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Abstract 
 
We present a public validation of PANProfiler (ER, PR, HER2), an in-vitro medical device (IVD) that 
predicts the qualitative status of estrogen receptor (ER), progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER2) by analysing the hematoxylin and eosin (H&E)-stained 
tissue scan. In public validation on 648 (ER), 648 (PR) and 560 (HER2) unseen cases with known 
biomarker status, the device achieves an accuracy of 87% (ER), 83% (PR) and 87% (HER2). The 
validation offers early evidence of the ability to predict clinically relevant breast biomarkers from an  
H&E slide in a relevant clinical setting. 

Introduction 
Breast cancer is among the most commonly diagnosed cancers, with an estimated 2.3 million new 
cases worldwide and 685,000 deaths globally in 2020 [1], and an expected increase in the incident 
cases by more than 46% by 2040 [2].  At the end of 2020, there were 7.8 million women alive who 
were diagnosed with breast cancer in the past 5 years [3]. Molecular profiling of the estrogen receptor 
(ER), progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2) is 
performed for all malignant breast cancers to determine the course of cancer development and 
to inform the choice of targeted therapy for an individual patient. The primary techniques for profiling 
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the molecular biomarkers of breast cancer are immunohistochemistry (IHC) and in-situ hybridization 
(ISH). These tests pose a great challenge for the current standard practice, as they account for a large 
proportion of the high turnaround time for breast cancer biopsy diagnosis due to IHC/ISH preparation 
requiring specialised, quality-assured, laboratory work with dedicated equipment, expensive reagents 
and additional pathologist time. Sources of delays with the conventional diagnostic workflow and 
biomarker testing in breast cancer histopathology can be seen in Figure 1. These limitations 
necessitate the development of new tests that can accelerate the cancer diagnosis process, which 
hold a great potential to reduce pathology workloads, streamline diagnostic workflows, shorten 
turnaround times and reduce costs. 
 

 
Figure 1: Conventional histopathology workflow for breast cancer diagnosis and biomarker testing. This figure is 
based on UK-specific primary research i.e. conversations with pathologists and refined based on different 
settings that our qualified histopathologists have worked in. Much more complex versions of the workflows can 
be seen in [4]. The time estimates may vary from lab to lab.  

 
 
Recent advancements in machine learning (ML) and computational pathology have allowed the 
prediction of certain biomarkers directly from the standard H&E-stained whole slide images, which 
can potentially reduce the use of standard tests.  Accumulating evidence from the literature suggests 
that H&E images contain information that can be used to infer molecular profiles [5, 6, 7]. Several 
studies have shown the effectiveness of deep learning (DL) methods, in particular, convolutional 
neural networks (CNNs), to reveal histopathological patterns in routine H&E images that are 
correlated with the status of molecular biomarkers in various cancer types, including colorectal [6, 8], 
lung [5, 9], prostate [10] and skin [11]. Recent pan-cancer studies identified multiple clinically relevant 
molecular biomarkers across major solid tumours to investigate the links between genetic/molecular 
alterations and histomorphological features using H&E images [7, 12, 13]. Furthermore, several 
studies assessed the predictability of ER, PR, HER2 markers in breast cancer from H&E slides [14, 15, 
16, 17]. These studies paved a promising pathway to the clinical use-case development of H&E-based 
biomarker profiling methods for breast cancer.  
 
Building upon the evidence from the scientific literature, we have developed PANprofiler Breast (ER, 
PR, HER2), a DL-based image analysis software device for the molecular profiling of breast cancer that 
can analyse visual features from routine histopathological images stained with H&E to predict the 
status of ER, PR and HER2 receptors. The method combines several steps currently performed in the 
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traditional breast cancer diagnostic pathway into one single pipeline, allowing the prediction of the 
expression status directly from H&E slides without any intermediate staining and manual 
quantification. Figure 2 shows the typical breast cancer diagnostic pathway with traditional molecular 
testing (red panel) and how the pathway can be improved with the integration of PANProfiler Breast 
(ER, PR, HER2) (blue panel). 
 

 
Figure 2: Breast cancer diagnostic pathway with the traditional molecular testing (red panel) and with 
PANProfiler Breast (ER, PR, HER2) (blue panel). 
 
This paper provides a summary of the approaches and key results acquired from a performance 
evaluation study carried out to assess the clinical safety and efficacy of PANProfiler Breast (ER, PR, 
HER2) for its intended purpose. First, a study was carried out to internally validate the effectiveness 
of the device for each of the biomarkers and to select the predictive models that will constitute the 
core of the device. A clinical performance evaluation study was then conducted to demonstrate the 
ability of the device to yield results that are correlated with the well-characterised receptor status of 
ER, PR, or HER2 in patients with histological diagnosis of breast adenocarcinoma.   
 
In the remainder of this report, we first summarise the results from the model selection and clinical 
validation study. This is accompanied by a discussion of the results and their implications on the safety 
and efficacy of the device. Next, we provide insights into the effectiveness of the device across 
different groups, to identify any biases towards certain subpopulations. This is followed by a 
distribution analysis of the device predictions. Finally, the Methods section provides a summary of the 
protocols used to perform the studies, including the description of the experiment design, 
specifications of the underlying models, details of datasets, performance characteristics used for 
validation, and statistical considerations.  
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Results 

Performance Characteristics Assessment 
PANProfiler Breast (ER, PR, HER2) is a software device for assessing the status of ER, PR, and HER2 in 
breast adenocarcinoma directly from image scan of H&E-stained biopsy/resection slides. The device 
contains a binary predictive model that returns a negative or positive result if the underlying model is 
certain about its prediction, or indeterminate if the model is not confident enough (see Methods: 
Predictive Thresholds and Confidence Interval). Typically, the outcome of a binary predictive model 
is determined by comparing the output score (i.e. probability of a sample being positive) with a 
predictive threshold, which is generally set to 0.5 (see Figure 11 of Methods: Predictive Thresholds 
and Confidence Interval). Here, to account for uncertainty and determine a confidence interval of the 
device, we introduce two predictive thresholds, T1 and T2, and compute the final prediction as follows: 
if the output score is greater than or equal to the higher threshold (T2), the device yields a positive 
prediction. If the output score is less than or equal to the lower threshold (T1), the device yields a 
negative prediction. Any output between T1 and T2 is considered indeterminate. This decision 
mechanism allows a device to predict the status of a case only if it is empirically certain, therefore 
providing higher safety and efficacy in the clinical setting. 

