Tutorial for randtip R package

Contents
Introduction 1
Package installation 2
Examples 2
Example 1 - The ‘backbone’ mode of randtip. 2
Example 2 - The ‘taxon list” mode of randtip 15
Manual definition of candidate branches 18
References 21
Introduction

This tutorial aims to provide a step-by-step user guide to expand incomplete molecular

phylogenies using the randtip R package.

Specifically, the tutorial shows how to expand a hypothetical species-level backbone
phylogeny with 56 tips using a list of 54 species. Some of the species in the list are
already placed in the backbone tree but others are missing, the latter representing

phylogenetically uncertain taxa (PUTs).

We focus on hypothetical rather than real world data to cover a wider array of PUT
binding situations. The tutorial will soon be available online, and all the data sets

required to complete the tutorial are available as part of the randtip R package.

Package installation

The randtip R package is available as an open-source software hosted on GitHub at
github.com /iramosgutierrez/randtip The package can be installed (along with its de-
pendencies) using the install_github function in the devtools package (Wickham et
al. 2021).

install.packages("devtools")

library(devtools)

devtools::install_github("iramosgutierrez/randtip")

The software will be delivered soon as a formal R package so that it can be installed from
CRAN using the utility function install.packages or the corresponding pathways of
R interfaces (e.g. tab ‘packages’ and then install’ if using R Studio).

Once the installation is completed the package can be loaded (along with its dependen-

cies).

library(randtip)

Examples

Example 1 - The ‘backbone’ mode of randtip
1. Data loading

The package randtip requires the user to provide a backbone phylogeny (R object
of class phylo) and a list of taxa (typically species and/or subspecies) for which a

phylogenetic hypothesis is to be obtained.

The user must ensure that there are no duplicate taxa in the list, and that taxonomic

criteria between the later and the phylogenetic tips have been harmonized.

The phylogeny can be loaded into R using the function read.tree of ape R package
(Paradis & Schliep 2019) and the list of species can be loaded as a single column data

https://github.com/iramosgutierrez/randtip

frame or as a character vector.

sp.list <- read.table("/.../specieslist.txt")

back.tree <- read.tree("/.../backbone.txt")

If randtip is already installed in the system, the hypothetical example files can be loaded

into the working space.

sp.list <- mythology$sp.list

back.tree <- mythology$back.tree

2. Building the data frame info

Once the backbone phylogeny and the list of species have been imported into the
working space, the next step is to build the data frame info. The most direct and safest

way to assemble info is using the build.info function.

Here, we will follow the ‘backbone’ mode of randtip (default) to bind the PUTSs to the
backbone tree (otherwise the argument ‘mode’ of build.info must be set to “list”,
see ‘Example 2’ below). Therefore, info will include not only the 54 species in the
list, but also the species that are represented in the backbone phylogeny. By default,
build.info will try to retrieve taxonomic information from the web for all the species
in info (calling to the ‘ncbi’ repository as default option). However, this procedure
makes no sense for our hypothetical example, and thus the ‘find.ranks’ argument of

build.info must be set to FALSE (default is TRUE).

Note that retrieving taxonomic information with build.info may take some time for
very large data sets. As a guideline, downloading taxonomic information for 10585
genera (~75000 species in total) took approximately 5 hours to complete. This timing

depends on the number of genera rather than species.

my.info.noranks <- build.info(sp.list, tree = back.tree,
find.ranks = FALSE,
mode = "backbone")

my.info.noranks # print the data frame info on screen

Note that the only taxonomic information in the outputted data frame (‘my.info.noranks’)
is genus-level (second column, which has been automatically filled in with the genus of
the species in the list and the backbone phylogeny). Thus, in case the genus of a PUT
is missing in the backbone phylogeny, the PUT will not be bound. We recommend
providing at least one supra-generic rank (e.g. taxonomic family) for all the species in
info, which will be used to define supra-generic MDCCs whenever the genus of a PUT
is missing in the phylogeny.

For the purpose of completing this tutorial, an alternative info data frame with tax-
onomic information for all the species in the list and the backbone phylogeny can be

loaded into the working space.

my.info <- mythology$info.backbone

my.info # print the data frame info on screen

The new info data frame (‘my.info’) includes the supra-generic taxonomic ranks for all
the species in the list and the backbone phylogeny that would have been retrieved by
build.info from the web (should the species in the example represented real taxa),

including class, order and family in all cases and subfamily in some cases.

