
Tutorial for randtip R package

Contents

Introduction 1

Package installation 2

Examples 2

Example 1 - The ‘backbone’ mode of randtip 2

Example 2 - The ‘taxon list’ mode of randtip 15

Manual definition of candidate branches 18

References 21

Introduction

This tutorial aims to provide a step-by-step user guide to expand incomplete molecular

phylogenies using the randtip R package.

Specifically, the tutorial shows how to expand a hypothetical species-level backbone

phylogeny with 56 tips using a list of 54 species. Some of the species in the list are

already placed in the backbone tree but others are missing, the latter representing

phylogenetically uncertain taxa (PUTs).

We focus on hypothetical rather than real world data to cover a wider array of PUT

binding situations. The tutorial will soon be available online, and all the data sets

required to complete the tutorial are available as part of the randtip R package.

1

Package installation

The randtip R package is available as an open-source software hosted on GitHub at

github.com/iramosgutierrez/randtip The package can be installed (along with its de-

pendencies) using the install_github function in the devtools package (Wickham et

al. 2021).

install.packages("devtools")

library(devtools)

devtools::install_github("iramosgutierrez/randtip")

The software will be delivered soon as a formal R package so that it can be installed from

CRAN using the utility function install.packages or the corresponding pathways of

R interfaces (e.g. tab ‘packages’ and then install’ if using R Studio).

Once the installation is completed the package can be loaded (along with its dependen-

cies).

library(randtip)

Examples

Example 1 - The ‘backbone’ mode of randtip

1. Data loading

The package randtip requires the user to provide a backbone phylogeny (R object

of class phylo) and a list of taxa (typically species and/or subspecies) for which a

phylogenetic hypothesis is to be obtained.

The user must ensure that there are no duplicate taxa in the list, and that taxonomic

criteria between the later and the phylogenetic tips have been harmonized.

The phylogeny can be loaded into R using the function read.tree of ape R package

(Paradis & Schliep 2019) and the list of species can be loaded as a single column data

2

https://github.com/iramosgutierrez/randtip

frame or as a character vector.

sp.list <- read.table("/.../specieslist.txt")

back.tree <- read.tree("/.../backbone.txt")

If randtip is already installed in the system, the hypothetical example files can be loaded

into the working space.

sp.list <- mythology$sp.list

back.tree <- mythology$back.tree

2. Building the data frame info

Once the backbone phylogeny and the list of species have been imported into the

working space, the next step is to build the data frame info. The most direct and safest

way to assemble info is using the build.info function.

Here, we will follow the ‘backbone’ mode of randtip (default) to bind the PUTs to the

backbone tree (otherwise the argument ‘mode’ of build.info must be set to “list”,

see ‘Example 2’ below). Therefore, info will include not only the 54 species in the

list, but also the species that are represented in the backbone phylogeny. By default,

build.info will try to retrieve taxonomic information from the web for all the species

in info (calling to the ‘ncbi’ repository as default option). However, this procedure

makes no sense for our hypothetical example, and thus the ‘find.ranks’ argument of

build.info must be set to FALSE (default is TRUE).

Note that retrieving taxonomic information with build.info may take some time for

very large data sets. As a guideline, downloading taxonomic information for 10585

genera (~75000 species in total) took approximately 5 hours to complete. This timing

depends on the number of genera rather than species.

3

my.info.noranks <- build.info(sp.list, tree = back.tree,

find.ranks = FALSE,

mode = "backbone")

my.info.noranks # print the data frame info on screen

Note that the only taxonomic information in the outputted data frame (‘my.info.noranks’)

is genus-level (second column, which has been automatically filled in with the genus of

the species in the list and the backbone phylogeny). Thus, in case the genus of a PUT

is missing in the backbone phylogeny, the PUT will not be bound. We recommend

providing at least one supra-generic rank (e.g. taxonomic family) for all the species in

info, which will be used to define supra-generic MDCCs whenever the genus of a PUT

is missing in the phylogeny.