The effectiveness of the device to return confident predictions is measured by “Test Replacement 
Rate” (TRR), which corresponds to the percentage of predictions performed by the device over all 
cases. It provides a direct estimation of the number of traditional tests that can be replaced by 
PANProfiler Breast (ER, PR, HER2) for molecular profiling. Taking the confident predictions into 
account, we further compute the standard evaluation metrics of accuracy, positive prediction rate 
(PPV), and negative prediction rate (NPV) (Supplementary: Detailed Performance Characteristics). 
Sensitivity and specificity are not considered in the evaluation, as they are likely to be biased due to 
the highly unbalanced nature of the data [18]. The impact of this can also be observed in the 
performance of the state-of-the-art tests used for molecular profiling [19]. 

Internal Validation and Model Selection  
An internal validation study was conducted to assess the performance of the models to predict ER, PR 
and HER2 using different model configurations (e.g. different backbones, see Methods: Pre-
processing Pipeline and Training Details) to determine the final models that would be integrated into 
the device for the clinical validation. Performance metrics previously mentioned were considered 
during the evaluation. A total of 8 different configurations were evaluated for each biomarker, 
repeated three times, each on a randomly sampled subset of the same dataset. 72 models (8 
configurations x 3 repeats x 3 biomarkers) in total were trained as part of this internal model selection 
study. Violin plots showing the distributions of certain metrics computed across all configurations are 
presented for each biomarker in Figure 3. Scatter plots showing the correlation of TRR with accuracy, 
PPV, and NPV are given in Figure 4. 
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Figure 3: ER, PR, and HER2 violin plots showing the probability density of evaluation metrics acquired from the 
models trained during the internal model selection study. Each plot shows data from a group of 24 models.  

 

Figure 4: Scatter plots of accuracy, PPV and NPV against Test Replacement Rate (TRR) for ER, PR, HER2 models, 
validated as part of the analytical performance evaluation study. These performance metrics were 
simultaneously taken into consideration when selecting the models to be integrated into the device for clinical 
validation. 
 
Considering the top-performing models for each biomarker, we achieved up to 94%, 80% and 89% 
accuracy, with a TRR of 78%, 11% and 52% among all the tested cases from an unseen dataset for ER, 
PR, and HER2, respectively. Detailed performance metrics of the selected models for each biomarker 
are given in Table 1. Metrics for all models included in this study are provided in Supplementary Table 
S-1. 

 

Biomarker TRR Accuracy PPV NPV 

ER 78% 94% 95% 83% 

PR 11% 90% 100% 88% 

HER2 52% 89% 100% 89% 

 
Table 1: Performance metrics for the top-performing models in the analytical performance evaluation study. All 
results are shown as percentages. See Supplementary: Detailed Performance Characteristics for the details of 
validation metrics and refer to Supplementary Table 1 for the performance metrics of all models included in this 
study. 
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The internal validation and model selection study showed the overall performance of the deep-
learning models for predicting ER, PR, HER2 directly from routine H&E images within a wide spectrum 
of metrics. TRR, accuracy, PPV, and NPV on average were mostly stable across different configurations. 
ER models in particular performed well with TRR, accuracy and PPV roughly between 80 and 95%. A 
similar trend was followed by PR, but with the expectation of the relatively low performance and high 
variance of TRR compared to those of the other biomarkers. Despite this, PR models with certain 
configurations were still very effective and provided viable candidates for the device. For instance, the 
selected PR model had a low TRR of 11% but performed well with accuracy, NPV and PPV of over 88%. 
HER2 models showed comparable accuracy to PR with more favourable TRR but relatively low stability 
for PPV. Considering the safety requirements of the device, we argue that the benefit of including the 
positive prediction to HER2 is marginal as only a small majority of reliable cases are likely to be 
predicted as positive, potentially resulting in a low PPV [18]. We, therefore, decided to make HER2 a 
negative-only predictor, meaning that the device was only allowed to provide negative or 
indeterminate predictions for HER2 in the clinical performance evaluation study. 

 

Clinical Performance Evaluation 
A clinical performance evaluation study was conducted to assess the effectiveness and safety of the 
device based on the ER, PR, HER2 models selected in the internal validation study. Models were first 
calibrated to adjust the predictive thresholds (see Methods: Model Calibration) and then evaluated 
on the unseen test dataset, which included 370, 381, and 296 cases for ER, PR, and HER2 respectively. 
The results for key performance metrics are provided in Table 2 for all three biomarkers.  
 
For ER, the device achieved a good performance simultaneously for every considered metric. PR 
follows a very comparable trend with regards to accuracy, PPV, and NPV. Despite having a relatively 
low TRR, its effectiveness is still highly similar to that of ER, with only an overall 4 to 7% decrease in 
accuracy, NPV and PPV. A high level of TRR was measured for HER2 and its general performance was 
mostly on par with ER. Since the method was only allowed to predict negative results for HER2, PPV 
was not applicable for analysis. We also evaluated the concordance of the device to the ISH tests 
carried out for the HER2 profiling and noticed a slight increase in accuracy, NPV and TRR. Overall, these 
results show the effectiveness of PANProfiler Breast (ER, PR, HER2) as a predictive tool that can largely 
eliminate the need for the current standard tests for profiling the molecular biomarkers of breast 
cancer.  
 
 

Biomarker TRR Accuracy PPV NPV 

ER 89% 87% 87% 86% 

PR 48% 83% 83% 79% 

HER2 78% 87% N/A* 87% 

HER2-ISH§ 82% 90% N/A* 90% 
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Table 2: Final performance metrics for each biomarker computed on the test dataset used in Clinical 
Performance Evaluation Study. *: In the clinical study, the method was only allowed to predict negative 
results for HER2, therefore PPV is not applicable for analysis. §: HER2 concordance of the device with 
ISH results. 
 