Note that the species that are represented in the backbone phylogeny but are missing
in list show hyphens instead of ‘NA’ from columns 10*" to 20"". This is because these
columns are intended to customize simulation parameters for the species in the user’s list
representing PUTs. Thus, while we still do not know which species in the list represent
PUTs, we can be certain that the species depicted in ‘my.info’ that are missing in the
user’s list (i.e. those showing hyphens from columns 10*" to 20'") do not represent

PUTs.

3. Checking the data frame info

Once the info data frame is created, it is very convenient to check for possible spelling
errors. Otherwise, it may happen that species included in the user’s list that are also

represented in the phylogeny, but misspelled in either object, are misidentified as PUTs.

Also, we strongly recommend the user to check the phyletic nature of the phylogeneti-
cally placed and co-ranked (PPCR) species that define putative most derived consensus
clades (MDCCs) for the PUTs, so that informed decisions can be made in accordance

with the particularities of each case (see section 4).

Finally, it is important to ensure that the backbone tree is ultrametric (in case the tree
read from file is genuinely ultrametric) and does not include duplicate taxa. All these
checks can be conducted using the function check.info, which will output a new data

frame with all the information.

my.check <- check.info(my.info, back.tree)

Our example data set produces three warning messages.

There may be misspelling errors in the species list or the
- phylogenetic tips. Please, check the TYPO column in the
-~ outputted data frame.
##
Tips Yetis_abominabilis_abominabilis and Yetis_abominabilis may
-~ represent the same taxon. Please consider removing one of
- them.
##

The backbone tree is not ultrametric.

First, the function warns about the possibility of misspelling errors. As such, the
column “Typo.names” of the newly created data frame ‘my.check’ reveals that the
species Gorgona medusi (represented in the backbone phylogeny) was erroneously typed

in the user’s list as Gorgona medusii (it may also happen the other way around, this is,

that a species is misspelled in the phylogeny but correctly typed in the user’s list). It is
important that the user corrects misspelling errors in ‘my.info’, because otherwise the
species will remain misidentified as PUTs (as shown in the second column of ‘my.check’).
This can be done directly in R using the auxiliary function edit.info or exporting
info as a spreadsheet (e.g. csv or xlsx) and importing it back into R once the edits are

completed.

Here, we will use the function edit.info for this purpose. To do so, the user only needs
to indicate the name of the column that is to be edited, the corresponding species (as

in the first column) and the new information.

my.info <- edit.info(my.info, PUTs = "Gorgona medusii',

column = "taxon", edit = "Gorgona medusi')

Second, the function informs that two phylogenetic tips (Yetis abominabilis and Yetis
abominabilis abominabilis) may represent the same taxon, and thus the user may con-
sider to pick one of them and disregard the other. Otherwise, randtip will choose ran-
domly for the purpose of binding PUTs. Phylogenetic tips can be easily pruned from
the tree using the argument ‘remove.tip’ of the auxiliary function edit.tree (which
also serves to edit tip labels, see Table S1 in supplementary material), and the corre-
sponding row of info should be removed as well. The latter amend can be conducted

using the argument ‘remove.rows’ of edit.info.

back.tree <- edit.tree(back.tree,
tips="Yetis abominabilis abominabilis",
remove . tips=TRUE)
my.info <- edit.info(my.info,
PUTs="Yetis abominabilis abominabilis",

remove.rows=TRUE)

Third, the function informs that the backbone tree is not ultrametric. Because we are
certain that the tree read from file is genuinely ultrametric (it is simply detected as

non-ultrametric due to numerical precision of computer machinery), we will force the

tree to be ultrametric later (see section 6).

4. Customizing simulation parameters

By default, randtip will bind the PUTs to the backbone tree using the parameters that
are specified in the arguments of rand.tip (see section 5). However, using the same

set of parameters to bind all the PUTs may lead to suboptimal solutions in many cases.