For the purpose of completing this tutorial, an alternative info data frame with tax-

onomic information for all the species in the list and the backbone phylogeny can be

loaded into the working space.

my.info <- mythology$info.backbone

my.info # print the data frame info on screen

The new info data frame (‘my.info’) includes the supra-generic taxonomic ranks for all

the species in the list and the backbone phylogeny that would have been retrieved by

build.info from the web (should the species in the example represented real taxa),

including class, order and family in all cases and subfamily in some cases.

Note that the species that are represented in the backbone phylogeny but are missing

in list show hyphens instead of ‘NA’ from columns 10th to 20th. This is because these

columns are intended to customize simulation parameters for the species in the user’s list

representing PUTs. Thus, while we still do not know which species in the list represent

PUTs, we can be certain that the species depicted in ‘my.info’ that are missing in the

user’s list (i.e. those showing hyphens from columns 10th to 20th) do not represent

PUTs.

4

3. Checking the data frame info

Once the info data frame is created, it is very convenient to check for possible spelling

errors. Otherwise, it may happen that species included in the user’s list that are also

represented in the phylogeny, but misspelled in either object, are misidentified as PUTs.

Also, we strongly recommend the user to check the phyletic nature of the phylogeneti-

cally placed and co-ranked (PPCR) species that define putative most derived consensus

clades (MDCCs) for the PUTs, so that informed decisions can be made in accordance

with the particularities of each case (see section 4).

Finally, it is important to ensure that the backbone tree is ultrametric (in case the tree

read from file is genuinely ultrametric) and does not include duplicate taxa. All these

checks can be conducted using the function check.info, which will output a new data

frame with all the information.

my.check <- check.info(my.info, back.tree)

Our example data set produces three warning messages.

There may be misspelling errors in the species list or the

phylogenetic tips. Please, check the TYPO column in the

outputted data frame.

↪

↪

##

Tips Yetis_abominabilis_abominabilis and Yetis_abominabilis may

represent the same taxon. Please consider removing one of

them.

↪

↪

##

The backbone tree is not ultrametric.

First, the function warns about the possibility of misspelling errors. As such, the

column “Typo.names” of the newly created data frame ‘my.check’ reveals that the

species Gorgona medusi (represented in the backbone phylogeny) was erroneously typed

in the user’s list as Gorgona medusii (it may also happen the other way around, this is,

5

that a species is misspelled in the phylogeny but correctly typed in the user’s list). It is

important that the user corrects misspelling errors in ‘my.info’, because otherwise the

species will remain misidentified as PUTs (as shown in the second column of ‘my.check’).

This can be done directly in R using the auxiliary function edit.info or exporting

info as a spreadsheet (e.g. csv or xlsx) and importing it back into R once the edits are

completed.

Here, we will use the function edit.info for this purpose. To do so, the user only needs

to indicate the name of the column that is to be edited, the corresponding species (as

in the first column) and the new information.

my.info <- edit.info(my.info, PUTs = "Gorgona medusii",

column = "taxon", edit = "Gorgona medusi")

Second, the function informs that two phylogenetic tips (Yetis abominabilis and Yetis

abominabilis abominabilis) may represent the same taxon, and thus the user may con-

sider to pick one of them and disregard the other. Otherwise, randtip will choose ran-

domly for the purpose of binding PUTs. Phylogenetic tips can be easily pruned from

the tree using the argument ‘remove.tip’ of the auxiliary function edit.tree (which

also serves to edit tip labels, see Table S1 in supplementary material), and the corre-

sponding row of info should be removed as well. The latter amend can be conducted

using the argument ‘remove.rows’ of edit.info.

back.tree <- edit.tree(back.tree,

tips="Yetis abominabilis abominabilis",

remove.tips=TRUE)

my.info <- edit.info(my.info,

PUTs="Yetis abominabilis abominabilis",

remove.rows=TRUE)

Third, the function informs that the backbone tree is not ultrametric. Because we are

certain that the tree read from file is genuinely ultrametric (it is simply detected as

non-ultrametric due to numerical precision of computer machinery), we will force the

6

tree to be ultrametric later (see section 6).