Confounding Factor Analysis 
The clinical validation results in Table 2 provide an overview of the overall performance of the device 
on the entire validation population. In this section, we further investigate the effectiveness of the 
device across different groups, to identify any biases towards certain subpopulations. Towards this 
end, we have divided the test sets into subgroups based on age, clinically relevant molecular subtypes 
(HER2-enriched, Luminal A, Luminal B and triple-negative), pathology laboratories (sites), cancer 
staging (overall), and ethnicity. Figures 5, 6, and 7 respectively show the performance of ER, PR and 
HER2 models across these subpopulations.  
 
Column 1 of Figure 5 shows the distribution of performances across age groups (row 1), molecular 
subtypes (row 2), laboratories (row 3), cancer stagings (row 4) and ethnicities (row 5). In general, the 
performances are more variable across labs and molecular subtypes but highly consistent across age 
groups, cancer stages and ethnicities. The variability of the performances across molecular subtypes 
can be seen in column 2, row 2. The inter-laboratory difference in performance can be attributed to 
the sample size of each laboratory, which tends to have a very high variance. For instance, BH has 77 
cases while many others have only a single case, making their performance metrics either 0 or 1. The 
variation in performances across subtypes can also be attributed to the inherent class imbalance of 
the category. Triple-negative contains only negative classes across all biomarkers, HER2 enriched ER-, 
PR- and HER2+, Luminal A ER+ and/or PR+ and HER2-; and Luminal B ER+ and/or ER- and HER2+ [20]. 
 
One group worth noting is HER2-Asian, where the TRR seems to have dropped considerably compared 
to the other ethnicities. Similarly, for the ER-90+ age group and the PR-Stage IV group, the models 
seem to be more conservative with their predictions, yielding a noticeable drop in TRR. However, this 
trend can also be attributed to the sizes of these groups (Supplementary Table S-3), which tend to be 
smaller than the other subpopulation partitions, making the performance characteristics less reliable. 
 
The prevalence figures (column 3) show the relative rate of correct and false predictions across 
different groupings of a subpopulation. The plots describe how the correct predictions are distributed 
across the subpopulations (blue curve), how false predictions are distributed across subpopulations 
(yellow curve) and how these compare to the distribution of the predicted population (green curve, 
which is the combination of blue and yellow). In an ideal scenario, we expect the three prevalence 
curves to be similar across categories (age group, subtype, lab etc), as this indicates that the false 
predictions are distributed evenly across population types. On the flip side, a deviation between the 
curves indicates a performance bias. Overall, no significant deviation across subpopulations is 
observed in all biomarkers, except for subtypes. In this instance, false prediction prevalence for 
Luminal A and triple-negative in Figure 5 (ER plots) largely deviates from the overall trend, which might 
indicate that the ER model tends to return fewer false predictions in Luminal A cases but more often 
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makes false predictions within the triple-negative group. This can be attributed to the ER model being 
more effective at predicting ER-positive status than negative.  
 
Similar trends can be observed for the prevalence curve of the HER2 model in predicting the markers 
across molecular subtypes, where it appears to be less common for the model to make false 
predictions within the Luminal A group. This trend appears to change direction for Luminal B, where 
the model tends to return false predictions at a higher rate, which can be due to the HER2 model being 
a better negative predictor. It should also be noted that the number of correct HER2 predictions in 
Luminal B and HER2-enriched is by definition 0 since we only make negative HER2 predictions and the 
HER2 status in those subtypes are always positive. Compared to ER and HER2, the PR model appears 
to be relatively balanced, as we cannot observe much deviation. 
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Figure 5: Performance plots of the ER model across subpopulations confounded by (from top to bottom) age, 
molecular subtype, ethnicity, pathology laboratory (site), cancer stage, and ethnicity. Column 1: Violin plots 
showing the performance distribution across population groupings. Each distribution here has the same sample 
size as the number of categories in their respective grouping, e.g. for ethnicity, each distribution contains 4 data 
points, since there are 4 ethnicities in the dataset (Asian, Black, Other, White). Column 2: Curves showing the 
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overall performance of the model across different categories. Column 3: Prevalence curves of grouping in the 
populations where the model made 1) correct predictions (blue), 2) false predictions (yellow) or 3) any prediction 
(green). Here, Ci denotes the number of cases in category i with correct predictions, whereas CT denotes the 
total number of cases with correct predictions in the whole population. Similarly, Fi denotes the number of cases 
in category i with false predictions and FT denotes the number of cases with false predictions in the whole 
population. For curves in columns 2 and 3, it should be noted that except in the case of age groups and staging, 
the orderings of the categories across the x-axis are completely arbitrary, and the lines between them were 
added for the sole purpose of visual aid. The laboratory names in row 2 were abbreviated for visual purposes. 
The full names are provided in Supplementary Table S-2. The molecular subtypes of breast cancer were 
determined based on the following classification -- Luminal A: ER+ and/or PR+ and HER2-. Luminal B: ER+ and/or 
PR are positive and HER2+. Triple-negative (basal-like): ER-, PR-, and HER2-. HER2-enriched: ER+, PR+ and HER2+ 

[20]. Stages I to IV correspond to standard AJCC pathologic tumour stages. Stage X represents the cases where 
the status of staging could not be determined. 
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Figure 6: Performance plots of the PR model across subpopulations confounded by (from top to bottom) age, 
molecular subtypes, ethnicity, pathology laboratories (sites), cancer stage, and ethnicity. Please refer to the 
caption of Figure 5 for detailed explanations of the plots. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.04.474882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.04.474882
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

 
Figure 7: Performance plots of the HER2 model across subpopulations confounded by (from top to bottom) age, 
molecular subtypes, ethnicity, pathology laboratories (sites), cancer stage, and ethnicity. Please refer to the 
caption of Figure 5 for detailed explanations of the plots. Unlike Figures 5 and 6, only accuracy and coverage are 
shown for the HER2 model since the HER2 model can only perform negative predictions. 
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Distribution Analysis of Model Predictions 
To better understand the distribution of the device predictions and to see the impact of indeterminate 
decisions on the device performance, we plotted the histograms of prediction scores for the ER, PR, 
and HER2 models. Prediction score roughly measures the model confidence of predicting a case as a 
positive or negative (see Figure 11 of Methods: Predictive Thresholds and Confidence Interval). The 
negative and positive predictions were grouped by their corresponding ground-truth labels, acquired 
from the well-characterised results of the IHC and ISH tests (Figure 8). The plots were further 
subdivided into three zones, representing negative, indeterminate and positive predictions, where the 
indeterminate zone is defined by the low and high predictive thresholds.  