For example, consider the PUTs Draco borealis, Draco troglodytes and Draco wiverny,
whose genus was identified as a polyphyletic group by the check.info function (see
data frame ‘my.check’). We can take a closer look to the less inclusive clade that
includes all the species in the genus Draco using the functions get.clade followed by

plot.clade.

my.clade <- get.clade(my.info, back.tree, clade = "Draco")

plot.clade(my.clade)

Draco mizuchicus
|:Draco panlong
Draco cetus

Draco tianlong

Draco cornucaudatus

Draco valyriensis
{Draco viserii
Draco daeneryi

Draco igneus

Draco flamigerus

Figure 1: Backbone phylogeny pruned to the less inclusive clade that includes all the

species in genus Draco (representative species in green)

Because the congenerics of these PUTs form two monophyletic clusters that are very
similar in size (four and six species, respectively; Figure 1), the default behaviour of
rand.tip for binding Draco borealis, Draco troglodytes and Draco wiverny to this MDCC
(largest monophyletic cluster) is risky —the evidence that the largest cluster of Draco

most likely include them is weak— and thus a more conservative approach is desirable.

For example, the user may use the “complete” scheme to bind these specific PUTs to
a randomly selected branch below the crown node defining the most recent common
ancestor (MRCA) of all the species in the genus instead (i.e. root node of the phylogeny
displayed in Figure 1). To do so, we can fill in the corresponding slots of info (column

‘polyphyly.scheme’) to set the “complete” scheme for these PUTs.

DracoPUTs <- c("Draco borealis", "Draco troglodytes",

"Draco wiverny")

my.info <- edit.info(my.info,
PUTs = DracoPUTs,
column = "polyphyly.scheme",

edit = "complete")

It may happen that the user is certain that the MDCC of a PUT does not correspond
to any of the taxonomic groups considered by randtip. For example, the MDCC of the
PUT Draco balerion could be infra-generic (e.g. a taxonomic section within the genus
Draco including Draco valyriensis, Draco viserii and Draco daeneryi). The user may
know that the MRCA of all the species constituting the target taxonomic section in the
phylogeny is defined by Draco valyriensis and Draco daeneryi (the minimum spanning
path connecting both species in the tree traverses the MRCA of all the species in the
section). Thus, we can fill in the slots “taxonl” and “taxon2” of the corresponding row
of info with Draco valyriensis and Draco daeneryi to define an infra-generic MDCC for

Draco balerion.

my.info <- edit.info(my.info,

PUTs = "Draco balerion",
column = "taxonl",
edit = "Draco valyriensis")

my.info <- edit.info(my.info,

PUTs = "Draco balerion",
column = "taxon2",
edit = "Draco daeneryi")

Now, consider the PUT Lycanthropus albus, whose genus also forms a polyphyletic

group.

my.clade <- get.clade(my.info, back.tree, clade = "Lycanthropus")

plot.clade(my.clade)

Lycanthropus melanicus
|:Lycanthropus septentrionale

——Lycanthropus nocturnus

L ycanthropus selenicus

Satyrus faunus

Satyrus satyrus
|:Yet/'s himalayensis
Yetis abominabilis

Nephilimum yowii

Nephilimum kunkii
Nephilimum macropodum
iSasquatch canadensis

Sasquatch americanus

Meganthropus gigas

Lycanthropus americanus

Figure 2: Backbone phylogeny pruned to the less inclusive clade that includes all the

species in genus Lycanthropus (representative species in green).

In this case, the polyphyletic nature of the group is due to an outlying species (Ly-
canthropus americanus) that maps clearly away from the main cluster of species in Ly-
canthropus (Figure 2). Therefore, the default scheme “largest” seems adequate (i.e. it
is quite likely that the largest cluster of the genus in the phylogeny actually includes
Lycanthropus americanus) whereas the “complete” scheme could be excessively conser-

vative.

5. Wrapping up

Once we have edited the data in info as we see fit (see above), the function info2input
can be used to create the input object for the rand.tip function. This final dataset
ensures consistent structure for use in rand.tip and allows generating as many ex-
panded phylogenies as desired without the need to search for putative MDCCs in info
repeatedly, which is a computationally intense task (this is done by the info2input

just once).

