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1 Mathematical Model

In this section we give a detailed description of the computation model used to mimic and examine
the collective dynamics of Dictystelium cells.

1.1 General Model Set-up

We use a hybrid computational model in two space dimensions. Cells are modelled as discrete
elements, while the external cAMP concentration ([cAMP]) is represented as a continuous function.
Cells are labelled by index i = 1, . . . , N , where N is the total number of cells. Each cell has a
number of properties (position, speed, internal signalling dynamics, etc.). Cells produce external
cAMP, which diffuses and decays. Cells also sense external cAMP, which influences their internal
dynamics and movement. The spatial domain is Ω = [−L/2, L/2]2 ⊂ R2, where L > 0 is the
domain size. The external [cAMP] at position x and time t is denoted by c(x, t) for t ≥ 0 and
x ∈ Ω and cells are positioned at Xi(t) ∈ Ω.

1.2 Internal Signalling Dynamics

Several models of internal cAMP dynamics have been suggested [2, 9, 7, 6, 5]. We choose to work
with the model used in [9], which has been shown to be able to reproduce a wider range of exper-
imental observations than other models [4]. The model is based on the famous FitzHugh-Nagumo
model [1, 8], originally developed for spike generation in axons.

Let Ai(t) and Ii(t) represent activator and inhibitor dynamics of the i-th cell. Note that while they
do not represent concentrations of specific molecules, we assume that the value of the activator
determines cAMP release to the exterior of the cell. The dynamics are governed by

τȦi = Ai −
1

3
A3

i − Ii + α log
(
1 +

ci
κ

)
, (1)

τ İi = ε (Ai − γIi + µ) ,

where ci = c(Xi(t), t) is the concentration of external cAMP experienced by the i-th cell. We use
the parameters from [9] and fit the time scale parameter τ to match the experimentally measured
spiking frequency (see Tab. 1).

1.3 External cAMP dynamics

External cAMP is secreted by active cells. We define active cells as having a positive activator
value Ai > 0 [9]. Once secreted, we assume external cAMP diffuses and decays. We note that
other, more complicated dynamics of external cAMP have been used (e.g. active degradation by
cells, [3]), however here we chose to omit such potential effects in the interest of simplicity. We use
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the following equation

∂tc = D∂2
xc− g c+ a

N∑
i=1

H(Ai) δd(x−Xi), (2)

where D is the diffusion constant, g the decay rate and a the external cAMP secretion rate
of active cells. H is the Heaviside function, i.e. only for Ai > 0 cells secrete cAMP, and δd
denotes a smooth approximation of the Dirac delta. For numerical efficiency we use the product
of two one-dimensional bump functions, i.e. if x = (x1, x2), then δd(x) = bd(x1)bd(x2), where

bd(r) = 1
Z e

− 1
1−(r/d)2 for r < d and zero otherwise. The constant Z is a normalisation constant

chosen such that δd has mass 1. The parameter d has units of space and can be interpreted as the
size over which an activated cell secretes cAMP. Since we don’t measure external cAMP explicitly,
we don’t specify the units of external cAMP, but just refer to the units as ”conc”. For parameters
see Table 1.

1.4 Chemotaxis model

Numerical and experimental results indicate that while the gradient of external cAMP plays a
critical role in determining cell direction, whether cells are sensitive to the gradient and how this
in turn affects their velocity remains largely unclear.

Data-driven identification of chemotaxis model. A data-driven approach was used to infer
an accurate yet simple mathematical model of single-cell Dictyostelium chemotaxis in response to
dynamics external [cAMP] fields. To achieve this, we first used equation (2) to predict the external
[cAMP] field using the experimentally measured cell positions and internal cAMP states as inputs.
Using the inferred [cAMP] field we generated the time series (2 hours, 5 second intervals) for the
external [cAMP] magnitude and gradient for each cell (in addition to the cell signalling state and
velocity) in the central 1mm x 1mm area of the experimental field of view (1.2mm x 1.2mm). We
then systematically compared how well the predicted external [cAMP] field can explain measured
cell movement under various chemotaxis model assumptions. We started with simple models such
as:

ẊXXi = α∇ci , (3)

which assumes that moves constant move towards higher [cAMP]. Here ẊXXi is the cell velocity and
|∇ci|. The Matlab function fminsearch was used to identify parameter values that minimise the
mean difference in the measured and predicted direction and magnitude of cell velocity for each
cell track. We then identified the shortcoming of each model, and added model complexity. For
example, from equation 3, we incorporated receptor desensitisation, yielding the same model as in
Ref. [3]:

ẊXXi = α si ∇ci (4)

ṡi = a(1− si)− b ci si , (5)

and si is the number of receptors on the surface and encapsulates receptor desensitisation. This
process motivated the use of the chemotaxis model described in the next paragraph.