The distributions of true positives (TP), false positives (FP), true negatives (TN), and false negatives 
(FN) of ER, PR and HER2 predictions reflect the overall results presented in Table 2. Reflecting the 
results on the table, a very low FN and FP rate for ER/PR and HER2 are observed from the distribution. 
Logically, there is an inverse relationship between TRR and the width of the indeterminate zone: the 
more confident a model gets with its predictions, the higher TRR it yields, i.e. the smaller the 
intermediate zone is. This serves as a safety mechanism for the device, as rather than performing an 
uncertain prediction that is likely to be a false positive or negative, it simply decides to return no 
outcome, allowing the receptor status to be determined with the standard of care procedures. The 
histograms (Figure 8) also clearly show that the positive and negative prediction distributions are 
highly aligned with the prevalence of the underlying data, which is typically highly unbalanced, e.g. 
according to the 2019 report by the Royal College of Pathologist [18], the population-based positive 
class ratios for ER, PR and HER2 status are 4.24, 2.12, and 0.17, respectively. For instance, the ER and 
PR models tend to predict more positives and the one for HER2 is likely to predict more negatives.  
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Figure 8: Histograms of model prediction scores for ER, PR, and HER2. Blue and red bars represent the ground-
truth labels, acquired from the well-characterised results of the IHC and ISH tests. A grey zone is bound by the 
predictive thresholds and corresponds to the indeterminate zone. Based on its relative location to the grey area 
and its true value, a prediction can fall into one of the four categories of true positive (TP), true negative (TN), 
false positive (FP), or false negative (FN). TN: Blue bars to the left of the grey area. FN: Red bars to the left of the 
grey area. FP: Blue bars to the right of the grey area. TP: Red bars to the right of the grey area. Blue and red bars 
within the grey area represent cases where the model does not make a prediction. Since HER2 is only allowed 
to perform negative predictions, no positive predictions are shown. ER prediction model performs very well in 
separating negative and positive classes. While the PR prediction model does not achieve as well separation 
between positive and negative classes as PR prediction’s, the overall separation between the positive and 
negative samples can still be seen in the histogram. Given that the HER2 model could not well separate negative 
and positive classes, only negative classes are being called by the model. 
 
 

Interpreting Model Predictions 
To better understand how deep-learning models determine the molecular status from H&E images 
and to obtain some insights towards identifying certain morphological features that can be associated 
with molecular alterations, we plotted the highest and lowest scoring tiles (i.e. most confident positive 
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and negative predictions) for a selected set of 12 whole slide images (WSI) from each of the ER, PR 
and HER2 test sets used in the clinical validation study. The visualisations for the ER model are 
provided in Figure 9. We show three examples for each of true positive (TP), false positive (FP), false 
negative (FN) and true negative (TN). Similar visualisations are created for the PR and HER2 models 
and are shown in Supplementary Figures S-1 and S-2, respectively. 
 
In Figure 9, one can see the distinct patterns between the highest and the lowest ranking tiles (first 
half and second half in each row, respectively), indicating that the model can capture certain visual 
features from the images when distinguishing a positive or negative tile. Ideally, for the correctly 
predicted cases (i.e. TP and TN), the majority of the slide scores should be close to 1 for positives and 
close to 0 for negatives, whereas, slide scores should be closer to the indeterminate zone when the 
model is performing wrong predictions (i.e. FP or FN cases). However, this trend is not strongly 
observable in our figures, especially when interpreted together with the distributions of the model 
predictions (Figure 4). One can note that the ER model is the closest to the ideal case, where the 
histogram of its positive predictions shows a left-skewed distribution (i.e. most predictions are close 
to 1).  
 
Another key observation from Figure 9 is the morphological variability across the high-ranking tiles of 
different slides. We are now in the process of inspecting these tiles to identify any associations 
between the tumour morphology and the model predictions. Future work will also explore the internal 
representations of the model to reveal any histopathological patterns linked to molecular alterations. 
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Figure 9: Highest and lowest ranking tiles acquired from a selected set of 12 whole slide images (WSI) from the 
ER test set. Each row corresponds to a WSI that is classified as one of the following categories based on the 
model prediction and the ground-truth receptor status: true positive (TP), false positive (FP), false negative (FN), 
and true negative (TN). The leftmost four tiles in each row are the ones with the highest score whereas the 
rightmost four tiles represent those with the lowest score. The values above the tiles correspond to the tile-level 
model output while the values alongside the image name correspond to the slide scores, which are used by the 
device to return the final prediction.  
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Methods 

Pre-processing Pipeline and Training Details 
A proprietary convolutional neural network (CNN) model was used to determine the status of 
molecular profiles for breast cancer. The workflow of the prediction of breast cancer molecular 
profiles from H&E images with deep learning is illustrated in Figure 10. Each model was trained on a 
set of 256x256 tiles acquired from whole slide images (WSI) stained with H&E. In the first step of the 
pipeline, the image is broken down into tiles. A standard deviation filter is used to eliminate the 
background tiles which do not contain any relevant information. Then, an independent tumour 
segmentation model is used to detect the tumour regions and discard non-tumour regions. A WSI was 
discarded from analysis if it contained fewer than 10 tiles after the filtering process. Macenko colour 
and brightness normalization [21] was applied to the remaining tiles before they were assigned with 
a ground-truth label, acquired from the well-characterised results of the IHC and ISH tests. Finally, the 
pre-processed tiles are used as inputs to train a deep learning model, which learns to make a 
biomarker prediction. 
 

 
Figure 10: Visualisation of the training pipeline. The prediction pipeline works in a similar fashion in which 
standard deviation filter and tumour segmentation are used prior to model prediction. 
 