4. Customizing simulation parameters

By default, randtip will bind the PUTs to the backbone tree using the parameters that

are specified in the arguments of rand.tip (see section 5). However, using the same

set of parameters to bind all the PUTs may lead to suboptimal solutions in many cases.

For example, consider the PUTs Draco borealis, Draco troglodytes and Draco wiverny,

whose genus was identified as a polyphyletic group by the check.info function (see

data frame ‘my.check’). We can take a closer look to the less inclusive clade that

includes all the species in the genus Draco using the functions get.clade followed by

plot.clade.

my.clade <- get.clade(my.info, back.tree, clade = "Draco")

plot.clade(my.clade)

Figure 1: Backbone phylogeny pruned to the less inclusive clade that includes all the

species in genus Draco (representative species in green)

7

Because the congenerics of these PUTs form two monophyletic clusters that are very

similar in size (four and six species, respectively; Figure 1), the default behaviour of

rand.tip for binding Draco borealis, Draco troglodytes and Draco wiverny to this MDCC

(largest monophyletic cluster) is risky –the evidence that the largest cluster of Draco

most likely include them is weak– and thus a more conservative approach is desirable.

For example, the user may use the “complete” scheme to bind these specific PUTs to

a randomly selected branch below the crown node defining the most recent common

ancestor (MRCA) of all the species in the genus instead (i.e. root node of the phylogeny

displayed in Figure 1). To do so, we can fill in the corresponding slots of info (column

‘polyphyly.scheme’) to set the “complete” scheme for these PUTs.

DracoPUTs <- c("Draco borealis", "Draco troglodytes",

"Draco wiverny")

my.info <- edit.info(my.info,

PUTs = DracoPUTs,

column = "polyphyly.scheme",

edit = "complete")

It may happen that the user is certain that the MDCC of a PUT does not correspond

to any of the taxonomic groups considered by randtip. For example, the MDCC of the

PUT Draco balerion could be infra-generic (e.g. a taxonomic section within the genus

Draco including Draco valyriensis, Draco viserii and Draco daeneryi). The user may

know that the MRCA of all the species constituting the target taxonomic section in the

phylogeny is defined by Draco valyriensis and Draco daeneryi (the minimum spanning

path connecting both species in the tree traverses the MRCA of all the species in the

section). Thus, we can fill in the slots “taxon1” and “taxon2” of the corresponding row

of info with Draco valyriensis and Draco daeneryi to define an infra-generic MDCC for

Draco balerion.

8

my.info <- edit.info(my.info,

PUTs = "Draco balerion",

column = "taxon1",

edit = "Draco valyriensis")

my.info <- edit.info(my.info,

PUTs = "Draco balerion",

column = "taxon2",

edit = "Draco daeneryi")

Now, consider the PUT Lycanthropus albus, whose genus also forms a polyphyletic

group.

my.clade <- get.clade(my.info, back.tree, clade = "Lycanthropus")

plot.clade(my.clade)

Figure 2: Backbone phylogeny pruned to the less inclusive clade that includes all the

species in genus Lycanthropus (representative species in green).

9

In this case, the polyphyletic nature of the group is due to an outlying species (Ly-

canthropus americanus) that maps clearly away from the main cluster of species in Ly-

canthropus (Figure 2). Therefore, the default scheme “largest” seems adequate (i.e. it

is quite likely that the largest cluster of the genus in the phylogeny actually includes

Lycanthropus americanus) whereas the “complete” scheme could be excessively conser-

vative.

5. Wrapping up

Once we have edited the data in info as we see fit (see above), the function info2input

can be used to create the input object for the rand.tip function. This final dataset

ensures consistent structure for use in rand.tip and allows generating as many ex-

panded phylogenies as desired without the need to search for putative MDCCs in info

repeatedly, which is a computationally intense task (this is done by the info2input

just once).