Best-fit chemotaxis model. We denote by θi(t) ∈ [0, 2π] and vi(t) ∈ R the movement direction
and speed of the i-th cell at time t respectively. Further we define a sensitivity for each cell,
si ∈ [0, 1], similar to what was used in [3]. We then use the identified model

θ̇i = αmsi|∇ci| sin (θci − θi), (6)

v̇i = βmsi|∇ci| − γmvi,

ṡi = σm(1− si)− λmcisi,
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where θci is the direction of the local gradient of external cAMP, evaluated at Xi and ∇ci is the
spatial gradient of external cAMP evaluated at x = Xi. The parameters αm, βm, γm, σm, λm

are determined during the model identification and fitting method described above (see Tab. 1.
The first equation models the turning of the cell towards the local gradient of external cAMP. The
turning speed depends on a cell’s sensitivity and the size of the cAMP gradient. The second equa-
tion describes adaptation of the cell speed. It drives cell speed to be proportional to si|∇ci|, i.e.
higher sensitivity and larger local gradients will lead to faster speeds. Finally, the third equation
models sensitivity: If a cell experiences a high concentration of external cAMP ci, it will become
de-sensitised and it takes some time to become sensitive again. Note that if si is initially chosen
in [0, 1], the equation preserves this property.

For the final cell movement model we also model size exclusion effects between cells, by including
a cell-cell repulsion term. This means θi and vi are understood to mean the orientation and speed
a cell would have if not in contact with other cells. We define as dij = |Xi − Xj | the distance
between the cell centres of the i-th and j-th cell. A cell’s movement now follows

Ẋi = vi (cos θi, sin θi) + ρR
∑

j ̸=i,dij<dR

(
1− dij

dR

)
Xi −Xj

dij
, (7)

i.e. cells move with speed vi in direction θi in the absence of cell-cell repulsion. The second term
describes a cell-cell repulsion with maximal repulsion magnitude ρR, where only cells within a
distance of dR of each other exert a pushing force.

1.5 Initial and boundary conditions

We use no-flux boundary conditions for the external cAMP concentration, i.e. cAMP cannot leave
the domain. Similarly cells cannot leave the domain. Since the dynamics cause a concentration
of cells towards the spiral center, cells are being depleted from the very edge of the simulation
domain and hence we only considered the middle part of the simulation domain to represent the
biological situation.

For all numerical experiments we initialise cell positions Xi and orientations θi using a uniform
random distribution on Ω and [0, 2π] respectively. Cell sensitivities si were initially set to 1 and
cell speeds vi to 0. The initial external cAMP concentration, activator and inhibitor values were
initialised as shown in Fig. 1. The values shown in Fig. 1 were created by disabling cell movement
and 1. Letting a vertical cAMP wave moving from left to right across a periodic domain until it
is equilibrated, 2. Setting the external cAMP in the upper-half of the domain to zero and setting
the inhibitor value in the upper half on the domain to a high value (we used 2.5) and 3. Setting
the boundary conditions to no-flux and restarting the simulation. This creates the spiral shown in
Fig. 1.

1.6 Numerics

We solve (1), (2), (6), (7) numerically using Matlab.

External cAMP. We discretise c(x, t) on a regular rectangular spatial grid using 50 gridpoints
per mm length. To solve (2) we use a finite difference, implicit Euler method in time (time step
∆t), using a central difference in space (spatial step ∆x) discretisation for the diffusion term. The
source term is taken explicitly, i.e. evaluated at the current time step.

Cell movement. The internal cAMP dynamics (1) as well as dynamics of the chemotaxis related
quantities (6) are solved on [t, t+∆t] using an the in-built Matlab solve ode45. Finally (7) is solved
using an explicit Euler method (time step ∆t).
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Figure 1: Initial conditions used. Spatial units are in mm, colorbar represent external cAMP
concentration (left) and activator and inhibitor values (middle and right).

parameter/variable meaning value/unit reference
c(x, t) external cAMP concentration conc
Xi(t) cell position in (mm,mm)
Ai(t) cAMP activator a.u.
Ii(t) cAMP inhibitor a.u.
θi(t) cell orientation in radians
vi(t) cell speed in mm/min
si(t) cell sensitivity in [0, 1]

τ time scale of cAMP dynamics 0.167min fitted
ε activator and inhibitors time scales ratio 0.1 [9]
γ inhibitor decay rate 0.5 [9]
µ basal inhibitor production 1.2 [9]
α cAMP response magnitude 0.058 [9]
κ cAMP response threshold 10−5conc [9]

D ext. cAMP diffusion constant 2.4× 10−2mm2/min [10]
g ext. cAMP degradation rate 5/min [10]
a ext. cAMP secretion rate 103conc mm2/min [10]
d ext. cAMP secretion length scale 0.1mm estimated

αm maximal turning rate 3× 10−6mm/(min conc) fitted
βm speed model parameter 10−8mm2/(min2conc) fitted
γm speed model parameter 0.6/min fitted
σm re-sensitisation 150/min fitted
λm de-sensitisation 4× 10−3/(min conc) fitted

ρR maximal repulsion strength 0.1mm/min guessed
dR cell radius 5× 10−3mm measured

L domain length 4mm experiments
∆x spatial step 0.02mm
∆t temporal step 0.05min

Table 1: Parameters.
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