In case info2input fails to find a MDCC for a PUT (which will only happen if the
genus of the PUT is missing in the backbone tree and no supra-generic taxonomic

information is available), the function will return a warning message.

my.input.noranks <- info2input(my.info.noranks, back.tree)

The following taxa were not assigned MDCC and will not be bound
-~ to the tree:

Grindylowia_yorkii

Harpia_feminicephala

Leviathanus cthulus

Trolleolus_angmariensis

Trolleolus mordoriensis

Otherwise, info2input will select the less inclusive MDCCs of each PUT.

my.input <- info2input(my.info, back.tree)

10

Note that the outputted data frame my.input is identical to my.info except for the two

newly added columns, namely ‘MDCC’ and ‘MDCC.rank’.

‘MDCC’ column shows the taxonomic groups defining the MDCCs to which the PUTs

will be bound (‘Tip’ means that the species is already represented in the backbone
phylogeny).

‘MDCC.rank’ column depicts the taxonomic rank of the groups.

6. PUT binding

The binding of PUTs in the selected MDDCs is carried out with the rand.tip function,
which is fed with the output of info2input (my.input). Most arguments of rand.tip
are used for defining simulation parameters (and thus they can be customized for indi-

vidual PUTs via info) except for * prune’, ‘forceultrametric’ and ‘verbose’.

By default, rand.tip will output a phylogenetic tree including only the species in the
user’s list (n = 54 in our hypothetical example) unless ‘prune’ is set to FALSE, in which

case the whole expanded backbone phylogeny will be outputted.

In case the tree read from file is detected as non-ultrametric despite being genuinely
ultrametric (as in our hypothetical example, see Ramos-Gutiérrez et al. (2021) text for
an extended discussion on this issue), the user can set the ‘forceultrametric’ argument

to TRUE (default is FALSE) to force the tree to be ultrametric.

Lastly, the argument ‘verbose’ allows the user to print the progress of the function on
screen (default is TRUE). Here, we will use the function with default settings except
for (1) forcing the backbone phylogeny to be ultrametric, and (2) outputting the whole
expanded tree (rather than the tree pruned to the species in the user’s list). This will
enable us to better visualize the MDCCs that were selected to bind the PUTs (see

Figure 3):

new.tree <- rand.tip(my.input, back.tree,
forceultrametric = TRUE,

prune = FALSE)

11

7. Tree visualization

We can visualize the result of the simulation using the plot.phylo function of ‘ape’ R

package.

To distinguish between phylogenetically placed species and PUTs, we can set the
color pattern of phylogenetic tips using the auxiliary function put.tip.col before

plot.phylo.

Note that visualizing very large phylogenies may require specialized software such as

Dendroscope (Huson & Scornavacca 2012).

my.tip.col <- put.tip.col(new.tree, back.tree,
placed.col = '"dark grey",
put.col = "red")

plot.phylo(new.tree, tip.color = my.tip.col)

12

Harpia feminicephala]

Aviformes

Draco troglodytes
Draco balerion

Draco wiverny
Draco quetzalcoatli

Draco borealis

[illR %

Grindylowia yorkii

Macropolypus litoralis

|_ELeviathanus cthulus

Leviathanidae

Aquatia

Monoceros japonicus

-Monoceros lancelotii

Sirenia merrowi

—
—
L —
—
T
4|_—E|:Lycanthropus albus
———

Trolleolus mordoriensis
Trolleolus angmariensis

Parantropidae

Nephilimum mapinguari
Nephilimum yereni

Gigantinae

Figure 3: Expanded phylogenetic tree using the 'backbone’ mode of randtip. Phyloge-

netic tips in red represent phylogenetically uncertain taxa (PUTS).

Most of the PUTs were bound to a randomly selected branch below the crown node of

their corresponding genus-level MDCCs.

For example, the congenerics of the PUT Sirenia merrowi form a monophyletic group,

and thus Sirenia merrowi is now placed below the crown node of the group (Figure 3).

13

Scheme

'largest'

Scheme

'complete’

Argument

use.paraphyletic

Argument

respect.mono

Argument

use.singleton

In contrast, the congenerics of the PUT Lycanthropus albus form a polyphyletic group,
and thus it was bound below the crown node of the largest cluster of the genus (default

scheme “largest”).

However, the PUTs Draco borealis, Draco troglodytes and Draco wiverny may not nec-
essarily appear bound below the crown node of the largest cluster of Draco, as we
specifically set the polyphyletic scheme “complete” to bind these PUTs. Thus, they
could have been bound to any branch below the node representing the MRCA of all the
species in the genus. For example, in this specific simulation Draco borealis was bound

as sister to Scylla.

