the environmental influence on the shape of profiles. Measuring the individual profiles of just a 
few species may not correctly reflect the environmental effect.

Abundance Profiles of the Eastern Himalayan Bird Community in Eaglenest
Community Average Abundance Profile
ACH (i.e. A = 0) is the obvious and appropriate null hypothesis for this study. Since a statistical 
hypothesis cannot be proved, we can at best say that the data is consistent with ACH. Figure 4 and 
Table 1 suggest that the asymmetry, if any, is small. The average profile of all species (Figure 6) 
shows a very small departure from symmetry, with a slightly larger gap on one side between the 
(blue) model gaussian profile and the (grey) data. We recognise that the errors on the asymmetry 
values of the individual species are large despite the large systematically collected data set. A larger 
data set may well show a definite departure from symmetry at the level of a few percent.

In any case, as commented by Kirkpatrick while reviewing this manuscript (pers. comm), KB97 
used many simplifying assumptions to make the model mathematically tractable. It so happened 
that we were able to obtain abundance data for birds in a location where the model assumptions 
were “largely” valid. 

The profile of five species showed a large departure from symmetry, well in excess of the formal 
measurement error estimates. This may be due to interspecific interactions or idiosyncratic life-
history traits of particular species. Those aspects are beyond the scope of this paper. We did 
examine the 15 most abundant species in our data set, but found no congeneric pairs in them (on the
assumption that neighbouring congeners are more likely to compete) to test the impact of 
interspecific competition. It will require a lot more field observations to understand competition 
networks and larger data sets of those species to address this question.

Profile Asymmetry and Elevation
We detected a statistically significant variation of AS (metric using RMSD) with elevation. On the 
average, species have a larger half-range width on the higher elevation side at low elevations and a 
larger half-range width on the lower elevation side at higher elevations. i.e. the half-range width is 
smaller on the side of the nearer elevation limit. We confirmed that this was not an artifact of the 
sampling limit at 500m and 2800 m by (i) avoiding species with modal elevation below 800 m or 
above 2400 m, and (ii) investigating any change in asymmetry along the profile in the 5 species 
where this could have been an issue. The alternative may be that the hard elevation limits (100 m in 
the Brahmaputra valley, and 3250 m at the ridge) is responsible for this variation.

Despite being in the Shiwalik (Lesser Himalayas) the ridge in Eaglenest is somewhat high at 3250 
m. This ridge is akin to a sky island (Warshall, 1995) being 23 km and 40 km away from the nearest
3250 m locations on the main middle-Himalyan range, and isolated from them above the 2275 m 
contour. It is reasonable to assume that species above 2800 m (nominally) are somewhat isolated. 
The hard elevational limit is likely to distort abundance profiles by compressing the upper half-
range width of the high elevation species, and putting extra pressure on the lower half-range. If this 
compression cascades downwards through interspecies and intraspecies competition we should 
expect to see the observed relationship between asymmetry and elevation (Jankowski et al., 2010; 
Stanton-Geddes et al., 2012; Huntsman & Petty, 2014; Péron & Altwegg, 2015; Wen et al., 2020),. 
Our highest sampling transects are less than 2 km from the highest ridge and therefore may be close
enough to feel the effect. A similar explanation should hold at the lowest elevations as well, because
of the abrupt transition over only a few km from lowland hill forests to the tall grass plains of the 
Brahmaputra valley (Rana et al., 2019). We present this scenario as a point of departure for future 
investigations; it will require much greater field effort to obtain statistically secure single species 
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profiles and investigate their change with elevation. Alternatively, one can obtain some evidence by 
comparing species profiles on a mountain with a limiting ridge and another in which the elevation 
(and habitat) extends well above. Theoretical investigation of the same will require the addition of 
intra- and inter-specific interaction terms into KB97 (see Case & Taper, 2000; Case et al., 2005; 
Price & Kirkpatrick, 2009).