In case info2input fails to find a MDCC for a PUT (which will only happen if the

genus of the PUT is missing in the backbone tree and no supra-generic taxonomic

information is available), the function will return a warning message.

my.input.noranks <- info2input(my.info.noranks, back.tree)

The following taxa were not assigned MDCC and will not be bound

to the tree:↪

Grindylowia_yorkii

Harpia_feminicephala

Leviathanus_cthulus

Trolleolus_angmariensis

Trolleolus_mordoriensis

Otherwise, info2input will select the less inclusive MDCCs of each PUT.

my.input <- info2input(my.info, back.tree)

10

Note that the outputted data frame my.input is identical to my.info except for the two

newly added columns, namely ‘MDCC’ and ‘MDCC.rank’.

‘MDCC’ column shows the taxonomic groups defining the MDCCs to which the PUTs

will be bound (‘Tip’ means that the species is already represented in the backbone

phylogeny).

‘MDCC.rank’ column depicts the taxonomic rank of the groups.

6. PUT binding

The binding of PUTs in the selected MDDCs is carried out with the rand.tip function,

which is fed with the output of info2input (my.input). Most arguments of rand.tip

are used for defining simulation parameters (and thus they can be customized for indi-

vidual PUTs via info) except for ‘ prune’, ‘forceultrametric’ and ‘verbose’.

By default, rand.tip will output a phylogenetic tree including only the species in the

user’s list (n = 54 in our hypothetical example) unless ‘prune’ is set to FALSE, in which

case the whole expanded backbone phylogeny will be outputted.

In case the tree read from file is detected as non-ultrametric despite being genuinely

ultrametric (as in our hypothetical example, see Ramos-Gutiérrez et al. (2021) text for

an extended discussion on this issue), the user can set the ‘forceultrametric’ argument

to TRUE (default is FALSE) to force the tree to be ultrametric.

Lastly, the argument ‘verbose’ allows the user to print the progress of the function on

screen (default is TRUE). Here, we will use the function with default settings except

for (1) forcing the backbone phylogeny to be ultrametric, and (2) outputting the whole

expanded tree (rather than the tree pruned to the species in the user’s list). This will

enable us to better visualize the MDCCs that were selected to bind the PUTs (see

Figure 3):

new.tree <- rand.tip(my.input, back.tree,

forceultrametric = TRUE,

prune = FALSE)

11

7. Tree visualization

We can visualize the result of the simulation using the plot.phylo function of ‘ape’ R

package.

To distinguish between phylogenetically placed species and PUTs, we can set the

color pattern of phylogenetic tips using the auxiliary function put.tip.col before

plot.phylo.

Note that visualizing very large phylogenies may require specialized software such as

Dendroscope (Huson & Scornavacca 2012).

my.tip.col <- put.tip.col(new.tree, back.tree,

placed.col = "dark grey",

put.col = "red")

plot.phylo(new.tree, tip.color = my.tip.col)

12

Figure 3: Expanded phylogenetic tree using the ’backbone’ mode of randtip. Phyloge-

netic tips in red represent phylogenetically uncertain taxa (PUTs).

Most of the PUTs were bound to a randomly selected branch below the crown node of

their corresponding genus-level MDCCs.

For example, the congenerics of the PUT Sirenia merrowi form a monophyletic group,

and thus Sirenia merrowi is now placed below the crown node of the group (Figure 3).

13

In contrast, the congenerics of the PUT Lycanthropus albus form a polyphyletic group,

and thus it was bound below the crown node of the largest cluster of the genus (default

scheme “largest”).

Scheme

'largest'

However, the PUTs Draco borealis, Draco troglodytes and Draco wiverny may not nec-

essarily appear bound below the crown node of the largest cluster of Draco, as we

specifically set the polyphyletic scheme “complete” to bind these PUTs. Thus, they

could have been bound to any branch below the node representing the MRCA of all the

species in the genus. For example, in this specific simulation Draco borealis was bound

as sister to Scylla.

Scheme

'complete'

The congenerics of the PUTs Nephilimum yereni and Nephilimum mapinguari form a

paraphyletic group, and since the argument ‘use.paraphyletic’ of rand.tip was set to

TRUE (default), none of the branches subtending the species in Sasquatch were consid-

ered as part of the parameter space for binding these PUTs. Otherwise, Nephilimum

yereni and Nephilimum mapinguari could have been bound as sister to either species

of Sasquatch, hence breaking the paraphyletic nature of Nephilimum.