The congenerics of the PUTs Nephilimum yereni and Nephilimum mapinguar: form a
paraphyletic group, and since the argument ‘use.paraphyletic’ of rand.tip was set to
TRUE (default), none of the branches subtending the species in Sasquatch were consid-
ered as part of the parameter space for binding these PUTs. Otherwise, Nephilimum
yereni and Nephilimum mapinguari could have been bound as sister to either species

of Sasquatch, hence breaking the paraphyletic nature of Nephilimum.

In a few cases, the genera of the PUTs were missing in the backbone tree, and thus
they were bound to supra-generic MDDCs instead. For example, the MDCC of the
PUT Leviathanus cthulus was the family Leviathanidae, a polyphyletic group. Note
that Leviathanus cthulus was bound to the largest cluster of Leviathanidae (default
scheme) in such a way that the genera Macropolypus and Kraken remained monophyletic
(Figure 3). This is because the argument ‘respect.mono’ of rand.tip was set to TRUE

(default).

The less inclusive MDCC of the PUT Harpia feminicephala was order Aviformes, which
is uniquely represented by the species Phoenix athanatos in the backbone phylogeny, and
thus the former was bound as sister to the latter because the argument ‘use.singleton’ of
rand.tip was set to TRUE (default). Otherwise, the parameter space to bind Harpia
feminicephala would have been substantially larger (any branch where the insertion
of the PUT would not compromise the monophyletic or paraphyletic nature of the

taxonomic groups represented in the phylogeny).

The PUTs Trolleolus mordoriensis and Trolleolus angmariensis were bound below the

14

Argument

clump.puts

crown node of the subfamily Gigantinae (less inclusive than Parantropidae), and be-
cause the argument ‘clump.puts’ of randtip was set to TRUE (default), the two PUTs

appear clumped together forming a monophyletic group.

Finally, Grindylowia yorkii was bound below the crown node of the order Aquatia, its
less inclusive MDCC in the backbone phylogeny. Again, note that the monophyletic
status of the groups within Aquatia (Aspidochelonius, Macropolypus and Kraken) was
kept.

Note that the PUT Draco balerion was bound to a branch placed below the MRCA
of the species Draco valyriensis and Draco daeneryi, as we specifically instructed the

software to use an infra-generic MDCC to bind this PUT (Figure 3).

Example 2 - The ‘taxon list’ mode of randtip

Now that we are more familiar with the workflow of randtip, we will use the same
species list of the previous example to expand the backbone tree using the ‘taxon list’

mode of randtip.

On ‘taxon list mode’, randtip defines MDDCs on the sole basis of taxonomic information
of the species provided in the user’s list, meaning shorter execution times. This is
because backbone phylogenies often include thousands of species for which no taxonomic
information needs to be retrieved under this mode. However, the definition of supra-
generic MDCCs may diverge between both approaches (see Fig. 3 of Ramos-Gutiérrez

et al. (2021)) which may or may not have an impact on the final tree.

As in the previous example, the first step is building the info data frame.

my.info.noranks.list <- build.info(sp.list, tree = NULL,
find.ranks = FALSE,
mode = "list")

my.info.noranks.list # print the data frame info on screen

The outputted data frame (‘my.info.noranks.list’) is identical to that generated in the

previous example (‘my.info.noranks’) with the exception that only the species included

15

in the user’s list are displayed. Again, we have instructed build.info not to retrieve
taxonomic information from the web, and thus the only available information is that
corresponding to genus rank. For the purpose of completing this tutorial, an alternative
info data frame including taxonomic information for all the species in the list can be

loaded into the working space.

my.info.list <- mythology$info.list

my.info.list # print the data frame info on screen

Now we can use check.info:

my.check.list <- check.info(my.info.list, back.tree)

Again, we get the same warnings as in the previous example (except for that pertaining
to the species that were duplicated in the backbone phylogeny, as we pruned one of

them earlier).