Alternatively, the assumption in KB97 that fitness is independent of the sign of the trait discrepancy
may not be valid. Higher elevations are thought to be higher stress environments (e.g. Louthan et 
al., 2015; Cunningham et al., 2016). A trait value which differs from the optimum may have a 
higher penalty above the abundance peak than below it. This would result in a non-linear trait 
discrepancy profile. If the curvature of this non-linear function were small it can be replaced by two
straight lines of different slopes intersecting at the abundance peak. This naturally leads to our 
bigaussian model for abundance profiles – each linear “half-gradient” on either side of the peak 
would result in a half-gaussian whose half-range width is related to its slope. If this explanation 
were correct the profile asymmetry should be zero at lower elevations and become more negative at 
higher elevations. However, this is not borne out by our results where the asymmetry is zero close 
to the midpoint of the elevational range.

We note that a combination of this elevational dependence of asymmetry and the lower number of 
species above 2000 m (Mungee, 2018) can explain the small amount of asymmetry seen in the 
average profile (Figure 6).

Profile Shape
The kurtosis values of all 6 half-profiles (from averaged profiles in three elevational communities, 
separately above and below the peak), indicate that abundance profiles have a peak and tails which 
are at least as broad as that of a gaussian profile. This is in line with the bell-shaped expectation for 
abundance profiles assumed in many studies (e.g. Hengelveld & Haeck, 1982; Tuya et al., 2008; 
Boucher-Lalonde et al., 2012; Freeman & Beehler, 2018). Our results clearly reject uniform or ∩-
quadratic shapes; i.e. range eges have a tapered profile. We note, again, as pointed out by 
Kirkpatrick (pers. comm), that this does not “prove” that abundance profiles in nature have to be 
gaussian. It does demonstrate that theoretical models can reproduce observed data with reasonable 
assumptions.

Three different approaches showed a “flattening” of the profile from the abundance peak to the 
periphery: (i) higher SD for error-normalised AS, than for A60, (ii) variation of AS, but not A60, with 
elevation, and (iii) narrower model gaussian when matched to the observed peak than to the 
observed SD (Figure 6). We recall that AS uses the entire data and has both number and distance, 
while A60 uses the data from close to the abundance peak. This suggests that the small amount of 
observed asymmetry arises from the small fraction of data at the periphery. We also note that AN 
does not show an elevational dependence; AS differs from AN in using the distance of a record from 
the peak. This suggests that the hard ecological elevational limits “push-back” the peripheral 
populations without appreciably modifying the central regions of the profile and beyond. This may 
also explain the lack of consensus amongst previous studies, most of which depended on the 
outermost records to define the distribution centre, and many of which used grid occupancy as a 
surrogate for abundance.

The heavier tail is unlikely to be due to intraspecific competition since that process would have had 
a greater impact at the densest part of the distribution; instead the peak is narrower (Figure 6).

Most studies assume that abundance distributions are either uniform or gaussian in shape – the 
former for the sake of methodological simplicity and the latter because of the ubiquity of the shape 
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in nature. This work shows that abundance profiles are very close to gaussian (Figures 5 and 6), 
with a small degree of departure at the peak and in the tails.

If the asymmetry arises only from a small fraction of the population does it make any sense to 
worry about this tail? The symmetric profile in the central parts of the range, encompassing most of 
the population, may be more relevant for understanding the environment-abundance link; the profile
of the periphery is a distraction to be ignored. On the other hand, peripheral populations may be 
more important for understanding the dynamics of selection and range expansion (Caughley et al., 
1988; García et al., 2010; Rehm et al., 2015).

We end the discussion with a comment on KB97. It is obvious that the assumptions used to translate
the theoretical framework into testable models were chosen to obtain the desired predictions (e.g. 
gaussianity and symmetry of profiles). Therefore, this work does not prove that those simple models
describe all species profiles. Possibly, other theoretical formulations can be made to yield similar 
predictions (though we did not find published alternatives) but they are all likely to be variations 
around the basic theme outlined in KB97. The strength of KB97 lies in its simplicity in putting 
several ecological processes together in a manner which is mathematically simple and intuitive. 
This simplicity and the resulting analytical tractability helped us identify an environmental context 
which may lead to ACH – this was the key, which distinguishes this study from previous ones. 
Should tests of KB97 in other elevational transects prove successful we will have identified a 
reliable entry-level framework with which to explore abundance patterns in more complex 
environmental structures, and, result in more refined theories in this field.