 
A different CNN was trained for each biomarker, i.e. the final device was formed of three CNNs, each 
consisting of an encoder extracting features from an input, a decoder and a classification module (see 
Figure 10). The feature extractor can capture the tissue properties within tiles throughout a set of 
convolutional filters applied to tiles at various layers of depth, effectively encoding the high-level visual 
features into a d-dimensional feature vector, where d depends on the architecture of the CNN. These 
vectors are regarded as the fingerprints of the tiles and are submitted to both the decoder and the 
classification module. 
 
The decoder module takes a d-dimensional embedding as input and returns an output of the same 
shape as the original tile that the embedding represents. It consists of a series of transposed 
convolutional and upsampling layers, which resembles an inverted copy of the CNN used for feature 
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extraction, known as the encoder. Its purpose is to reconstruct the original tile from the latent vector 
to achieve better representations of each tile that do not contain irrelevant features. 
 
In parallel to the decoder, the feature vector representative of each tile is also submitted to the 
classification module, which consists of a fully connected layer. The output classification score is then 
compared to the label of the tile's parent WSI. All modules are trained end-to-end and each tile is 
given a score, i.e. confidence of it being positive. Finally, the scores of all the sampled tiles from each 
WSI are aggregated via mean pooling to produce the final slide-level scores. 
 

Target Patient Groups 

The following target patient groups of both sexes were included in the validation studies: diagnosed 
cases of invasive breast carcinomas including bilateral carcinomas, histologically distinct ipsilateral 
carcinomas or widely separated carcinomas considered to be separate synchronous primary tumours, 
recurrent breast carcinoma, metastasis of breast carcinomas, ductal carcinoma in situ. 

Datasets 

Both validation studies were conducted on digitally scanned images of formalin-fixed paraffin-
embedded core breast biopsies and resection sections. Data was acquired from 1) the Cancer Genome 
Atlas (TCGA) open-access dataset for the breast adenocarcinoma (BRCA) study [22] (i.e TCGA-BRCA) 
and 2) a proprietary dataset by a private clinical data provider (e.g. BioIVT). All samples were following 
the inclusion criteria described in Target Patient Groups.   

Prior to going to the internal validation phase, the model was pre-trained on a wider internal dataset. 
For the internal validation and model selection study, we used the entire dataset of BioIVT and a 
subset of TCGA-BRCA. To ensure confounder independence and show generalisability during 
validation, different TCGA participant labs were chosen for model selection and clinical validation. We 
selected the labs such that the resulting datasets reflect the population distribution of population 
groupings including molecular subtypes. The details of the analytical evaluation datasets, including 
the number of positive and negative cases for each biomarker, are given in Table 4.  

 

Dataset ER (+/-) PR (+/-) HER2 (+/-) 

TCGA-BRCA 342 (272/70) 339 (232/107) 328 (49/279) 

BioIVT 435 (343/92) 360 (228/132) 269 (91/178) 

Total 777 (615/162) 699 (460/239) 597 (140/457) 

 
Table 4: Details of the dataset used for the analytical validation study. Please note that the number of cases differ 
for each biomarker as the actual receptor status may not always be available for all cases/biomarkers. Values in 
parenthesis represent the number of positive/negative cases. 
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For the clinical evaluation study, we used a subset of the TCGA-BRCA dataset which only contained 
images from the laboratories that were not included in the model selection study. The details of the 
dataset, including the number of positive and negative cases for each biomarker, are given in Table 5.  

 

Dataset ER (+/-) PR (+/-) HER2 (+/-) 

Total 648 (503/145) 648 (437/211) 560 (134/426) 

 
 Table 5: Details of the dataset used for the clinical validation study. Please note that the number of cases differ 
for each biomarker as the actual receptor status may not always be available for all cases/biomarkers. Values in 
parentheses represent the number of positive/negative cases. 
 

Predictive Thresholds and Confidence Interval 

The outcome of a binary model is determined by comparing the output score (i.e. confidence of a 
sample being positive) to a predictive threshold, yielding either a positive or negative result. 
PANProfiler Breast (ER, PR, HER2), on the other hand, can also return an indeterminate result if the 
prediction of the device is not within a “confidence interval”. To determine this confidence interval, 
we define two predictive thresholds, T1 and T2 (where T1 < T2), as opposed to a single threshold used 
in standard predictive models. The definition of T1 and T2 and their impact on the performance of a 
model is illustrated in Figure 11.  

The predictive thresholds enable the interpretation of the device output as a confidence score. If an 
output score is greater than or equal to T2 a positive prediction is returned whereas an output with a 
confidence score less than or equal to T1 corresponds to a negative prediction. Any output between 
T1 and T2 is considered indeterminate. Ideally, T1 and T2 can be set to the values which yield the 
highest accuracy for the device. However, in practice, this tends to make the device highly 
conservative and increases the likelihood of returning indeterminate results, yielding a low TRR. For 
instance, considering the histogram in Figure 11, it is possible to achieve a 100% accuracy if T1 is 
shifted further to the left while T2 is moved to the right. On the other hand, this comes with increased 
uncertainty, i.e., a wider grey/intermediate zone. This renders the device unusable in day to day 
practice. A balance was struck which minimised risk to an acceptable level while allowing a significant 
number of cases to be predicted reliably. As a result, it is possible to have a device with a high TRR and 
an accuracy that is acceptable within the safety, efficacy and risk-benefit requirements. 
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Figure 11: Illustration of the impact of positive and negative predictive thresholds on the sensitivity and 
specificity of a device. 
 

To demonstrate the relationship between the accuracy and TRR in accordance with the predictive 
thresholds, we conducted an empirical analysis on the models used in the validation studies. The 
results of the analysis are shown in Figure 12 with further details provided in Supplementary: 
Accuracy-Test Replacement Trade-off.  The predictive thresholds are fitted on a validation set to 
maximise the TRR whilst maintaining a clinical stakeholder-defined level of accuracy. In Figure 12, the 
blue points represent a set of predictive thresholds and the resulting accuracy-TRR pairs computed 
during validation. The orange points, on the other hand, correspond to the accuracy and TRR values 
when the predictive thresholds are applied to an independent test set. It is important to note that, 
during clinical validation, only the pair of thresholds that maximised the TRR based on a target 
accuracy of 90% on the validation set was fitted on the final independent test set, which yielded the 
reported metrics in Table 2. Here, we just plot the other predictive thresholds for visualisation 
purposes.  