Besides, a closer look to the outputted data frame (‘my.check.list’) reveals that the
phyletic status of some groups have changed. For example, the family Leviathanidae
is now displayed as monophyletic instead of polyphyletic. This is because the data
frame ‘my.info.list’ only includes taxonomic information for the species in the user’s
list, and thus any supra-generic taxonomic rank for the species that are represented
in the backbone phylogeny but missing in the user’s list remains undisclosed. In this
case, the two species that conform the small phylogenetic cluster of Leviathanidae
(Aspidochelonius turtur and Aspidochelonius spinosus) are not included in the user’s

list, which is the reason why the group is now identified as monophyletic (Figure 4).

16

Aspidochelonius turtur

-Aspidochelonius spinosus

Macropolypus nautilus

{Kraken caribensis
Kraken titanicus

Figure 4: Backbone phylogeny pruned to the less inclusive clade that includes all the
species in Leviathanidae (representative species in green). The species next to the solid
vertical bar are included in the user’s list, whereas those next to the dashed bar are

not.

Whether or not the different functioning of the ‘backbone’ and ‘taxon list” modes of
randtip for supra-generic MDCCs will have an impact in the expanded tree will depend

on the specifics of each situation.

For example, the PUT Leviathanus cthulus will always be bound below the crown
node of the clade defined by genera Kraken and Macropolypus regardless of the
mode of randtip (assuming default settings). This is because under ‘backbone’ mode,
Leviathanus cthulus will be bound to the largest cluster of Leviathanidae (n = 3
species; Figure 3), which is the only cluster of Leviathanidae that can be identified
under ‘taxon list” mode (because the two species in the small cluster of Leviathanidae
are not included in the user’s list; Figure 4). However, it may have happened that
Leviathanidae species not included in the user’s list represented the largest cluster of
the group in the backbone phylogeny (for example, if the genus Aspidochelonius would
have been represented by four or more species in the tree), in which case the ‘backbone’
and ‘taxon list” modes would bind Leviathanus cthulus to different clades, respectively

(if used with default settings).

17

Finally, it is worth mentioning that both modes of rantip will behave identically when-

ever the genera of the PUTs are minimally represented in the backbone phylogeny.

Manual definition of candidate branches

The clade-based approach of randtip should cover most real-world situations for PUT
binding. Yet, the auxiliary function custom.branch allows the user to manually define

any subset of candidate branches to bind PUTs.

For example, the phylogenetic place for the PUT of hybrid origin Monoceros x alaricor-
nus could be any point within the branches subtending the parental species Monoceros
pegasus and Monoceros megacornus, respectively, and such parameter space cannot be

specified by one single clade.

To solve this, the user can define the set of candidate branches as an edges data frame.
The data frame edges must contain five columns, each row representing a different set
of candidate branches for a given PUT. The first column must include the PUT to
which the row refers to. The second and third columns are used to set the older node
(MRCA of two given species) and the fourth and fifth ones refer to the younger one.
Thus, all the branches traversed by the minimum spanning path connecting the older
and younger nodes are selected as candidate branches (the user can add any number of

rows as desired).

To define a terminal node (phylogenetic tip) as the younger node, the user must fill
in the corresponding slots of the fourth and fifth columns with the corresponding tip
label. Inserting the same tip in the four slots will allow binding the PUT as sister to
the species represented by the tip. Finally, in case the same pair of species is set for
columns 2-3 and 4-5 within a row, the latter will define all branches below the MRCA

of the two species as candidates.

In order to ensure that candidate branches have been correctly encoded in edges, the
user can use the auxiliary function plot.custom.branch to visually explore the selected

space of branch lengths.

18

edges <- mythology$edges
plot.custom.branch(new.tree, edges, cex = 0.7,

candidate.lwd = 4, forbidden.lwd = 1.5)

r Harpia feminicephala
Phoenix athanatos
—Basiliscus octopodus
—Basiliscus cocatrix
raco mizuchicus
raco panlong
raco cetus
raco tianlong
———Hydra lernaia
raco cornucaudatus
raco troglodytes
raco balerion
raco valyriensis
raco viserii
raco daeneryi
— raco wiverny
raco quetzalcoatli
raco igneus
raco flamigerus

raco borealis
Scylla multicephala
Scylla monstruosa

——Aspidochelonius turtur
L————Aspidochelonius spinosus
Grindylowia yorkii
Hippocampus kelpie