In conclusion, ACH is only one of the many features, though perhaps the simplest, characterising 
the environment-abundance linkage. However, the symmetrical abundance profile implicit in ACH 
can only arise in environmental gradients with particular characteristics. Theoretical models based 
on quantifiable ecological processes are essential to identify such ACH-specific environments, and 
to progress beyond ACH. We suggest that compact elevational transects and transects perpendicular
to the coast may be more appropriate for testing ACH. We also suggest that systematic collection of 
abundance data for a large number of species in such transects may offer the best option for gaining 
insights into the environment-abundance paradigm.
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 Main Text – Figures and Tables

Table 1. Community mean asymmetry of the abundance profiles for birds in Eaglenest, 
Eastern Himalayas, India.  The community mean asymmetry is consistent with the value 
zero, i.e. supports ACH. The SD of error-normalised asymmetry suggest that, compared to
a gaussian, the average profile is more sharply peaked near the centre (A60 < 1.0) and has
a heavier tail (AS > 1.0) – i.e. leptokurtic.

Asymmetry N Mean SE CI 95% Error-normalised
Asymmetry

SD

AS 44 0.073 0.117 (–0.047, 0.356) ZS 1.29

AN 44 –0.016 0.087 (–0.157, 0.243) ZN 0.87

A60 63 0.099 0.051 (–0.141, 0.156) Z60 0.80

Table 2. Relationship between elevation and Asymmetry. The 95% confidence intervals 
were determined by Monte Carlo simulations of the observed profiles

Pearson
Correlation

Spearman  Rank
Correlation Linear Regression

Variables  N r CI 95% r CI 95% Slope Intercept R2

AS ~ EM 44 –0.321 (–0.52, –0.08) –0.34 (–0.54, –0.10) (–5.91 ± 2.34) x 10–4 1.127 ± 0.43 0.085

AN ~ EM 44 –0.179 (–0.38, 0.06) –0.197 (–0.40, 0.02) (–1.76  ± 2.13) x 10–4 0.33 ±  0.40 0.024 

A60 ~ EM 63 –0.153 (–0.37, 0.10) –0.198 (–0.43, 0.06) (–1.03  ± 1.04) x 10–4 0.28 ±  0.19 0.018 
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Figure 1: The global distribution of a bird species (bright green).
The geometric centroid of the complex shape has no ecological relevance as it may even lie outside the 
distribution. Pockets of absence of this species within the envelope will further complicate the issue. The 
sampled elevational transect lies within the spot inside the circle to the right of Bhutan.

Figure 2: Metrics from the species abundance profile. 
XL and XH are the outermost records for a “good” distribution. ACH so far: the centre 
is expected to coincide with the peak. The centre is determined from the two 
outermost records, ignoring all other records. However, even a single vagrant (XV) 
can change the centre substantially (to CV). ACH used in this work: the half widths 
(σL and σH) on either side of the peak are calculated using all the data. ACH is 
equivalent to σL = σH. The few peripheral points have little impact on the estimates of 
the peak and the half-widths. 
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Figure 3: Study site in Eaglenest wildlife sanctuary, Arunachal Pradesh, India.
The plot shows the elevational contours and sampling locations. The 49 Eaglenest transects in 500-2800 
m are along a vehicle track. The Eaglenest ridge at 3200-3250 m is shown in yellow. 