As expected, there is an inverse relationship between TRR and accuracy in the validation set. This 
trend is diminishing on the lower end of the accuracy as decreasing target accuracy does not 
necessarily increase TRR. This is expected given the observation seen in Figure 8 where the distribution 
of true positive and negative samples’ prediction scores are separable. The opposite can also be said 
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about the lower end of TRR: decreasing TRR to achieve more accuracy would have a diminishing return 
in the lower end of TRR. This is again attributable to the observation seen in Figure 8.  

The inverse relationship is somewhat maintained moving to the test set. The shift in the trade-off 
curve is attributable to the shift in population moving from validation to test set. This is mitigated by 
doing calibration (see Methods: Model Calibration). 

Figure 12: Illustration of the relationship between accuracy and TRR in accordance with the predictive thresholds 
computed on a validation set (blue line) and applied to a test set (orange line). 

Model Calibration 

Calibration is a process to ensure that the model safety and efficacy remain on an acceptable level 
before applying it to a new dataset and involves the following steps: 1) fine-tuning the model and 2) 
re-computing the predictive thresholds T1 and T2. These thresholds are typically derived during model 
training to maximise the number of confidently predicted cases within a predefined target accuracy. 
However, due to potential variations between the source and target domains, a performance drop is 
expected when the model is applied to a new dataset. This necessitates the calibration of the device, 
which is typically performed on part of the target dataset (40% in this study). Considering the 
histogram in Figure 11, this process can be viewed as shifting the thresholds T1 and T2 in a way that 
would maximise the device accuracy while maintaining an acceptable TRR. Here it is worth noting that, 
once calibration is done, the images used in this process are discarded and the device is evaluated 
only on the remaining images of the target dataset. 

 

Experimental Details 

Model selection study: Multiple pre-trained neural networks were trained for each biomarker using 
pre-assessed, well-characterised biopsy slide images from the BioIVT and TCGA datasets. 70% of the 
dataset was used for model training while half of the remaining images (15% of data) was used to 
determine the best model during training (i.e. internal validation) and the other half (15% of data) was 
set aside for testing the model on unseen data. It should be noted that this dataset is distinct from the 
clinical validation data. The sampling algorithm used for selecting cases for each subset was performed 
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at the case level and was constrained to ensure that the population-based distributions of receptor 
profiles were mostly preserved in the validation and test set. Once these subsets were adjusted to 
reflect the real-world prevalence of hormone receptors and HER2, the remaining cases were moved 
to the training set. Each case was represented with only a single WSI in the test set to ensure that the 
final predictions based on the confidence interval can be computed correctly.  
 
72 models in total were trained as part of this internal model selection study. We considered a total 
of 8 different configurations for each biomarker, where a configuration was repeated on three 
randomly sampled subsets of the same dataset (i.e. 24 models per biomarker). Our preliminary results 
on a hyper-parameter analysis revealed three important parameters that would directly have an 
impact on the model performance: backbone, CNN-type and validation target metric. Backbone 
corresponds to the CNN used as a feature extractor and was either “resnet34” [23] or “densenet121” 
[24]. CNN-type represents the architecture of the underlying CNN, which could be either of “tile-ae”, 
i.e. tile-level autoencoder or “tile-vae”, i.e. tile-level variational autoencoder.  The validation target 
metric was used to select the best model during training and was set to either AUC or TRR.  
 
After each training epoch, the performance of the target metric on the validation set was monitored 
and the model with the best validation performance was further evaluated on the test set. The top 
model for each of the biomarkers was selected based on a combined criterion of accuracy, TRR, PPV 
and NPV assessed on an independent test set. See Table 2 of Results for the performance metrics of 
the selected models and Supplementary Table 1 for all 72 models considered for internal validation. 
 
Clinical validation study: Cases with a well-characterised IHC receptor status were used to construct 
biomarker-specific datasets of sizes 648, 648, and 560, for ER, PR, and HER2 respectively. 40% of the 
samples were used for model calibration while the remaining images (constituting 60% of the study 
samples) were used for testing the device performance. The calibration set was roughly split into two 
subsets and one half (i.e. fine-tuning set) was used for fine-tuning the model and the other half 
(validation set) was used for determining the confidence interval. Similar to the model selection study, 
a constrained sampling algorithm was used to ensure that population-based distributions of receptor 
profiles were preserved in the validation and test set. Once these subsets were adjusted to reflect the 
real-world prevalence of hormone receptors and HER2, the remaining images were moved to the fine-
tuning set. The number of images used in the clinical validation study for calibration and test are 
provided in Table 6. 

 

Dataset ER (+/-) PR (+/-) HER2 (+/-) 

Calibration 278 (204/74) 267 (178/89) 264 (89/175) 

Test Set 370 (299/71) 381 (259/122) 296 (45/251) 

Total 648 (503/145) 648 (437/211) 560 (134/426) 
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Table 6: The details of the calibration and test set used in the clinical validation study. Please note that the 
number of cases differ for each biomarker as the actual receptor status may not always be available for all 
cases/biomarkers. Values in parentheses represent the number of positive/negative cases. 
 

 
During calibration, after fine-tuning the model, T1 and T2 were set to the values that maximised TRR, 
while keeping the accuracy computed on the validation set at 90%. Once the confidence interval was 
determined, the final clinical performance of the device was evaluated based on the independent test 
set.  

 

Device clinical workflow 

For clinical performance characteristics, the final selected model was deployed onto the PANProfiler 
Breast (ER, PR, HER2) device and validated against clinical performance characteristics (some of 
them described in Supplementary: Detailed Performance Characteristics). The device consists of a 
programmatic endpoint (application programming interface, API) that provides a connection to 
pathology lab information and picture archiving and communication systems (LIM/PACS). Additional 
usability studies were conducted to validate the device usability among board-certified pathologists. 
 