Argument

use.paraphyletic

In a few cases, the genera of the PUTs were missing in the backbone tree, and thus

they were bound to supra-generic MDDCs instead. For example, the MDCC of the

PUT Leviathanus cthulus was the family Leviathanidae, a polyphyletic group. Note

that Leviathanus cthulus was bound to the largest cluster of Leviathanidae (default

scheme) in such a way that the genera Macropolypus and Kraken remained monophyletic

(Figure 3). This is because the argument ‘respect.mono’ of rand.tip was set to TRUE

(default).

Argument

respect.mono

The less inclusive MDCC of the PUT Harpia feminicephala was order Aviformes, which

is uniquely represented by the species Phoenix athanatos in the backbone phylogeny, and

thus the former was bound as sister to the latter because the argument ‘use.singleton’ of

rand.tip was set to TRUE (default). Otherwise, the parameter space to bind Harpia

feminicephala would have been substantially larger (any branch where the insertion

of the PUT would not compromise the monophyletic or paraphyletic nature of the

taxonomic groups represented in the phylogeny).

Argument

use.singleton

The PUTs Trolleolus mordoriensis and Trolleolus angmariensis were bound below the

14

crown node of the subfamily Gigantinae (less inclusive than Parantropidae), and be-

cause the argument ‘clump.puts’ of randtip was set to TRUE (default), the two PUTs

appear clumped together forming a monophyletic group.

Argument

clump.puts

Finally, Grindylowia yorkii was bound below the crown node of the order Aquatia, its

less inclusive MDCC in the backbone phylogeny. Again, note that the monophyletic

status of the groups within Aquatia (Aspidochelonius, Macropolypus and Kraken) was

kept.

Note that the PUT Draco balerion was bound to a branch placed below the MRCA

of the species Draco valyriensis and Draco daeneryi, as we specifically instructed the

software to use an infra-generic MDCC to bind this PUT (Figure 3).

Example 2 - The ‘taxon list’ mode of randtip

Now that we are more familiar with the workflow of randtip, we will use the same

species list of the previous example to expand the backbone tree using the ‘taxon list’

mode of randtip.

On ‘taxon list mode’, randtip defines MDDCs on the sole basis of taxonomic information

of the species provided in the user’s list, meaning shorter execution times. This is

because backbone phylogenies often include thousands of species for which no taxonomic

information needs to be retrieved under this mode. However, the definition of supra-

generic MDCCs may diverge between both approaches (see Fig. 3 of Ramos-Gutiérrez

et al. (2021)) which may or may not have an impact on the final tree.

As in the previous example, the first step is building the info data frame.

my.info.noranks.list <- build.info(sp.list, tree = NULL,

find.ranks = FALSE,

mode = "list")

my.info.noranks.list # print the data frame info on screen

The outputted data frame (‘my.info.noranks.list’) is identical to that generated in the

previous example (‘my.info.noranks’) with the exception that only the species included

15

in the user’s list are displayed. Again, we have instructed build.info not to retrieve

taxonomic information from the web, and thus the only available information is that

corresponding to genus rank. For the purpose of completing this tutorial, an alternative

info data frame including taxonomic information for all the species in the list can be

loaded into the working space.

my.info.list <- mythology$info.list

my.info.list # print the data frame info on screen

Now we can use check.info:

my.check.list <- check.info(my.info.list, back.tree)

Again, we get the same warnings as in the previous example (except for that pertaining

to the species that were duplicated in the backbone phylogeny, as we pruned one of

them earlier).

Besides, a closer look to the outputted data frame (‘my.check.list’) reveals that the

phyletic status of some groups have changed. For example, the family Leviathanidae

is now displayed as monophyletic instead of polyphyletic. This is because the data

frame ‘my.info.list’ only includes taxonomic information for the species in the user’s

list, and thus any supra-generic taxonomic rank for the species that are represented

in the backbone phylogeny but missing in the user’s list remains undisclosed. In this

case, the two species that conform the small phylogenetic cluster of Leviathanidae

(Aspidochelonius turtur and Aspidochelonius spinosus) are not included in the user’s

list, which is the reason why the group is now identified as monophyletic (Figure 4).