Figure 4. Species abundance profile asymmetry. 
AS: RMSD-based asymmetry, AN: count-based asymmetry, A60: Scale-length-based asymmetry. 
Upper row: Histograms of error-normalised asymmetry for each species (z = A/ε, A: asymmetry and ε: its 
error estimate). The vertical blue lines represent the mean (solid) and ±1 SD (dashed). The statistics of the 
distributions are in Table 1. Lower row: Linear regression between asymmetry and modal elevation. The 
blue lines are the best fit (solid) and ±1 SE (dashed) models. The regression parameters are in Table 2.
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Figure 6. Average abundance 
profile over all species. 
SD-normalised profiles of 
individual species were coadded 
and smoothed with a width of 1.5
units (grey colour). The red and 
blue profiles are gaussians 
matched to the observed peak 
and SD, respectively. The lower 
panel shows detail in the outer 
regions. Only 6 species 
contribute beyond 3 SD and 1 
species beyond 4 SD

Figure 5. Species averaged community abundance profiles in 3 elevational bands. 
(a) The scatter and smoothed profiles were constructed by averaging the SD-normalised profiles of the 
species in the community. (b) Kurtoses of the half-profiles (split at the mode). The mean and ±1 SE values 
for each elevational band are shown in colour in the left half of the plot. Their weighted averages and 95% 
C.I. bars are shown separately for upper and lower halves (3 each) and overall (all 6) in black on the right. 
The expected smoothed community profile kurtoses are also shown for reference: KCG = 3.0 for gaussian, 
KCQ = 2.3 for ∩-quadratic, and KCQ = 1.93 for uniform (USM = 1.93) distributions.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.474819doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Material for Methods

Sampling Strategy
All species abundances were recorded by the same observer along 200 m line transects at
47 elevations between 500-2800 m, at equispaced elevational intervals of 50 m (Figure 3; 
Table S1). Each transect was sampled during a 5+5 minute traverse up and down, on 12 
different days between 2nd May and 3rd July, 2012-2014 (Figure S1). All individuals 
detected (visually and aurally) within 20 m from the path were recorded. Sampling was 
conducted during 0600-1200 hr, covering up to 12 elevations per day. We minimised 
systematic bird activity bias by distributing the 12 transects equally across three 2-hour 
slots – early morning (0600-0800 hr), mid morning (0800-1000 hr) and late morning (1000-
1200 hr).

Accessibility issues prevented our sampling along the road below 500 m in Eaglenest. So, 
we sampled 4 different transects (12 replicates each) at 200 m elevation in neighbouring 
Pakke Tiger Reserve, which was 25 km away and across the Kameng river gorge. 
Unfortunately the road in Pakke was laid along an ground contour, unlike in Eaglenest. 
Given the larger distance to these locations, and the absence of sampling at 250-450 m
we only used the 200 m data to identify species whose range extended below 500 m, and 
exclude them from further analysis.

Having to cover transects spread over ~20 km everyday, the observer used a motorcycle 
to get one transect to the next. This meant that every transect was traversed twice 
(labeled, say, A and B) in quick succession to get back to the vehicle. Though we realised 
that this could result in correlated records we counted birds during the return traverse as 
well. Furthermore, the probability of sighting the same bird twice varied across the 
transect, being highest at the far end. We tried two abundance options for each species, 
viz. A+B ≡ (A+B)/2 and Max(A,B), and could not discern any significant difference in the 
results apart from the reduction in the number of records. There was no obvious 
correlation between A and B counts either. So finally, we used A+B as the count for the 
transect replicate.

One can rationalise this conceptually by recasting our dependent variable: from 
abundance to the product of abundance and time period of utilisation of the habitat, which 
will not change any of the final conclusions. We are on firmer ground on the analysis side 
since correlation between replicates has the same effect on statistical analysis as flocking; 
it will result in underestimating the counting noise. Since we estimated the counting noise 
empirically from the data itself (see Poisson overdispersion factor below) this partial 
correlation between the traverses will be reflected in increased noise above the Poisson 
dispersion.