1 eucobalaena ahabii

acropolypus litoralis
l_:m::\cropolypus nautilus
eviathanus cthulus
l_lEﬁraken caribensis
raken titanicus

| Salamandra ignifuga
Aguamonstrus lochnessii
—— Chupacabra hematophaga
L Cerberus tricephalus
onoceros japonicus
onoceros pegasus

monoceros kirin

onoceros karkadann
onoceros lancelotii

_ﬂaonoceros melanicus
onoceros megacornus

4‘::ippogriﬁus buckbeakii
ippogriffus africanus

Sirenia aycayia

[Sirenia chilotii

l—' LESirenia bartolii
Sirenia merrowi
Sirenia posidonica

Gorgona medusi
Lamia empusai
ycanthropus melanicus
ycanthropus septentrionale
ycanthropus albus
ycanthropus nocturnus
ycanthropus selenicus
—Satyrus faunus
L——Satyrus satyrus
Trolleolus mordoriensis
Trolleolus angmariensis
Yetis himalayensis
Yetis abominabilis
| ephilimum yowii
ephilimum kunkii
ephilimum mapinguari
ephilimum yereni
ephilimum macropodum
Sasquatch canadensis
Sasquatch americanus
Meganthropus gigas
L ycanthropus americanus

Figure 5: Phylogeny with candidate branches for the insertion of Monocerus x alaricor-

nus highlighted in red.

19

And now we can further expand the phylogeny that was generated earlier.

new.tree2 <- custom.branch(new.tree, edges)

plot.phylo(new.tree2, cex = 0.7)

I Harpia feminicephala
Phoenix athanatos
—Basiliscus octopodus
L—Basiliscus cocatrix

Draco mizuchicus

Draco panlong

Draco cetus

Draco tianlong

Hydra lernaia

Draco cornucaudatus
Draco troglodytes
Draco balerion

Draco valyriensis
Draco viserii
Draco daeneryi

— Draco wiverny
Draco quetzalcoatli
Draco igneus
Draco flamigerus
Draco borealis
—| EScylla multicephala
Scylla monstruosa

———Aspidochelonius turtur
L Aspidochelonius spinosus
Grindylowia yorkii
Hippocampus kelpie
Leucobalaena ahabii

Macropolypus litoralis
|_|:Macropolypus nautilus

Leviathanus cthulus
_EKraken caribensis

Kraken titanicus
Salamandra ignifuga
Aguamonstrus lochnessii
————— Chupacabra hematophaga
L Cerberus tricephalus
Monoceros japonicus
Monoceros x alaricornus
Monoceros pegasus
Monoceros kirin
Monoceros karkadann
Monoceros lancelotii
Monoceros melanicus
Monoceros megacornus

{Hippogriﬁus buckbeakii
Hippogriffus africanus
I—Slrenla aycayia

Sirenia chilotii
\—LLESirenia bartolii

Sirenia merrowi

Sirenia posidonica

Gorgona medusi

Lamia empusai

L | Lycanthropus melanicus
Lycanthropus septentrionale
Lycanthropus albus
Lycanthropus nocturnus
Lycanthropus selenicus

——Satyrus faunus

L Satyrus satyrus
Trolleolus mordoriensis
Trolleolus angmariensis
Yetis himalayensis
Yetis abominabilis

| Nephilimum yowii

Nephilimum kunkii

Nephilimum mapinguari

Nephilimum yereni

Nephilimum macropodum

Sasquatch canadensis

Sasquatch americanus

Meganthropus gigas

Lycanthropus americanus

Figure 6: Phylogeny after the insertion of Monocerus = alaricornus.

20

References

Huson, D.H. & Scornavacca, C. (2012). Dendroscope 3: An interactive tool for rooted
phylogenetic trees and networks. Systematic biology, 61, 1061-1067.

Paradis, E. & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics
and evolutionary analyses in R. Bioinformatics, 35, 526-528.

Ramos-Gutiérrez, 1., Lima, H. & Molina-Venegas, R. (2021). Randtip, a generalized
framework to expand incomplete phylogenies using non-molecular phylogenetic in-
formation.

Wickham, H., Hester, J. & Chang, W. (2021). Devtools: Tools to make developing r

packages easier.

21

	Introduction
	Package installation
	Examples
	Example 1 - The `backbone' mode of randtip
	Example 2 - The `taxon list' mode of randtip

	Manual definition of candidate branches
	References