16

Figure 4: Backbone phylogeny pruned to the less inclusive clade that includes all the

species in Leviathanidae (representative species in green). The species next to the solid

vertical bar are included in the user’s list, whereas those next to the dashed bar are

not.

Whether or not the different functioning of the ‘backbone’ and ‘taxon list’ modes of

randtip for supra-generic MDCCs will have an impact in the expanded tree will depend

on the specifics of each situation.

For example, the PUT Leviathanus cthulus will always be bound below the crown

node of the clade defined by genera Kraken and Macropolypus regardless of the

mode of randtip (assuming default settings). This is because under ‘backbone’ mode,

Leviathanus cthulus will be bound to the largest cluster of Leviathanidae (n = 3

species; Figure 3), which is the only cluster of Leviathanidae that can be identified

under ‘taxon list’ mode (because the two species in the small cluster of Leviathanidae

are not included in the user’s list; Figure 4). However, it may have happened that

Leviathanidae species not included in the user’s list represented the largest cluster of

the group in the backbone phylogeny (for example, if the genus Aspidochelonius would

have been represented by four or more species in the tree), in which case the ‘backbone’

and ‘taxon list’ modes would bind Leviathanus cthulus to different clades, respectively

(if used with default settings).

17

Finally, it is worth mentioning that both modes of rantip will behave identically when-

ever the genera of the PUTs are minimally represented in the backbone phylogeny.

Manual definition of candidate branches

The clade-based approach of randtip should cover most real-world situations for PUT

binding. Yet, the auxiliary function custom.branch allows the user to manually define

any subset of candidate branches to bind PUTs.

For example, the phylogenetic place for the PUT of hybrid origin Monoceros x alaricor-

nus could be any point within the branches subtending the parental species Monoceros

pegasus and Monoceros megacornus, respectively, and such parameter space cannot be

specified by one single clade.

To solve this, the user can define the set of candidate branches as an edges data frame.

The data frame edges must contain five columns, each row representing a different set

of candidate branches for a given PUT. The first column must include the PUT to

which the row refers to. The second and third columns are used to set the older node

(MRCA of two given species) and the fourth and fifth ones refer to the younger one.

Thus, all the branches traversed by the minimum spanning path connecting the older

and younger nodes are selected as candidate branches (the user can add any number of

rows as desired).

To define a terminal node (phylogenetic tip) as the younger node, the user must fill

in the corresponding slots of the fourth and fifth columns with the corresponding tip

label. Inserting the same tip in the four slots will allow binding the PUT as sister to

the species represented by the tip. Finally, in case the same pair of species is set for

columns 2-3 and 4-5 within a row, the latter will define all branches below the MRCA

of the two species as candidates.

In order to ensure that candidate branches have been correctly encoded in edges, the

user can use the auxiliary function plot.custom.branch to visually explore the selected

space of branch lengths.

18

edges <- mythology$edges

plot.custom.branch(new.tree, edges, cex = 0.7,

candidate.lwd = 4, forbidden.lwd = 1.5)