Elevational Movement Across The Sampling Period
We examined the data for elevational movement during the sampling period by computing 
the correlation between ordinal date (regardless of the year) and elevation. Only nine 
species showed a significant positive correlation in this exercise. Curiously, several 
species showed a negative trend, which we suspect is a statistical artifact and provides a 
lower limit on the stochastic nature of the positive correlations. In any case, translating 
their elevations to a standard date of 30th June made no discernible difference to the 
results. So we used the uncorrected data in all analyses.
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We compared standard deviation (SD), inner 95 percentile width (R95) and the more 
traditional distance between minimum and maximum elevations (RMM) as estimators of 
range width. SD is analytically more tractable while percentile-based estimators are less 
impacted by outliers. The relationship between the two is well defined for standard 
functions: e.g. R95 corresponds to ±1.96xSD for a normal profile.

Asymmetry Metrics
The skew is the standard mathematical quantity to estimate asymmetry. However, it 
depends on the third power of the coordinate and can have large errors. We adopted a 
split strategy to measure the skew: (i) smooth the observed profile and fit a peak to it. The 
smoothing makes it easy to fit noisy data (ii) having located the peak we calculated the 
dispersion separately on either side of the peak (σL and σH) using unsmoothed data. Our 
definition of asymmetry is

The abundance peak elevation was located using a cubic fit to the smoothed profile. The 
cubic is the polynomial with the lowest degree which can accommodate (Figure S2). We 
used the smallest full-width smoothing scale (from among 0.5xSD, 1.0xSD and 1.5xSD) 
which resulted in a unimodal profile. Profiles which were still multimodal at 1.5xSD were 
excluded from the analysis.

Our asymmetry metric A is zero for symmetric profiles and ranges between –2 and +2. 
There are many definitions of skewness in literature – e.g. Pearson’s coefficients 
(Pearson, 1895), Bowley’s measure (Bowley, 1920) . Our asymmetry measure has a 
simple relationship with prevalent mathematical definitions of skewness (Figure S3). The 
prior location of the peak using smoothed data and confining our analysis to unimodal 
distributions, and using the peak location as an input made the skew estimate a bit more 
secure.

Smoothing will shift the location and height of the peak for an asymmetric distribution. 
Shifting the peak results in a reduction of the absolute value of the asymmetry, i.e. a bias. 
We estimated this shift in the peak through simulations. Therefore generated simulated 
profiles (N = 10000, to minimise stochastic noise) with the following range of input 
parameters: σLi : 100-1000 m in steps of 50 m; σHi = σLi -1000 m in steps of 50 m; 
smoothing width WS = 0.5-3 SD in steps of 0.5 SD. We measured the shift in the peak 
along with the resulting (ouput) σLo and σHo and created a look-up-table for reference 
values of WS, σLo and σHo. We used the output values σLo and σHo for matching since we 
were unable to calculate the pre-smoothing observed profiles. We used this look-up table 
to correct for the shift in the observed peak. This smoothing was only used to determine 
the location of the peak. All subsequent calculations were carried out using the 
unsmoothed data.

We modeled abundance profiles as bigaussians which is the asymmetric counterpart of 
the gaussian (Figure S2). For a bigaussian one can estimate the asymmetry A using 
different parameters all of which provide the same answer (in the absence of noise and 
non-stochastic outliers). We used

1. root-mean-square-deviation half-widths (analogous to the SD) on the lower (σLS) 
and upper (σHS) sides of the peak to obtain AS. This measure uses all the records in
the half-region and each record is weighted by its distance. Therefore, it is most 
sensitive to distant records.

A=2
(σH−σL)
(σH+σL)
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2. total abundance on the lower (NL) and upper (NH) sides of the peak to obtain A60. 
This measure uses all the data in the half-region but entirely ignores the distance of
the record in its computation.

3. scale lengths at which the smoothed profile falls to 60.65% of the peak value on 
the lower (σL60) and upper (σH60) sides of the peak to obtain A60. The scale length for
60.65% decrement is equivalent to 1 SD in the (bi)gaussian context. This measure 
is an alternative measure of SD but uses only the ~70% of the data clustering close
to the peak.

Estimates of AS and AN are impacted by any section of the profile extending beyond the 
sampled range. A60 is not sensitive to unsampled sections of the profile provided they lie 
beyond σ60. Comparison of A60 and AS provide some indication of the change in the relative
dispersion of the profile from the peak to the periphery. Comparison of AN and AS identify 
the contribution of outliers to the observed asymmetry.