Statistical Considerations 
To assess the statistical significance of the sample size used in the clinical validation study, we 
performed a minimum sample size estimation approach [25] that takes into account the proportion 
of positive samples (defined as X/n, where X is the number of positive samples and n denotes the size 
of a dataset), a margin of error (set to 5%) and a standard confidence interval (set to 95% CI based on 
a z-score of 1.96). For the whole clinical validation dataset (Table 6) the minimum sample size per 
biomarker was determined as 264, 340 and 280 for ER, PR, and HER2, respectively. Considering the 
independent test set only, the minimum sample size per biomarker was determined to be 236, 334, 
196 for ER, PR and HER2, respectively. 
 
 

Conclusions 
This paper provided the performance evaluation results of PANProfiler Breast (ER, PR, HER2), a 
medical predictive device that was developed for the molecular profiling of ER, PR, and HER2. The 
status of these biomarkers is used to determine the prognosis of breast cancer and to select the most 
suitable therapy for a patient. IHC and ISH, the conventional tests used for molecular profiling of ER, 
PR, and HER2, pose a bottleneck in the current standard practice, as they account for a large 
proportion of the high turnaround time for breast cancer biopsy diagnosis due to additional work and 
pathologist time required in IHC/ISH preparation and analysis. PANProfiler Breast (ER, PR, HER2), on 
the other hand, is built upon deep-learning models that can be used to infer the status of ER, PR and 
HER2 directly from digitally scanned H&E-stained biopsy/resection slides. Results published in this 
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paper show the effectiveness of the device as a predictive tool that can largely eliminate the need for 
the current standard tests for profiling the molecular biomarkers of breast cancer.  
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Figure S-1: Highest and lowest scoring tiles acquired from a selected set of 12 whole slide images (WSI) from the 
PR test set. Please refer to the caption of Figure 9 for a detailed explanation of the visualisation.        
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Figure S-2: Highest and lowest ranking tiles acquired from a selected set of 6 whole slide images (WSI) from the 
HER2 test set. Please refer to the caption of Figure 9 for a detailed explanation of the visualisation. Unlike Figure 
9 and Figure S-1, only True Negative (TN) and False Negative (FN) cases are shown, since the HER2 model can only 
perform negative predictions. 
 

Accuracy-Test Replacement Trade-off 
We conducted a post-validation analysis to demonstrate the relationship between accuracy and TRR 
in accordance with the predictive thresholds. The results of the analysis are shown in Figure 11. In this 
section, we provide the details of how the plots in Figure 11 were generated.  

During training or calibration, a predictive model M is deployed onto a validation dataset S that is 
specifically used for computing the predictive thresholds. This dataset only contains images that have 
not been seen by the predictive model M. For each image, M produces a confidence score between 0 
and 1 and given any pair of threshold values (a, b) ⊆ [0, 1] we can compute a set of predictions with 
confidence on the dataset S, considering a prediction to be uncertain if its score lies within (a, b), that 
is 

𝑆($,&) ∶= 	 {𝑖𝑚𝑎𝑔𝑒	 ∈ 𝑆 ∶ 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑠𝑐𝑜𝑟𝑒	𝑓𝑜𝑟	𝑖𝑚𝑎𝑔𝑒	 ∉ (𝑎	, 𝑏)	}	 
 

We can then define accuracy (acc) and TRR (trr) as follows: 

𝑎𝑐𝑐>($,&)	: = 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑚𝑜𝑑𝑒𝑙	𝑀	𝑜𝑛	𝑆($,&) 
𝑡𝑟𝑟>($,&)	: = 	 |𝑆($,&)|	/	|	𝑆	| 

 

Furthermore, since |S| is finite, the set of “achievable” accuracy values 
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𝐴 ∶= 	 {𝑎𝑐𝑐>($,&) ∶ 	 (𝑎, 𝑏) 	⊆ [0, 1], 𝑆($,&)		𝑛𝑜𝑛	𝑒𝑚𝑝𝑡𝑦} 

also has a finite number of elements, so for any value of accuracy 𝛼  in A  there exist thresholds (a(𝛼), 
b(𝛼)) which optimise for TRR, such that  

	𝑡𝑟𝑟>($(L),&(L)) 	= 	𝑚𝑎𝑥	({	𝑡𝑟𝑟>($,&) ∶ 	 (𝑎, 𝑏) 	⊆ [0, 1]	, 𝑎𝑐𝑐>($,&) 	≥ 	𝛼}) 
 
This allows us to plot the relationship between accuracy and test-replacement rate during the 
threshold fitting process on the validation set S, as shown by the blue lines in Figure 10. Here the x-
coordinate of each point on the line is an "achievable" value of accuracy for 𝑆(𝑎(𝛼), 𝑏(𝛼))and the 
corresponding y-coordinate is its optimised TRR. We then apply all pairs of predictive thresholds 
(𝑎(𝛼), 𝑏(𝛼)) to T and plot the resultant accuracy and test replacement values (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦O($(L),&(L)), 
𝑡𝑟𝑟O($(L),O(L))) as points on the orange line. The grey segments demonstrate this application of 
thresholds by connecting points with coordinates (𝑎𝑐𝑐>($(L),&(L)), 𝑡𝑟𝑟>($(L),O(L))) on the blue line to 
corresponding points with coordinates (𝑎𝑐𝑐O($(L),&(L)), 𝑡𝑟𝑟O($(L),O(L))) on the orange line. Here, one 
should note that, in the actual validation, only the pair of thresholds (𝑎(𝛼), 𝑏(𝛼)) that maximises the 
TRR for a target accuracy on the validation set is fitted on the independent test set T. However, for 
post-validation visualisation purposes, we showed all pairs of predictive thresholds applied to T, to 
demonstrate the impact of the predictive thresholds on the test performance. 

 
 
Detailed Performance Characteristics 
PANProfiler Breast (ER, PR, HER2) can return a positive, negative, or indeterminate result. Positive or 
negative output is only given when the device is certain about its prediction. Otherwise, a prediction 
will not be given and the case will continue with the standard of care procedures. 