Lycanthropus americanus
Meganthropus gigas
Sasquatch americanus
Sasquatch canadensis
Nephilimum macropodum
Nephilimum yereni
Nephilimum mapinguari
Nephilimum kunkii
Nephilimum yowii
Yetis abominabilis
Yetis himalayensis
Trolleolus angmariensis
Trolleolus mordoriensis
Satyrus satyrus
Satyrus faunus
Lycanthropus selenicus
Lycanthropus nocturnus
Lycanthropus albus
Lycanthropus septentrionale
Lycanthropus melanicus
Lamia empusai
Gorgona medusi
Sirenia posidonica
Sirenia merrowi
Sirenia bartolii
Sirenia chilotii
Sirenia aycayia
Hippogriffus africanus
Hippogriffus buckbeakii
Monoceros megacornus
Monoceros melanicus
Monoceros lancelotii
Monoceros karkadann
Monoceros kirin
Monoceros pegasus
Monoceros japonicus
Cerberus tricephalus
Chupacabra hematophaga
Aquamonstrus lochnessii
Salamandra ignifuga
Kraken titanicus
Kraken caribensis
Leviathanus cthulus
Macropolypus nautilus
Macropolypus litoralis
Leucobalaena ahabii
Hippocampus kelpie
Grindylowia yorkii
Aspidochelonius spinosus
Aspidochelonius turtur
Scylla monstruosa
Scylla multicephala
Draco borealis
Draco flamigerus
Draco igneus
Draco quetzalcoatli
Draco wiverny
Draco daeneryi
Draco viserii
Draco valyriensis
Draco balerion
Draco troglodytes
Draco cornucaudatus
Hydra lernaia
Draco tianlong
Draco cetus
Draco panlong
Draco mizuchicus
Basiliscus cocatrix
Basiliscus octopodus
Phoenix athanatos
Harpia feminicephala

Figure 5: Phylogeny with candidate branches for the insertion of Monocerus x alaricor-

nus highlighted in red.

19

And now we can further expand the phylogeny that was generated earlier.

new.tree2 <- custom.branch(new.tree, edges)

plot.phylo(new.tree2, cex = 0.7)

Lycanthropus americanus
Meganthropus gigas
Sasquatch americanus
Sasquatch canadensis
Nephilimum macropodum
Nephilimum yereni
Nephilimum mapinguari
Nephilimum kunkii
Nephilimum yowii
Yetis abominabilis
Yetis himalayensis
Trolleolus angmariensis
Trolleolus mordoriensis
Satyrus satyrus
Satyrus faunus
Lycanthropus selenicus
Lycanthropus nocturnus
Lycanthropus albus
Lycanthropus septentrionale
Lycanthropus melanicus
Lamia empusai
Gorgona medusi
Sirenia posidonica
Sirenia merrowi
Sirenia bartolii
Sirenia chilotii
Sirenia aycayia
Hippogriffus africanus
Hippogriffus buckbeakii
Monoceros megacornus
Monoceros melanicus
Monoceros lancelotii
Monoceros karkadann
Monoceros kirin
Monoceros pegasus
Monoceros x alaricornus
Monoceros japonicus
Cerberus tricephalus
Chupacabra hematophaga
Aquamonstrus lochnessii
Salamandra ignifuga
Kraken titanicus
Kraken caribensis
Leviathanus cthulus
Macropolypus nautilus
Macropolypus litoralis
Leucobalaena ahabii
Hippocampus kelpie
Grindylowia yorkii
Aspidochelonius spinosus
Aspidochelonius turtur
Scylla monstruosa
Scylla multicephala
Draco borealis
Draco flamigerus
Draco igneus
Draco quetzalcoatli
Draco wiverny
Draco daeneryi
Draco viserii
Draco valyriensis
Draco balerion
Draco troglodytes
Draco cornucaudatus
Hydra lernaia
Draco tianlong
Draco cetus
Draco panlong
Draco mizuchicus
Basiliscus cocatrix
Basiliscus octopodus
Phoenix athanatos
Harpia feminicephala

Figure 6: Phylogeny after the insertion of Monocerus x alaricornus.

20

References
Huson, D.H. & Scornavacca, C. (2012). Dendroscope 3: An interactive tool for rooted

phylogenetic trees and networks. Systematic biology, 61, 1061–1067.

Paradis, E. & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics

and evolutionary analyses in R. Bioinformatics, 35, 526–528.

Ramos-Gutiérrez, I., Lima, H. & Molina-Venegas, R. (2021). Randtip, a generalized

framework to expand incomplete phylogenies using non-molecular phylogenetic in-

formation.

Wickham, H., Hester, J. & Chang, W. (2021). Devtools: Tools to make developing r

packages easier.

21

	Introduction
	Package installation
	Examples
	Example 1 - The `backbone' mode of randtip
	Example 2 - The `taxon list' mode of randtip

	Manual definition of candidate branches
	References