One could have used the distances between the peak and the outermost records on the 
lower (XL) and higher sides (XH) of the peak to obtain AMM. However, AMM will be affected by
the same issue that plague the use of XL and XH to determine the centre, and so we did not
use this measure

Poisson Overdispersion Factor
Flocking of birds, weather conditions and habitat heterogeneity may increase the 
dispersion of abundance counts above the Poissonian. We estimated this dispersion using
the difference between the smoothed NSM(E) and the observed NOBS(E) profiles (Figure 
S4a). If the observed (raw) profile has an error statistic with standard deviation σε in one 
elevational bin, smoothing it with a window of 5 bins yields an error statistic with standard 
deviation of σε /√5 ≈ 0.447σε. The difference between the raw and the smoothed 
abundance is another statistic with mean = zero and dispersion = sqrt(1 + 0.4472)σε = 
1.1σε; this should be valid for locally linear or low-curvature sections of the profile, i.e. all 
regions away from the peak. The difference between the errors of the smoothed and the 
(unknown) “true” profiles is a second order effect and can be ignored. The statistic Y = 
(NOBS – NSM) / √NSM should be approximately standard normal for bins with NSM > 10. 
However, we estimated σY = 2.26 for our data, corresponding to an over-dispersion factor 
of ~2 (Figure S4b).

Bird Detectability
The counting error on a Poisson-like process depends on the absolute number of 
individuals counted in any spatial or temporal interval. In general one is unlikely to spot all 
the birds of a species within the 20 m strip on either side of a transect. We were only 
interested in intraspecific comparison of abundance at different elevations. Since all the 
transects were in a similar habitat structure – along a vehicle track passing through good 
forest we do not expect much of a variation in detectability of the same species at different 
elevations. This introduces an unknown multiplicative factor to the actual number of birds 
in any transect which can change the absolute counts and the error thereon. However, the 
use of an empirically determined Poisson factor includes the contribution of this unknown 
detectability factor as well.
Relationship between Asymmetry and Elevation 
Evaluating the statistical significance of the relationship between the dependent 
(asymmetry) and independent (modal elevation) is complicated because

1. There are errors on both independent and dependent variables.
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2. Their errors are correlated. An error in the estimation of the modal elevation will 
reduce the half-width estimate (NL and NH; σLS and σHS; σL60 and σH60) on the side of 
the shift and increase it on the other side.

3. The location of the peak is a non-linear function of the empirically-determined profile
shape

4. The asymmetry A is a non-linear function of the half-widths
5. The range of A is limited to ±2, because of which its errors will follow some unknown

non-standard distribution. 

We adopted a layered approach to this question:
1. Determine their non-parametric Spearman’s Rank correlation-coefficient – a very 

robust parameter which makes no assumptions of the distribution of any input or 
estimated parameter.

2. Determine the parametric Pearson’s correlation coefficient, whose error estimate is 
only valid for gaussian errors

3. Determine the linear regression parameters using only the errors of the dependent 
variable. The fitted slope will be a lower bound of the true value, which works in our 
favour as it is a conservative estimate of a true relationship. 

As it happened, we found a significant relationship from all three tests.

Profile Shape – Kurtosis
A simplistic recipe to testing if an observed profile is better represented as a gaussian, 
inverted-quadratic or uniform profile is to (i) fit all three profiles to the observed data by 
turn, (ii) derive a goodness of fit estimate like, for example, χ2 and (iii) use some criteria to 
pick one of the three as the best fit. This process has two disadvantages which could 
vitiate the entire exercise: fitting a non-linear curve is not straight-forward and the fitted 
parameters will end up with large error bars, especially for the quantum of records we 
have for individual birds. 

Instead, we “measured” the shapes using the parameter kurtosis (K) which is 
characteristic of each family of curves: K = 3.0 for all normal profiles regardless of mean 
and SD, K= 2.14 for all ∩-quadratic profiles, and K = 1.8 for all uniform profiles.