To evaluate the performance of the device, confident predictions (i.e. the predictions provided by the 
device when it is certain) are compared to the well-characterised ground truth based on actual 
biomarker receptor results determined by IHC and ISH. Considering the actual and predicted results, 
the outcome of the device shall fall into one of the four categories of true positive, true negative, 
false positive, or false negative.  

- True Positive (TP): The device correctly predicts a positive case. 
- True Negative (TN): The device correctly predicts a negative case. 
- False Positive (FP): The device incorrectly predicts a positive case as negative. 
- False Negative (FN): The device incorrectly predicts a negative case as positive. 

The following matrix visualises the four definitions: 

 

 Predicted Case 

Positive Negative 

Actual case Positive True Positive (TP) False Negative (FN) 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2022.01.04.474882doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.04.474882
http://creativecommons.org/licenses/by-nc/4.0/


31 
 

Negative False Positive (FP) True Negative (TN) 

 

Performance characteristics used to evaluate the performance of the device are derived based on 
these outcomes and explained in detail in the remainder of this document.  

 

Accuracy: Measures the ratio of correct predictions to all predictions done by the device. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = OPQOR
OPQORQSRQSP

, 

 
Positive Predictive Value (PPV): Measures the effectiveness of a device in separating true positive 
cases from false positive cases in the tested population. PPV is defined as follows:  

 𝑃𝑃𝑉 = OR
ORQSR

 

 
Negative Predictive Value (NPV):  Measures the effectiveness of a device in separating true negative 
cases from false negative ones in the tested population. NPV is defined as follows:  

 𝑁𝑃𝑉 = OP
OPQSP

 

 
Test Replacement Rate: Measures the frequency of the device returning a confident prediction and 
is defined as the percentage of predictions done by the device over all the tested cases. 

𝑇𝑒𝑠𝑡	𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	𝑅𝑎𝑡𝑒	 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑜𝑟	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑎𝑙𝑙	𝑐𝑎𝑠𝑒𝑠
 

Area Under the Receiver Operating Characteristics Curve: 

A receiver operating characteristic (ROC) curve plots the relationship between TPR and FPR across 
different predictive thresholds (Figure S-3). The area under a ROC curve (AUC) describes the total 
area under the curve, normalised to unit square of 1. An AUC of 0.5 denotes a random model, while 
a perfect model that can predict all samples correctly has an AUC of 1. 

 

 Figure S-3: the visualisation of a ROC curve and AUC. Taken from https://bit.ly/3aFfhRz 
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Supplementary Table S-1 
 

Laboratory Abbreviations 

Abbr. Laboratory Name 

3C  Columbia University 

5T  Holy Cross 

A1  UCSF 

A7  Christiana Healthcare     

A8  Indivumed   

AC  International Genomics 
Consortium 

AN  Cureline  

AQ  UNC  

B6  Duke    

BH  University of Pittsburgh    

C8  ILSBio 

E2  Roswell Park                                 

E9  Asterand 

GI  ABS                                          

GM  MD Anderson 

JL  ABS                                          

LD  Hartford Hospital                            

LL  Candler                                     

LQ  Gundersen Lutheran Health 
System             

OK  Mount Sinai School of Medicine               

OL  University of Chicago                        

PE  Fox Chase                              

UL  Boston Medical Center                     

WT  University of Kansas                         

XX  Spectrum Health                              

Z7  John Wayne Cancer Center 
Table S-2: Abbreviation of laboratories used in the confounding factor analysis figures. 
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Biomarker Confounding 
Factor 

Subgroup Sample 
Size 

ER Age 29 to 41  29 

42 to 53  103 

54 to 65  113 

66 to 77  71 

78 to 90  30 

90+  3 

Subtype HER2-enriched 11 

Luminal-A 197 

Luminal-B 56 

Triple-negative 41 

Unknown 44 

Lab 3C  1 

5T  1 

A1  5 

A7  17 

A8  49 

AC  27 

AN  19 

AQ  3 

B6  21 

BH  81 

C8  23 

E2  48 

E9  15 

GI  1 

GM  14 

JL  2 

LD  3 

LL  11 

LQ  1 

OK  1 
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OL  3 

PE  1 

Z7  2 

Staging Stage I  64 

Stage II  193 

Stage III  77 

Stage IV  5 

Stage X  8 

Unknown  2 

Ethnicity Asian  26 

Black  50 

Other  4 

White  217 

Unknown  52 

PR Age 29 to 41  31 

42 to 53  84 

54 to 65  120 

66 to 77  80 

78 to 90  34 

90+  5 

Subtype HER2-enriched 16 

Luminal-A 178 

Luminal-B 61 

Triple-negative 47 

Unknown 52 

Lab 4H  1 

A1  4 

A7  21 

A8  48 

AC  25 

AN  20 

AQ  4 

B6  25 

BH  77 
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C8  26 

E2  50 

E9  10 

GI  1 

GM  10 

JL  1 

LD  4 

LL  13 

OK  1 

OL  4 

PE  2 

UL  1 

UU  1 

WT  2 

XX  1 

Z7  2 

Staging Stage I  59 

Stage II  202 

Stage III  77 

Stage IV  6 

Stage X  7 

Unknown  3 

Ethnicity Asian  31 

Black  62 

Other  3 

White  209 

Unknown  49 

HER2 Age 29 to 41  24 

42 to 53  75 

54 to 65  84 

66 to 77  56 

78 to 90  37 

90+  2 

Subtype HER2-enriched 9 
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Luminal-A 186 

Luminal-B 34 

Triple-negative 49 

Unknown 0 

Lab 5T  1 

A1  3 

A7  17 

A8  41 

AC  17 

AN  18 

AQ  1 

B6  1 

BH  65 

C8  20 

E2  51 

E9  7 

GI  1 

GM  9 

JL  1 

LD  3 

LL  13 

OL  3 

PE  2 

UL  1 

WT  1 

XX  1 

Z7  1 

Staging Stage I  52 

Stage II  158 

Stage III  59 

Stage IV  5 

Stage X  2 

Unknown  2 

Ethnicity Asian  24 
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Black  43 

Other  5 

White  163 

Unknown  43 
Table S-3: Number of cases in each subpopulation included in the confounding factor analysis. 
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