Kurtosis involves the fourth power of the coordinate in both the numerator and the 
denominator which results in large errors for small datasets. Therefore, we calculated the 
kurtosis for species-averaged community profiles in 3 elevational bands (15 species in 
800-1450 m, 15 species in 1451-1820 m, and 14 species in 1821-2400 m). The elevational
profile of each species was normalised using EN = (E – EM) /σE and FN(EN) = N(EN)/ NT , 
where, EN is the normalised elevation, FN is the fractional abundance at elevation EN, EM is 
the modal elevation, σE is the elevational SD, N(EN) is the unsmoothed abundance at 
elevation EN, and NT is the total abundance for the species. The normalised profiles of all 
the contributing species (i.e. modal elevation within the band) were averaged at each 
elevation after weighting it with the inverse of the variance. Finally, the species-averaged 
profiles were smoothed with full width kernel of 1 unit. We calculated the kurtosis for the 6 
half-profiles (above and below the peak) in the 3 elevational bands.

We used simulations to determine the dependence of kurtosis on smoothing width and 
profile SD (Figure S8). Kurtosis was independent of profile SD for the range of SD values 
seen in our data (SD: range 60-391 m; mean 241 m).
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Error Estimates
All the parameters we estimated – modal elevation, half-width estimates, asymmetry and 
kurtosis – depend on the abundance profile in a non-linear manner, and the errors of some
of the parameters are correlated. Therefore, we used Monte Carlo simulations to estimate 
these errors.

We used a model abundance profile, a Poisson overdispersion factor 2.0 (Figure S4) and 
a negative binomial random number generator (Lindén & Mäntyniemi, 2011; rnbinom in R; 
R Core Team, 2020) to generate 400 simulated profiles for each species.
The model profile for each species was the observed profile smoothed with a width of WS 
= 5 x 50 m. These simulated profiles were processed in a manner identical to the observed
profile to generate 400 sets of modal elevation, the three asymmetry metrics from the 
corresponding lower and upper half-widths and kurtosis. The simulated distribution 
function of these parameters were used to identify the error estimates (either standard 
error or the 95% confidence interval).
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Supplementary – Tables & Figures

Table ST1. Mean latitude and longitude of the elevational transects sampled in Eaglenest 
wildlife sanctuary, Arunachal Pradesh, India. The length of each transect was 200 m. All 
the transects may also be (approximately) located by matching the altitude on the 
motorable dirt track (visible on GoogleEarth) in Eaglenest.

Transect Latitude (N) Longitude (E) Transect Latitude (N) Longitude (E)
500 m 27.00701 92.42173 1650 m 27.06767 92.41605
550 m 27.00766 92.42071 1700 m 27.06539 92.41418
600 m 27.00870 92.41829 1750 m 27.06664 92.41328
650 m 27.00533 92.41881 1800 m 27.06937 92.41210
700 m 27.00715 92.41587 1850 m 27.06780 92.41086
750 m 27.00803 92.41465 1900 m 27.06750 92.40990
800 m 27.01668 92.41309 1950 m 27.06691 92.40400
850 m 27.01637 92.41285 2000 m 27.07079 92.40083
900 m 27.01637 92.41259 2050 m 27.07447 92.40041
950 m 27.02145 92.41522 2100 m 27.07341 92.40132

1000 m 27.02133 92.41420 2150 m 27.07375 92.40589
1050 m 27.02269 92.41475 2200 m 27.07891 92.40399
1100 m 27.02287 92.41362 2250 m 27.07583 92.40607
1150 m 27.02394 92.41301 2300 m 27.07994 92.40588
1200 m 27.02448 92.41155 2350 m 27.08351 92.40527
1250 m 27.04585 92.41889 2400 m 27.08442 92.40474
1300 m 27.05472 92.41654 2450 m 27.10305 92.41693
1350 m 27.05953 92.41510 2500 m 27.10538 92.42126
1400 m 27.05903 92.41322 2550 m 27.11332 92.43560
1450 m 27.06009 92.41310 2600 m 27.11954 92.43487
1500 m 27.06066 92.41298 2650 m 27.12174 92.43560
1550 m 27.06164 92.41364 2700 m 27.12610 92.44663
1600 m 27.06304 92.41381 2750 m 27.12405 92.45195
1650 m 27.06767 92.41605 2800 m 27.12523 92.45511

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.474819doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: Distribution of sampling dates and transect elevations. 
The ordinal date values are 122 for May 2nd and 184 for July 3rd.
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Figure S2: Fitting a peak to the abundance profile. 
The peak was obtained by iteratively fitting a cubic polynomial to the smoothed 
abundance profile. At each stage the fit was obtained using elevations with 
abundance above 60.65% of the smoothed maximum. The inset shows the 
bigaussian model for the abundance profile. The asymmetry may be defined in 
terms of the ratio of dispersions (σL and σH) total numbers (NL and NH), or scale 
length to 60.65% of peak (σl60 and σH60) on either side of the peak.
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Figure S3: Skewness metrics
Relationship between different mathematical definitions of skewness and the 
asymmetry metric used in this paper 

Figure S4: Estimation of Poisson overdispersion factor for abundance. 
(a) Stochasticity in abundance records was estimated using the difference between observed and 
smoothed abundances in each bin for each species. 
(b) Plot of the Poisson-error normalised deviation statistic. Its mean is close to zero (as expected) but SD =
2.26, which is much larger than that expected for a Poisson distribution (SD=1). From this we estimated 
that the abundance profiles had a mean overdispersion factor of ~2.0
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Figure S5. Examples of species abundance profiles in our dataset. 
The grey bars represent the observed abundances at each elevation, while the orange line represents the 
smoothed values. The horizontal dotted lines are at 60.65% of peak abundance. Profiles which were 
unimodal and untruncated were used in the study.  
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Figure S6: Dispersion in locating the centre of a simulated normal profile. 
We compared the results by identifying the centre (i) as the midpoint of the outermost records and (ii) by 
fitting the mode for different abundance values. Left: The simulation model (black curve) consists of an 
admixture of 95.2% “well-behaved” individuals from a normal distribution with SD = 1 (yellow curve) and 
4.8% individuals with SD = 3 (red curve). We assumed that all records outside x = ±3 were vagrants (grey-
shaded region), since their probability is very low for a “well-behaved” distributions. The ratios were chosen
to reproduce the 1.8% “vagrants” in our data. The lower plot shows a magnified section to show the relative
distributions of the two components in the outer parts of the range. The composite curve follows the “well-
behaved” profile for most of the range and individuals; only a small fraction at the edge makes all the 
difference. Right: The centre coincides with the abundance peak for a normal distribution. The dispersion 
in the location of the centre from the midpoint of the outermost records (red symbols) is larger than that 
from mode-fitting (blue symbols), and by a large factor in the presence of vagrants. Increased sampling 
effort hardly increases the accuracy of the midpoint-as-centre. This is because the centre is estimated from
just two records regardless of the sample size.

Figure S7: The effect of competition on species abundance profiles. 
Consider two species for which the environmental component of the shape of the 
abundance profile is symmetric. Competing species pairs are likely to impact each 
other much more in the zone of overlap, leading to aymmetric fitness, and hence 
abundance, profiles. However, the asymmetry will be in opposite directions and the 
nett average asymmetry introduced by the competitive interaction will be zero.
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Figure S8. Impact of smoothing on the kurtosis of simulated profiles of 
different shapes
Colours denote different smoothing full-widths going from 0 (no smoothing) to 
2.0 times the standard deviation of the simulated profile. Even with smoothing 
the kurtosis of nomal (minimum 2.85) and ∩-quadratic (maximum 2.42) 
profiles are very different. The average predicted kurtosis for our smoothed 
elevational community samples were normal KSM = 3.0, ∩-quadratic KSQ = 2.23
and uniform KSU = 1.93.
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